Research Article
BibTex RIS Cite

Pisagor Bulanık AHP ve Pisagor Bulanık TOPSIS Kullanılarak Balıkesir’de Orman Yangını Risk Değerlendirmesi

Year 2025, EARLY VIEW, 1 - 1
https://doi.org/10.2339/politeknik.1648306

Abstract

Orman yangınları çeşitli nedenlerle ortaya çıkabilir ve hızla yayılabilir. Dolayısıyla büyük bir çevre sorunudur. Türkiye'de özellikle Ege ve Akdeniz bölgelerinde 12 milyon hektar alan orman yangını riski taşımaktadır. Orman yangınlarında riskli alanlar, yangının kolaylıkla başlayıp hızla diğer alanlara yayılabileceği yerlerdir. Doğayı kontrol etmek zordur. Bu bağlamda bu çalışmada Türkiye'de yangın ihtimali yüksek olan yerlerin tespit edilmesi problemi ele alınmaktadır. Özellikle Balıkesir ili turistik bir yer olup, ormanlık alanı fazla, bitki çeşitliliği fazla ve tarım bölgesidir. Bu nedenle Balıkesir’in 20 ilçesi alternatif olarak belirlenmiştir. Bunlar Bandirma, Edremit, Dursunbey, Susurluk, Manyas, Burhaniye, Ayvalik, Havran, Gönen, Kepsut, Erdek, Marmara adasi, Altieylül, Karesi, İvrindi, Savastepe, Bigadic, Sindirgi, Gömec, Balya’dır. Bu ilçelerde yangın olasılığının yüksek olması nedeniyle çok kriterli karar verme (ÇKKV) modelinin önerilmesi ikna edici sonuçlar elde etmek açısından çok değerlidir. Bu nedenle literatürde birçok uygulamada karar vericiye geniş bir değerlendirme ölçeği sunan Pisagor Bulanık Kümeleri (PFS) kullanılmış ve AHP-TOPSIS kombinasyonu uygulanmıştır. Ayrıca PFS, orman yangınlarının risk değerlendirmesi ve yönetiminde belirsizliklerin daha etkin bir şekilde modellenebilmesi amacıyla ilk kez kullanılmıştır. Orman yangınlarına neden olan kriterlerin ağırlıkları Pisagor Bulanık AHP yöntemiyle hesaplanmıştır. Bu yöntemden 0.153 oranla hava sıcaklığı ilk sıradır. İkinci sırada nem yer almaktadır. Bu nedenle düşük nem ve hava sıcaklığı, bitki örtüsünün su içeriğini azaltarak tutuşma potansiyelini artırır ve yangınların yayılma hızını destekleyerek orman yangınlarının sıklığını ve şiddetini önemli ölçüde etkilemektedir. Bu ağırlıklar kullanılarak Pisagor Bulanık TOPSIS yöntemi ile orman yangını açısından risk altındaki ilçelerin sıralaması bulunmuştur. İlk sırada Edremit yer almaktadır. Sonucun ne kadar önemini test etmek için duyarlılık analizi uygulanmıştır.

