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Abstract 

 

Infectious animal diseases caused by pathogenic microorganisms such as bacteria and viruses threaten the health and 

well-being of wildlife, livestock and human populations, limit productivity and causes significant economic losses for 

each. Avian oncogenic viruses are one of the most dangerous pathogenic microorganisms that threaten the poultry 

industry and cause damage of over billions dollars annually worldwide. These viruses include a highly contagious 

herpesvirus Marek’s disease virus (MDV), as well as retroviruses such as avian leukosis virus (ALV) and 

reticuloendotheliosis virus (REV). Each group is distinguished by its nucleic acid type, antigenicity, epidemiology, host 

range and molecular characteristics. These viruses are cells associated with tumors and are in all organs except in the 

feather follicle where enveloped infectious virions egress from the body. It is difficult to detect diseases caused by these 

viruses and at the same time, vaccines that can provide sterile immunity against these diseases and prevent infection 

are incomplete. In order to be able to fight oncogenic viruses more effectively in the future, it is vital to learn more 

about the host immunity-oncovirus interaction and to determine powerful diagnostic techniques. In this review, 

oncogenic viruses and effective diagnostic techniques for these viruses are emphasized in poultry. 
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1. Introduction 
The poultry industry has great importance in providing 

the protein needed for human nutrition, and is the most 

consumed meat-poultry meat in the world, especially in 

OECD countries (OECD., 2014). The global population is 

expected to reach 9 billion by 2050 and the increased 

income growth among the poor population will result in 

an unprecedented increase in animal protein demand 

(King et al., 2018). In this context, attention should be 

given to combating infectious diseases that cause various 

losses in the poultry industry, which play an important 

role in ensuring sustainable food supply. Among these 
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diseases, neoplastic diseases caused by viruses are a 

major economic problem facing the poultry industry 

worldwide (Mitra et al., 2012). 

The oncogenic viruses causing neoplastic infections in 

chickens are herpesviruses comprising of Marek’s 

disease virus (MDV), retroviruses comprising of 

reticuloendotheliosis virus (REV) and avian leukosis 

virus (ALV) (Davidson and Silva, 2008). The others, 

retrovirus and lymphoproliferative disease virus have 

caused significant losses from lymphomas in turkeys in 

the United Kingdom and Israel, but now appears to be 

rare (Payne and Venugopal, 2000) and it is not 

mentioned further in this paper. 

Avian oncogenic viral lesions are often similar and it is 

difficult to make a differential diagnosis based on 

histopathology (Wang et al., 2014). In particular, the 

lesions caused by ALV, MDV and REV are very similar and 

there is no specific symptom in any of these three 

diseases (Gimeno et al., 2005). The laboratory assays for 

diagnosis are based on virus isolation, demonstration of 

specific antibodies and histopathological examination of 

tumor tissues (Mitra et al., 2012). In addition to their 

oncogenic property, these retroviruses are also 

immunosuppressive and may contaminate poultry 

vaccines (Biswas et al., 2011; Fadly and Witter, 1997). 

These contaminations have resulted in the large number 

of deadly infection (Fadly and Garcia, 2006; Li et al., 

2013; Wei et al., 2012; Fadly et al., 1996). 

 

2. Avian Leukosis Virus (ALV) 
Grooming Avian leukosis virus (ALV) infection of 

chickens is widespread and known to be of significant 

economic importance; economic losses due to ALV 

induced tumors and reduced productivity are estimated 

to be in millions of U.S. dollars each year (Fadly, 2000). 

The term leukosis embraces several different leukaemia-

like proliferative diseases of the haemopoietic system 

caused by ALV; the term leukosis is used because a 

leukaemic blood picture is not always present (De Boer, 

1987; Payne and Fadly, 1997). 

Based on properties of viral envelope glycoproteins, ALV 

from chickens, a member of the leukosis/sarcoma (L/S) 

group of avian retroviruses are classified into six 

subgroups: A, B, C, D, E and J (Coffin, 1992; Payne and 

Fadly, 1997) and are classified as exogenous ALVs (A, B, 

C, D, J) and endogenous ALV (E) based on the viral 

envelope glycoprotein properties (Fadly, 2000). 