References

  • [1] Tezcan, B., Pınarbaşı, M., Alakaş, H. M. ve Eren, T., “Orman Yangını Risk Değerlendirmesine Bulanık Bir Yaklaşım: Ege Bölgesi Örneği”, 41. Yöneylem Araştırması ve Endüstri Mühendisliği (YA/EM) Ulusal Kongresi, 26-28 Ekim 2022, Denizli, Türkiye., (2022).
  • [2] Rigolot, E., “Impact du changement climatique sur les feux de forêt”, Forêt méditerranéenne, 29(2), 167–176, (2008).
  • [3] El Mazi, M., Boutallaka, M., Saber, E., Chanyour, Y. ve Bouhlal, A., “Forest fire risk modeling in Mediterranean forests using GIS and AHP method: case of the high Rif forest massif (Morocco)”, Euro-Mediterranean J. Environ. Integr., 9(3), 1109–1123, (2024).
  • [4] Driouech, F., ElRhaz, K., Moufouma-Okia, W., Arjdal, K. ve Balhane, S., “Assessing future changes of climate extreme events in the CORDEX-MENA region using regional climate model ALADIN-climate”, Earth Syst. Environ., 4(3), 477–492, (2020).
  • [5] Busico, G., Giuditta, E., Kazakis, N. ve Colombani, N., “A hybrid GIS and AHP approach for modelling actual and future forest fire risk under climate change accounting water resources attenuation role”, Sustainability, 11(24), 7166, (2019).
  • [6] Fernández-García, V., Fulé, P. Z., Marcos, E. ve Calvo, L., “The role of fire frequency and severity on the regeneration of Mediterranean serotinous pines under different environmental conditions”, For. Ecol. Manage., 444, 59–68, (2019).
  • [7] Moreno, M., Bertolín, C., Arlanzón, D., Ortiz, P. ve Ortiz, R., “Climate change, large fires, and cultural landscapes in the mediterranean basin: An analysis in southern Spain”, Heliyon, 9(6), (2023).
  • [8] Francos, M., Úbeda, X., Tort, J., Panareda, J. M. ve Cerdà, A., “The role of forest fire severity on vegetation recovery after 18 years. Implications for forest management of Quercus suber L. in Iberian Peninsula”, Glob. Planet. Change, 145, 11–16, (2016).
  • [9] Novo, A., Fariñas-Álvarez, N., Martínez-Sánchez, J., González-Jorge, H., Fernández-Alonso, J. M. ve Lorenzo, H., “Mapping forest fire risk—a case study in Galicia (Spain)”, Remote Sens., 12(22), 3705, (2020).
  • [10] Francos, M., Úbeda, X. ve Pereira, P., “Impact of torrential rainfall and salvage logging on post-wildfire soil properties in NE Iberian Peninsula”, Catena, 177, 210–218, (2019).
  • [11] Pereira, P., Francos, M., Brevik, E. C., Ubeda, X. ve Bogunovic, I., “Post-fire soil management”, Curr. Opin. Environ. Sci. Heal., 5, 26–32, (2018).
  • [12] Vieira, D. C. S., Borrelli, P., Jahanianfard, D., Benali, A., Scarpa, S. ve Panagos, P., “Wildfires in Europe: Burned soils require attention”, Environ. Res., 217, 114936, (2023).
  • [13] Pagter, T. de, Lucas-Borja, M. E., Navidi, M., Carra, B. G., Baartman, J. ve Zema, D. A., “Effects of wildfire and post-fire salvage logging on rainsplash erosion in a semi-arid pine forest of Central Eastern Spain”, J. Environ. Manage., 329, 117059, (2023).
  • [14] Avcı, M. ve Korkmaz, M., “Türkiye’de orman yangını sorunu: Güncel bazı konular üzerine değerlendirmeler”, Turkish J. For., 22(3), 229–240, (2021).
  • [15] https://www.ogm.gov.tr/tr/e-kutuphane/resmi-istatistikler, “Ministry of Agriculture and Forestry, General Directorate of Forestry”, (2025).
  • [16] Nami, M. H., Jaafari, A., Fallah, M. ve Nabiuni, S., “Spatial prediction of wildfire probability in the Hyrcanian ecoregion using evidential belief function model and GIS”, Int. J. Environ. Sci. Technol., 15, 373–384, (2018).
  • [17] Jaafari, A., Termeh, S. V. R., ve Bui, D. T., “Genetic and firefly metaheuristic algorithms for an optimized neuro-fuzzy prediction modeling of wildfire probability”, J. Environ. Manage., 243, 358–369, (2019).
  • [18] Ghorbanzadeh, O., Valizadeh Kamran, K., Blaschke, T., Aryal, J., Naboureh, A., Einali, J. and Bian, J., “Spatial prediction of wildfire susceptibility using field survey GPS data and machine learning approaches”, Fire, 2(3), 43, (2019).
  • [19] Sayad, Y. O., Mousannif, H. ve Al Moatassime, H., “Predictive modeling of wildfires: A new dataset and machine learning approach”, Fire Saf. J., 104, 130–146, (2019).
  • [20] Jaafari, A., Zenner, E. K., Panahi, M. ve Shahabi, H., “Hybrid artificial intelligence models based on a neuro-fuzzy system and metaheuristic optimization algorithms for spatial prediction of wildfire probability”, Agric. For. Meteorol., 266, 198–207, (2019).
  • [21] Gholamnia, K., Gudiyangada Nachappa, T., Ghorbanzadeh, O. ve Blaschke, T., “Comparisons of diverse machine learning approaches for wildfire susceptibility mapping”, Symmetry (Basel)., 12(4), 604, (2020).
  • [22] de Bem, P. P., de Carvalho Júnior, O. A., Matricardi, E. A. T., Guimarães, R. F. ve Gomes, R. A. T., “Predicting wildfire vulnerability using logistic regression and artificial neural networks: a case study in Brazil’s Federal District”, Int. J. Wildl. fire, 28(1), 35–45, (2018).
  • [23] Rihan, W., Zhao, J., Zhang, H., Guo, X., Ying, H., Deng, G., and Li, H., “Wildfires on the Mongolian Plateau: Identifying drivers and spatial distributions to predict wildfire probability”, Remote Sens., 11(20), 2361, (2019).
  • [24] Tonini, M., D’Andrea, M., Biondi, G., Degli Esposti, S., Trucchia, A. ve Fiorucci, P., “A machine learning-based approach for wildfire susceptibility mapping. The case study of the Liguria region in Italy”, Geosciences, 10(3), 105, (2020).
  • [25] Galizia, L. F. D. C. and Rodrigues, M., “Modeling the influence of eucalypt plantation on wildfire occurrence in the Brazilian savanna biome”, Forests, 10(10), 844, (2019).
  • [26] Kim, S. J., Lim, C. H., Kim, G. S., Lee, J., Geiger, T., Rahmati, O. and Lee, W. K., “Multi-temporal analysis of forest fire probability using socio-economic and environmental variables”, Remote Sens., 11(1), 86, (2019).
  • [27] Rodrigues, M. ve Riva, J. De la., “An insight into machine-learning algorithms to model human-caused wildfire occurrence”, Environ. Model. Softw., 57, 192–201, (2014).
  • [28] Ilbahar, E., Karaşan, A., Cebi, S. ve Kahraman, C., “A novel approach to risk assessment for occupational health and safety using Pythagorean fuzzy AHP & fuzzy inference system”, Saf. Sci., 103, 124–136, (2018).
  • [29] Karasan, A., Ilbahar, E. ve Kahraman, C., “A novel pythagorean fuzzy AHP and its application to landfill site selection problem”, Soft Comput., 23(21), 10953–10968, Kas. (2019).
  • [30] Gul, M. ve Ak, M. F., “A comparative outline for quantifying risk ratings in occupational health and safety risk assessment”, J. Clean. Prod., 196, 653–664, (2018).
  • [31] Gul, M., Guneri, A. F., ve Nasirli, S. M., “A fuzzy-based model for risk assessment of routes in oil transportation”, Int. J. Environ. Sci. Technol., 16, 4671–4686, (2019).
  • [32] Gul, M., “Application of Pythagorean fuzzy AHP and VIKOR methods in occupational health and safety risk assessment: the case of a gun and rifle barrel external surface oxidation and colouring unit”, Int. J. Occup. Saf. Ergon., 705-718, (2020).
  • [33] Yazıcı, E., Alakaş, H. M. ve Eren, T., “Prioritizing of sectors for establishing a sustainable industrial symbiosis network with Pythagorean fuzzy AHP-Pythagorean fuzzy TOPSIS method: a case of industrial park in Ankara”, Environ. Sci. Pollut. Res., 30(31), 77875–77889, (2023).
  • [34] Ak, M. F. ve Gul, M., “AHP–TOPSIS integration extended with Pythagorean fuzzy sets for information security risk analysis”, Complex Intell. Syst., 5(2), 113–126, (2019).
  • [35] Guven, E., Pinarbasi, M., Alakas, H. M. ve Eren, T., “Evaluation of natech criteria in organized industrial zones: An application for Kırıkkale province”, J. Loss Prev. Process Ind., 91, 105379, (2024).
  • [36] Guven, E., Pinarbasi, M., Alakas, H. M. ve Eren, T., “Ranking of sectors in organized industrial zones according to Natech risk criteria: An application for Gaziantep province in Türkiye”, J. Loss Prev. Process Ind., 91, 105377, (2024).
  • [37] Oz, N. E., Mete, S., Serin, F. ve Gul, M., “Risk assessment for clearing and grading process of a natural gas pipeline project: An extended TOPSIS model with Pythagorean fuzzy sets for prioritizing hazards”, Hum. Ecol. Risk Assess. An Int. J., 25(6), 1615–1632, (2019).
  • [38] Tezcan, B. and Eren, T., “Forest fire management and fire suppression strategies: a systematic literature review”, Nat. Hazards, 1-31, (2025).
  • [39] Tezcan, B. ve Eren, T., “Orman Yangınlarına Etki Eden Faktörlerin Önceliklendirilmesi”, 3rd International Disaster Management Congress, (2022).
  • [40] Tezcan, B. ve Eren, T., “Orman Yangınına Sebep Olan Kriterlerin Bulanık Ortamda Değerlendirilmesi”, Politek. Derg., 27(2), 545–558, (2023).
  • [41] Tezcan, B. ve Eren, T., “Sürdürülebilir Kalkınma için Çam İğnelerinin Enerji Üretimine Olanak Sağlayan Kriterlerin Önceliklendirilmesi”, 43. Yöneylem Araştırması ve Endüstri Mühendisliği (YA/EM) Ulusal Kongresi, 1-3 Kasım 2023, Gaziantep, Türkiye., (2023).
  • [42] Tezcan, B. ve Eren, T., “Bulanık Ortamda Proje Yöneticisi Seçimi: Savunma Sanayi Firmasında Bir Uygulama”, SAVSAD Savun. ve Savaş Araştırmaları Derg., 34(1), 153–168, (2024).
  • [43] Zadeh, L. A., “Fuzzy Sets As A Basis For A Theory Of Possibility”, Fuzzy sets and systems, 9–34, (1999).
  • [44] Atanassov, K. T., “Intuitionistic fuzzy sets”, Fuzzy Sets Syst., 20(1), 87–96, (1986).
  • [45] Rani, P., Mishra, A. R., Pardasani, K. R., Mardani, A., Liao, H. ve Streimikiene, D., “A novel VIKOR approach based on entropy and divergence measures of Pythagorean fuzzy sets to evaluate renewable energy technologies in India”, J. Clean. Prod., 238, (2019).
  • [46] Yager, R. R. ve Abbasov, A. M., “Pythagorean membership grades, complex numbers, and decision making”, Int. J. Intell. Syst., 28(5), 436–452, (2013).
  • [47] Tezcan, B., Alakaş, H. M., Özcan, E. ve Eren, T., “Afet sonrası geçici depo yeri seçimi ve çok araçlı araç rotalama uygulaması: Kırıkkale ilinde bir uygulama”, Politek. Derg., 26(1), 13–27, (2021).
  • [48] Tezcan, B. ve Eren, T., “Orman yangınlarında iş sağlığı ve güvenliği uygulamalarının değerlendirilebilmesi için AHP ve ANP yöntemleri ile ölçütlerin belirlenmesi: Türkiye Örneği”, Ağaç ve Orman, 5(2), 98–105, (2024).
  • [49] Kara, M. ve Eren, T., “Hasar tespit çalışmalarında görevlendirilebilecek dronların bulanık karar verme yöntemleri ile değerlendirilmesi”, Politeknik Dergisi, 1-1, (2023).
  • [50] Hwang, C. L., Yoon, K., Hwang, C. L. and Yoon, K., “Methods for multiple attribute decision making”, Multiple attribute decision making: methods and applications a state-of-the-art survey, 58-191, (1981).
  • [51] Akram, M., Dudek, W. A., and Ilyas, F., “Group decision-making based on pythagorean fuzzy TOPSIS method”, Int. J. Intell. Syst., 34(7), 1455–1475, (2019).
  • [52] Zhang, X. and Xu, Z., “Extension of TOPSIS to multiple criteria decision making with pythagorean fuzzy sets”, Int. J. Intell. Syst., 29(12), 1061–1078, (2014).
  • [53] Vadrevu, K. P., Eaturu, A. ve Badarinath, K. V. S., “Fire risk evaluation using multicriteria analysis-a case study”, Environ. Monit. Assess., 166, 223–239, (2010).
  • [54] Kushla, J. D. and Ripple, W. J., “The role of terrain in a fire mosaic of a temperate coniferous forest”, Forest Ecology and Management, 95(2), 97-107, (1997).
  • [55] Rothermel, RC, “How to predict the spread and intensity of forest and Range fires”, US Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station., 143, (1983).
  • [56] Shete, P. C., Ansari, Z. N., and Kant, R., “A Pythagorean fuzzy AHP approach and its application to evaluate the enablers of sustainable supply chain innovation”, Sustain. Prod. Consum., 23, 77–93, (2020).