Particularly, the viral envelope glycoprotein is 

responsible for attachment and receptor specificity as 

well as the production of neutralizing antibodies (Coffin, 

1992; Payne et al., 1992). Of the viral subgroups so far 

identified, subgroups A, B, and J are considered most 

prevalent and more economically important (Dai et al., 

2015). Exogenous ALVs are capable of inducing lymphoid 

leukosis and subgroup A (ALV-A) is more commonly 

isolated than any other subgroup (Payne and Fadly, 

1997). While exogenous ALVs have been shown to cause 

several neoplastic diseases in infected chickens (Cooper 

et al., 1968; Crittenden et al.,1980), and nonneoplastic 

diseases such as myocarditis (Gilka and Spencer, 1990), 

and osteopetrosis (Smith, 1982), ALV-E is not known to 

be pathogenic to chickens (Crittenden et al., 1979; Linial 

and Neiman, 1976). Subgroup J was first isolated in meat-

type chicken in the United Kingdom in 1989 but it is 

currently causing devastation in the poultry industry 

worldwide (Payne et al., 1991) and subgroup J associated 

primarily with myeloid leukosis in meat-type chickens 

(Fadly and Smith, 1999). Recent laboratory observations 

provided evidence for recombination between subgroup 

A and J ALV (ALVA/J), a recombinant ALV with the 

envelope of subgroup A and long terminal repeat (LTR) 

of subgroup J; this recombinant ALV resulted from 

passing ALV- J in cells expressing subgroup A envelope 

(Lupiani et al., 2003). As a potential contaminant of live-

virus vaccines of poultry, ALV can also cause significant 

losses if contaminated vaccines were used in susceptible 

flocks (Fadly, 2016). Most recently, a recombinant 

subgroup A ALV containing envelope of ALV-A and LTR 

of ALV-E was isolated from commercial Marek’s disease 

vaccines (Fadly et al., 2006; Silva et al., 2007). To date, 

because no commercial vaccines are available for control 

of ALV infection, eradication of virus infection at the 

primary breeder level remains to be the principal 

method for controlling ALV infection in chickens (Nair 

and Fadly, 2013). 

 

3. Marek’s Disease Virus (MDV) 
Marek’s disease virus (MDV), or Gallid herpesvirus 2 

(GaHV-2) is the etiological agent responsible for Marek’s 

disease (MD) in the chicken, a multifaceted disease most 

widely recognized by the induction of a rapid and 

extensive malignant T-cell lymphoma (Couteaudier and 

Denesvre, 2014), and MD results in substantial economic 

losses estimated at more than 1 billion per year (Morrow 

and Fehler, 2004). 

Although MD was described in 1907 by Joseph Marek, the 

virus (MDV) was only isolated in 1967 in the United 

Kingdom (Churchill and Biggs, 1967) and the United 

States (Nazerian et al., 1968) independently. MDV is cell 

associated in body organs and tumors, it replicates and 

exists as enveloped free form in the feather follicles 

making feathers particularly dander, dust and litter 

materials loaded with MD virus, thus facilitating virus 

transmission by air borne route (Calnek and Witter, 

1997; Adene and Akpavie, 2004; Frank, 2001). 

Susceptible chickens infected with the pathogenic MDV 

suffer cytolysis of the lymphoid organs and a 

concomitant immunosuppression (Gordon, 1979; Frank, 

2001). Such birds mainly die as a result of tumour 

development in the visceral organs and peripheral 

nerves (Frank, 2001). Small RNA profiling studies have 

revealed that some viruses, particularly large DNA 

viruses such as Marek's disease virus (MDV) encode their 

own set of miRNAs (Hicks and Liu, 2013), and thus it is 

thought to silence the tumor suppressor genes of MDV. 

The ability of MDV to replicate in the host is related to its 
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pathogenicity and the MDV genome load in infected 

chickens contributes to our understanding of the 

pathogenesis of MDV infection (Baigent et al., 2005; Islam 

et al., 2006). In addition, several MDV encoded genes, 

including meq (MDV EcoRI-Q-encoded protein) (Brown 

et al., 2009; Lupiani et al., 2004), pp38 (MDV 

phosphoprotein 38) (Cui et al., 1991; Reddy et al., 2002), 

vIL-8 (MDV-encoded CXC chemokine viral interleukin 8) 

(Cui et al., 2004; Parcells et al., 2001), and ICP4 (MDV 

infected-cell peptide 4) (Strassheim et al., 2012; Gennart 

et al., 2015), play important roles in MDV pathogenesis. 

Vaccination with MD vaccines is the primary approach 

used to protect chickens against MD (Sun et al., 2017). 

Although the immune-protection mechanisms induced by 

MD vaccines are not fully understood currently, it is 

recognized that effective immunity to MD requires the 

involvement and coordinated activation of innate and 

adaptive immune responses (Haq et al., 2013). 

Nevertheless, MD outbreaks have continued around the 

world in recent years, which is likely due to MDV 

evolution and co-infection with other viruses (Walkden-

Brown et al., 2013b; Zhang et al., 2016). 

 

4. Reticuloendotheliosis Virus (REV) 
Reticuloendotheliosis virus (REV) is an oncogenic and 

immunosuppressive retrovirus that causes 

reticuloendotheliosis (RE) (Niewiadomska and Gifford, 

2013), an avian disease mainly characterized by 

immunosuppression, runting–stunting syndrome and 

chronic lymphomas (Walker et al., 1983, Purchase et al., 

1973). REV has extensive avian hosts including chickens, 

turkeys, ducks, mallards, geese, peafowl, pheasants, 

pigeons, Hungarian partridges, Chinese partridges, 

Attwater’s prairie chickens and many other wild birds 

(Bohls et al., 2006; Jiang et al., 2013). REV infection of 

susceptible hosts such as chicks usually causes atrophy of 

the thymus and bursa of Fabricius, impairing the 

development and immune system functions of infected 

hosts, resulting in the suppression of host immune 

responses to some avian vaccines (Bulow,1977; Yang et 

al., 2016). 

The genomic structure of REV consists of a group-specific 

antigen (gag), protease (pro), polymerase (pol) and 

envelope (env) regions flanked by long-terminal repeats 

(LTRs) (Witter and Fadly, 2003). The gag gene encodes 

five structural proteins p10, p12, pp18, pp20 and p30. 

The p30 (30 kDa) protein is the major REV group-specific 

antigen (Tsai et al.,1985). The env gene encodes two 

envelope glycoproteins gp90 and gp120 (Tsai et al., 

1986). The pol gene encodes a reverse transcriptase 

similar to those of mammalian type retroviruses and 

differs from the Avian Leucosis– Sarcoma Virus (Moelling 

et al., 1975; Bauer and Termin, 1980). 

The wide range of host species and potential for 

contaminations with REV contribute to viral 

transmission (Sun et al. 2017). REV can be present as a 

contaminant in a variety of poultry biologics and vaccines 

(Fadly and Garcia, 2006; Li et al., 2015) and usually REV 

can integrate into the genome of large DNA viruses 

including Marek’s Disease and fowlpox (Isfort et al., 

1992). Previous serological surveys have revealed that 

the positive rate of REV was approximately 2.3–23.5% 

among commercial chicken and turkey flocks in the 

United States (Witter et al., 1982). Usually, REV infection 

in chicken flocks is mainly due to REV contamination in 

poultry vaccines (Fadly and Garcia, 2006; Lİ et al., 2013; 

Wei et al., 2012; Fadly et al., 1996). 

 

5. Molecular Diagnosis of Oncogenic 

Viruses 

The frequent overlap of lesions caused by avian 

oncogenic virus infections requires specific laboratory 

diagnosis (Davidson, 2001). Nucleic acid amplification, 

hybridization technology and immunological tests have 

been adapted to diagnostic applications and 

identification of agents responsible for a wide variety of 

infectious diseases (Hafez and Hess, 1999). Different 

methods have been established for detecting avian 

oncogenic viruses, including traditional virus isolation 

plus an antigen-capture enzyme-linked immunosorbent 

assay (ELISA) for group-specific antigen of virus, 

immunofluorescence assay (IFA), loop-mediated 

isothermal amplification (LAMP) and quantitative 

reverse transcription PCR (Q-RT-PCR) (Kim and Brown, 

2004; Zhang et al., 2010). However, each of these 

methods has limitations (Dai et al., 2015). For instance, 

ELISA and IFA are both time-consuming and quantitative 

data can’t be acquired by the current LAMP method (Dai 

et al., 2015). 

The PCR has become a routine technique in many 

research and diagnostic laboratories and real-time PCR 

has since its introduction in the mid-1990s removed 

many limitations of the standard PCR, which is 

significantly limited by its sensitivity (Edwards et al., 

2005). In addition to enhanced sensitivity, the benefits of 

real-time PCR assays over conventional endpoint 

detection methods include their large dynamic range, a 

reduced risk of crosscontamination, an ability to be 

scaled up for highthroughput applications and the 

potential for accurate target quantification (Nazarenko et 

al., 1997; Schweiger et al., 2000; Black et al., 2002). 

Zeng et al. (2015) reported the advantages of the GeXP-

multiplex PCR assay to include its specificity and its high-

throughput ability to immunosuppressive viruses. These 

advantages stem from the use of chimeric and universal 

primers in a 3-step PCR procedure with different 

annealing temperatures: the first step amplifies 

genespecific sequences within specific regions of the 

chimeric primers; the second step utilises the entire 

chimeric primer; and the last step uses universal primers 

for amplification (Zeng et al., 2015). Abdul–Careem et al. 

(2006) have shown that realtime PCR is 2.5-10 times 

more sensitive than conventional PCR techniques used 

for MDV detection. Moreover, PCR methods allow the 

detection and quantification of viral DNA in dust 
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collected and concentrated on filters (Islam et al., 2006; 

Baigent et al., 2013; Walkden-Brown et al., 2013a). 