Forest Fire Risk Assessment in Balikesir using Pythagorean Fuzzy AHP and Pythagorean Fuzzy TOPSIS

Year 2025, EARLY VIEW, 1 - 1
https://doi.org/10.2339/politeknik.1648306

Abstract

Forest fires can occur for a variety of reasons and spread rapidly. Therefore, this is a major environmental problem. In Turkey, especially in the Aegean and Mediterranean regions, 12 million hectares are at risk of forest fires. Risk areas in forest fires are places where fires can easily start and spread rapidly to other areas. Nature is difficult to control. In this context, this study addresses the problem of identifying areas with high fire risk in Turkey. Especially Balıkesir province is a touristic place, has a large forest area, high plant diversity and is an agricultural region. For this reason, 20 districts of Balıkesir were identified as alternatives. These are Bandirma, Edremit, Dursunbey, Susurluk, Manyas, Burhaniye, Ayvalik, Havran, Gönen, Kepsut, Erdek, Marmara Island, Altieylül, Karesi, İvrindi, Savastepe, Bigadic, Sindirgi, Gömec, Balya. Due to the high probability of fire in these districts, proposing a multi-criteria decision-making (MCDM) model is very valuable to obtain convincing results. For this reason, Pythagorean Fuzzy Sets (PFS) have been used in many applications in the literature, which offer a broad evaluation scale to the decision maker, and the combination of AHP-TOPSIS has been applied. In addition, PFS has been used for the first time in order to model uncertainties more effectively in risk assessment and management of forest fires. The weights of the criteria causing forest fires were calculated by Pythagorean Fuzzy AHP method. From this method, air temperature ranks first with a ratio of 0.153. The second rank is humidity. Therefore, low humidity and air temperature significantly affect the frequency and severity of forest fires by reducing the water content of vegetation, increasing the ignition potential and favoring the rate of fire spread. Using these weights, the Pythagorean Fuzzy TOPSIS method was used to rank the districts at risk of forest fires. Edremit is ranked first. The Edremit district is the most sensitive region due to high temperatures and low humidity in summer. In addition, 32 different endemic plant species in the Kaz Mountains increase the area's ecological importance. Therefore, it is of great importance to develop effective strategies to prevent forest fires in the Edremit district. Sensitivity analysis was applied to test the significance of the result.

References

  • [1] Tezcan, B., Pınarbaşı, M., Alakaş, H. M. ve Eren, T., “Orman Yangını Risk Değerlendirmesine Bulanık Bir Yaklaşım: Ege Bölgesi Örneği”, 41. Yöneylem Araştırması ve Endüstri Mühendisliği (YA/EM) Ulusal Kongresi, 26-28 Ekim 2022, Denizli, Türkiye., (2022).
  • [2] Rigolot, E., “Impact du changement climatique sur les feux de forêt”, Forêt méditerranéenne, 29(2), 167–176, (2008).
  • [3] El Mazi, M., Boutallaka, M., Saber, E., Chanyour, Y. ve Bouhlal, A., “Forest fire risk modeling in Mediterranean forests using GIS and AHP method: case of the high Rif forest massif (Morocco)”, Euro-Mediterranean J. Environ. Integr., 9(3), 1109–1123, (2024).
  • [4] Driouech, F., ElRhaz, K., Moufouma-Okia, W., Arjdal, K. ve Balhane, S., “Assessing future changes of climate extreme events in the CORDEX-MENA region using regional climate model ALADIN-climate”, Earth Syst. Environ., 4(3), 477–492, (2020).
  • [5] Busico, G., Giuditta, E., Kazakis, N. ve Colombani, N., “A hybrid GIS and AHP approach for modelling actual and future forest fire risk under climate change accounting water resources attenuation role”, Sustainability, 11(24), 7166, (2019).
  • [6] Fernández-García, V., Fulé, P. Z., Marcos, E. ve Calvo, L., “The role of fire frequency and severity on the regeneration of Mediterranean serotinous pines under different environmental conditions”, For. Ecol. Manage., 444, 59–68, (2019).
  • [7] Moreno, M., Bertolín, C., Arlanzón, D., Ortiz, P. ve Ortiz, R., “Climate change, large fires, and cultural landscapes in the mediterranean basin: An analysis in southern Spain”, Heliyon, 9(6), (2023).
  • [8] Francos, M., Úbeda, X., Tort, J., Panareda, J. M. ve Cerdà, A., “The role of forest fire severity on vegetation recovery after 18 years. Implications for forest management of Quercus suber L. in Iberian Peninsula”, Glob. Planet. Change, 145, 11–16, (2016).
  • [9] Novo, A., Fariñas-Álvarez, N., Martínez-Sánchez, J., González-Jorge, H., Fernández-Alonso, J. M. ve Lorenzo, H., “Mapping forest fire risk—a case study in Galicia (Spain)”, Remote Sens., 12(22), 3705, (2020).
  • [10] Francos, M., Úbeda, X. ve Pereira, P., “Impact of torrential rainfall and salvage logging on post-wildfire soil properties in NE Iberian Peninsula”, Catena, 177, 210–218, (2019).
  • [11] Pereira, P., Francos, M., Brevik, E. C., Ubeda, X. ve Bogunovic, I., “Post-fire soil management”, Curr. Opin. Environ. Sci. Heal., 5, 26–32, (2018).
  • [12] Vieira, D. C. S., Borrelli, P., Jahanianfard, D., Benali, A., Scarpa, S. ve Panagos, P., “Wildfires in Europe: Burned soils require attention”, Environ. Res., 217, 114936, (2023).
  • [13] Pagter, T. de, Lucas-Borja, M. E., Navidi, M., Carra, B. G., Baartman, J. ve Zema, D. A., “Effects of wildfire and post-fire salvage logging on rainsplash erosion in a semi-arid pine forest of Central Eastern Spain”, J. Environ. Manage., 329, 117059, (2023).
  • [14] Avcı, M. ve Korkmaz, M., “Türkiye’de orman yangını sorunu: Güncel bazı konular üzerine değerlendirmeler”, Turkish J. For., 22(3), 229–240, (2021).
  • [15] https://www.ogm.gov.tr/tr/e-kutuphane/resmi-istatistikler, “Ministry of Agriculture and Forestry, General Directorate of Forestry”, (2025).
  • [16] Nami, M. H., Jaafari, A., Fallah, M. ve Nabiuni, S., “Spatial prediction of wildfire probability in the Hyrcanian ecoregion using evidential belief function model and GIS”, Int. J. Environ. Sci. Technol., 15, 373–384, (2018).
  • [17] Jaafari, A., Termeh, S. V. R., ve Bui, D. T., “Genetic and firefly metaheuristic algorithms for an optimized neuro-fuzzy prediction modeling of wildfire probability”, J. Environ. Manage., 243, 358–369, (2019).
  • [18] Ghorbanzadeh, O., Valizadeh Kamran, K., Blaschke, T., Aryal, J., Naboureh, A., Einali, J. and Bian, J., “Spatial prediction of wildfire susceptibility using field survey GPS data and machine learning approaches”, Fire, 2(3), 43, (2019).
  • [19] Sayad, Y. O., Mousannif, H. ve Al Moatassime, H., “Predictive modeling of wildfires: A new dataset and machine learning approach”, Fire Saf. J., 104, 130–146, (2019).
  • [20] Jaafari, A., Zenner, E. K., Panahi, M. ve Shahabi, H., “Hybrid artificial intelligence models based on a neuro-fuzzy system and metaheuristic optimization algorithms for spatial prediction of wildfire probability”, Agric. For. Meteorol., 266, 198–207, (2019).
  • [21] Gholamnia, K., Gudiyangada Nachappa, T., Ghorbanzadeh, O. ve Blaschke, T., “Comparisons of diverse machine learning approaches for wildfire susceptibility mapping”, Symmetry (Basel)., 12(4), 604, (2020).
  • [22] de Bem, P. P., de Carvalho Júnior, O. A., Matricardi, E. A. T., Guimarães, R. F. ve Gomes, R. A. T., “Predicting wildfire vulnerability using logistic regression and artificial neural networks: a case study in Brazil’s Federal District”, Int. J. Wildl. fire, 28(1), 35–45, (2018).
  • [23] Rihan, W., Zhao, J., Zhang, H., Guo, X., Ying, H., Deng, G., and Li, H., “Wildfires on the Mongolian Plateau: Identifying drivers and spatial distributions to predict wildfire probability”, Remote Sens., 11(20), 2361, (2019).
  • [24] Tonini, M., D’Andrea, M., Biondi, G., Degli Esposti, S., Trucchia, A. ve Fiorucci, P., “A machine learning-based approach for wildfire susceptibility mapping. The case study of the Liguria region in Italy”, Geosciences, 10(3), 105, (2020).
  • [25] Galizia, L. F. D. C. and Rodrigues, M., “Modeling the influence of eucalypt plantation on wildfire occurrence in the Brazilian savanna biome”, Forests, 10(10), 844, (2019).
  • [26] Kim, S. J., Lim, C. H., Kim, G. S., Lee, J., Geiger, T., Rahmati, O. and Lee, W. K., “Multi-temporal analysis of forest fire probability using socio-economic and environmental variables”, Remote Sens., 11(1), 86, (2019).
  • [27] Rodrigues, M. ve Riva, J. De la., “An insight into machine-learning algorithms to model human-caused wildfire occurrence”, Environ. Model. Softw., 57, 192–201, (2014).
  • [28] Ilbahar, E., Karaşan, A., Cebi, S. ve Kahraman, C., “A novel approach to risk assessment for occupational health and safety using Pythagorean fuzzy AHP & fuzzy inference system”, Saf. Sci., 103, 124–136, (2018).
  • [29] Karasan, A., Ilbahar, E. ve Kahraman, C., “A novel pythagorean fuzzy AHP and its application to landfill site selection problem”, Soft Comput., 23(21), 10953–10968, Kas. (2019).
  • [30] Gul, M. ve Ak, M. F., “A comparative outline for quantifying risk ratings in occupational health and safety risk assessment”, J. Clean. Prod., 196, 653–664, (2018).
  • [31] Gul, M., Guneri, A. F., ve Nasirli, S. M., “A fuzzy-based model for risk assessment of routes in oil transportation”, Int. J. Environ. Sci. Technol., 16, 4671–4686, (2019).
  • [32] Gul, M., “Application of Pythagorean fuzzy AHP and VIKOR methods in occupational health and safety risk assessment: the case of a gun and rifle barrel external surface oxidation and colouring unit”, Int. J. Occup. Saf. Ergon., 705-718, (2020).
  • [33] Yazıcı, E., Alakaş, H. M. ve Eren, T., “Prioritizing of sectors for establishing a sustainable industrial symbiosis network with Pythagorean fuzzy AHP-Pythagorean fuzzy TOPSIS method: a case of industrial park in Ankara”, Environ. Sci. Pollut. Res., 30(31), 77875–77889, (2023).
  • [34] Ak, M. F. ve Gul, M., “AHP–TOPSIS integration extended with Pythagorean fuzzy sets for information security risk analysis”, Complex Intell. Syst., 5(2), 113–126, (2019).
  • [35] Guven, E., Pinarbasi, M., Alakas, H. M. ve Eren, T., “Evaluation of natech criteria in organized industrial zones: An application for Kırıkkale province”, J. Loss Prev. Process Ind., 91, 105379, (2024).
  • [36] Guven, E., Pinarbasi, M., Alakas, H. M. ve Eren, T., “Ranking of sectors in organized industrial zones according to Natech risk criteria: An application for Gaziantep province in Türkiye”, J. Loss Prev. Process Ind., 91, 105377, (2024).
  • [37] Oz, N. E., Mete, S., Serin, F. ve Gul, M., “Risk assessment for clearing and grading process of a natural gas pipeline project: An extended TOPSIS model with Pythagorean fuzzy sets for prioritizing hazards”, Hum. Ecol. Risk Assess. An Int. J., 25(6), 1615–1632, (2019).
  • [38] Tezcan, B. and Eren, T., “Forest fire management and fire suppression strategies: a systematic literature review”, Nat. Hazards, 1-31, (2025).
  • [39] Tezcan, B. ve Eren, T., “Orman Yangınlarına Etki Eden Faktörlerin Önceliklendirilmesi”, 3rd International Disaster Management Congress, (2022).
  • [40] Tezcan, B. ve Eren, T., “Orman Yangınına Sebep Olan Kriterlerin Bulanık Ortamda Değerlendirilmesi”, Politek. Derg., 27(2), 545–558, (2023).
  • [41] Tezcan, B. ve Eren, T., “Sürdürülebilir Kalkınma için Çam İğnelerinin Enerji Üretimine Olanak Sağlayan Kriterlerin Önceliklendirilmesi”, 43. Yöneylem Araştırması ve Endüstri Mühendisliği (YA/EM) Ulusal Kongresi, 1-3 Kasım 2023, Gaziantep, Türkiye., (2023).
  • [42] Tezcan, B. ve Eren, T., “Bulanık Ortamda Proje Yöneticisi Seçimi: Savunma Sanayi Firmasında Bir Uygulama”, SAVSAD Savun. ve Savaş Araştırmaları Derg., 34(1), 153–168, (2024).
  • [43] Zadeh, L. A., “Fuzzy Sets As A Basis For A Theory Of Possibility”, Fuzzy sets and systems, 9–34, (1999).
  • [44] Atanassov, K. T., “Intuitionistic fuzzy sets”, Fuzzy Sets Syst., 20(1), 87–96, (1986).
  • [45] Rani, P., Mishra, A. R., Pardasani, K. R., Mardani, A., Liao, H. ve Streimikiene, D., “A novel VIKOR approach based on entropy and divergence measures of Pythagorean fuzzy sets to evaluate renewable energy technologies in India”, J. Clean. Prod., 238, (2019).
  • [46] Yager, R. R. ve Abbasov, A. M., “Pythagorean membership grades, complex numbers, and decision making”, Int. J. Intell. Syst., 28(5), 436–452, (2013).
  • [47] Tezcan, B., Alakaş, H. M., Özcan, E. ve Eren, T., “Afet sonrası geçici depo yeri seçimi ve çok araçlı araç rotalama uygulaması: Kırıkkale ilinde bir uygulama”, Politek. Derg., 26(1), 13–27, (2021).
  • [48] Tezcan, B. ve Eren, T., “Orman yangınlarında iş sağlığı ve güvenliği uygulamalarının değerlendirilebilmesi için AHP ve ANP yöntemleri ile ölçütlerin belirlenmesi: Türkiye Örneği”, Ağaç ve Orman, 5(2), 98–105, (2024).
  • [49] Kara, M. ve Eren, T., “Hasar tespit çalışmalarında görevlendirilebilecek dronların bulanık karar verme yöntemleri ile değerlendirilmesi”, Politeknik Dergisi, 1-1, (2023).
  • [50] Hwang, C. L., Yoon, K., Hwang, C. L. and Yoon, K., “Methods for multiple attribute decision making”, Multiple attribute decision making: methods and applications a state-of-the-art survey, 58-191, (1981).
  • [51] Akram, M., Dudek, W. A., and Ilyas, F., “Group decision-making based on pythagorean fuzzy TOPSIS method”, Int. J. Intell. Syst., 34(7), 1455–1475, (2019).
  • [52] Zhang, X. and Xu, Z., “Extension of TOPSIS to multiple criteria decision making with pythagorean fuzzy sets”, Int. J. Intell. Syst., 29(12), 1061–1078, (2014).
  • [53] Vadrevu, K. P., Eaturu, A. ve Badarinath, K. V. S., “Fire risk evaluation using multicriteria analysis-a case study”, Environ. Monit. Assess., 166, 223–239, (2010).
  • [54] Kushla, J. D. and Ripple, W. J., “The role of terrain in a fire mosaic of a temperate coniferous forest”, Forest Ecology and Management, 95(2), 97-107, (1997).
  • [55] Rothermel, RC, “How to predict the spread and intensity of forest and Range fires”, US Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station., 143, (1983).
  • [56] Shete, P. C., Ansari, Z. N., and Kant, R., “A Pythagorean fuzzy AHP approach and its application to evaluate the enablers of sustainable supply chain innovation”, Sustain. Prod. Consum., 23, 77–93, (2020).
There are 56 citations in total.

Details

Primary Language English
Subjects Fuzzy Computation
Journal Section Research Article
Authors

Burcu Tezcan 0000-0002-0997-7761

Tamer Eren 0000-0001-5282-3138

Early Pub Date April 27, 2025
Publication Date
Submission Date February 27, 2025
Acceptance Date April 12, 2025
Published in Issue Year 2025 EARLY VIEW

Cite

APA Tezcan, B., & Eren, T. (2025). Forest Fire Risk Assessment in Balikesir using Pythagorean Fuzzy AHP and Pythagorean Fuzzy TOPSIS. Politeknik Dergisi1-1. https://doi.org/10.2339/politeknik.1648306
AMA Tezcan B, Eren T. Forest Fire Risk Assessment in Balikesir using Pythagorean Fuzzy AHP and Pythagorean Fuzzy TOPSIS. Politeknik Dergisi. Published online April 1, 2025:1-1. doi:10.2339/politeknik.1648306
Chicago Tezcan, Burcu, and Tamer Eren. “Forest Fire Risk Assessment in Balikesir Using Pythagorean Fuzzy AHP and Pythagorean Fuzzy TOPSIS”. Politeknik Dergisi, April (April 2025), 1-1. https://doi.org/10.2339/politeknik.1648306.
EndNote Tezcan B, Eren T (April 1, 2025) Forest Fire Risk Assessment in Balikesir using Pythagorean Fuzzy AHP and Pythagorean Fuzzy TOPSIS. Politeknik Dergisi 1–1.
IEEE B. Tezcan and T. Eren, “Forest Fire Risk Assessment in Balikesir using Pythagorean Fuzzy AHP and Pythagorean Fuzzy TOPSIS”, Politeknik Dergisi, pp. 1–1, April 2025, doi: 10.2339/politeknik.1648306.
ISNAD Tezcan, Burcu - Eren, Tamer. “Forest Fire Risk Assessment in Balikesir Using Pythagorean Fuzzy AHP and Pythagorean Fuzzy TOPSIS”. Politeknik Dergisi. April 2025. 1-1. https://doi.org/10.2339/politeknik.1648306.
JAMA Tezcan B, Eren T. Forest Fire Risk Assessment in Balikesir using Pythagorean Fuzzy AHP and Pythagorean Fuzzy TOPSIS. Politeknik Dergisi. 2025;:1–1.
MLA Tezcan, Burcu and Tamer Eren. “Forest Fire Risk Assessment in Balikesir Using Pythagorean Fuzzy AHP and Pythagorean Fuzzy TOPSIS”. Politeknik Dergisi, 2025, pp. 1-1, doi:10.2339/politeknik.1648306.
Vancouver Tezcan B, Eren T. Forest Fire Risk Assessment in Balikesir using Pythagorean Fuzzy AHP and Pythagorean Fuzzy TOPSIS. Politeknik Dergisi. 2025:1-.