When real-time PCR is widely used to quantify viral 

genes, a host gene expressed steadily in a host cells or 

tissue samples as an internal control becomes one pivot 

point for calculating the copy number of specific viral 

genes (Dai et al., 2015). And the sensitivity of real-time 

PCR assay is at least 100 times higher than that of the 

routine PCR assay (Dai et al., 2015). Also, it has been 

possible to combine several assays in a single tube with 

the development of multicolor real-time PCR cyclers and 

and ‘‘ready-to-use’’ commercial multiplex real-time PCR 

kits (Hoffmann et al., 2009). Major advantages of 

multiplexing include a reduced sample requirement, 

which is especially important when sample material is 

scarce (Persson et al., 2005; Belak, 2007), and the ability 

to combine assays with an internal control system 

(Hoffmann et al., 2006). 

 

6. Detection formats with Real Time PCR 
6.1. Detection Formats without Sequence 

Confirmation of the PCR Product 

Fluorescent dyes such as ethidium bromide (Higuchi et 

al., 1993; Wittwer et al., 1997a; Le Pecq and Paoletti, 

1966) that are specific for double-stranded DNA (dsDNA) 

were the first systems employed in real-time PCR assays. 

Other intercalating dyes such as YO-PRO-1 have also 

been used (Ishiguro et al., 1995; Tseng et al., 1997). SYBR 

Green I is currently the most frequently used 

intercalating dye in real-time PCR and it has a 100 times 

higher binding affinity than ethidium bromide and the 

fluorescence of bound dye is more than 1000-fold higher 

than that of free dye (Hoffmann et al., 2006). 

These properties make SYBR Green I highly suitable for 

monitoring product accumulation during PCR (Wittwer 

et al., 1997b; Morrison et al., 1998). Another detection 

technology known as ‘LUX (Light Upon eXtension)’ 

utilizes a modification to one of the two primers such 

that it possesses a fluorophore located near the 3’end in a 

hairpin structure (Nazarenko, 2006; Kusser, 2006). The 

Amplifluor Quantitative PCR detection system uses a 

similar approach with labelled and unlabelled primers 

(Nazarenko et al., 1997; Nuovo et al., 1999; Khripin, 

2006). 

6.2. Detection Formats with Increased Target 

Specificity 

Fluorophorelabelled oligonucleotide probes are most 

commonly used for the specific detection of target 

sequences (Cardullo et al., 1988; Clegg, 1995; Wu and 

Brand, 1994). In these assays, an increase in fluorescence 

signal proportional to the accumulation of PCR product 

arises as a consequence of fluorescence resonance 

energy transfer (FRET) between separate fluorogenic 

labels (known as the reporter and quencher) conjugated 

to the probe (or primers). FRET, also called Förster 

transfer, is a spectroscopic process by which energy is 

passed over a maximum distance of 70A˚ between 

reporter and acceptor molecules possessing overlapping 

emission and absorption spectra (Selvin and Hearst, 

1994). The most commonly used fluorogenic quenchers 

are TAMRA and DABCYL, while Black Hole Quencher 

(BHQ) is also widely used and disperses energy from the 

reporter as heat rather than fluorescence (Didenko, 

2001). 

6.3. Hybridisation Probes 

Hybridisation probes, also known as ‘HybProbes’, use a 

pair of adjacent, fluorogenic hybridisation oligos and are 

the only detection format that directlymeasures FRET 

(Cardullo et al., 1988). These probes have become the 

preferred chemistry of the manufacturer for the 

capillary-based LightCycler system (Wittwer et al., 

1997a, b) with special filters for the detection of the 

acceptor fluorophores Red 640 and Red 705. 

6.4. Hydrolysis Probes (50-exonuclease Assay) 

Hydrolysis probes (commercially called TaqMan1 

probes) are dual-fluorophore-labelled oligonucleotides, 

with a 50-terminal reporter (e.g. FAM) and a 30-terminal 

quencher (e.g. TAMRA). (Hoffmann et al., 2009). Once the 

labels are separated by destroying the TaqMan1 probe 

based on the 50-exonuclease activity of the DNA 

polymerase (e.g. Taq polymerase), the increase in 

reporter fluorescence caused by the removal of the 

adjacent quencher is monitored by a realtime PCR 

instrument. (Heid et al., 1996; Livak et al., 1995; Gibson 

et al., 1996). A modification of this strategy exploits the 

so-called minor groove binding (MGB) probes. MGB 

probes form extremely stable duplexes with 

singlestranded DNA targets mediated via van der Waals 

forces (Afonina et al., 2002): as a consequence shorter-

length probes are required for hybridisation. In 

comparison with unmodified DNA, MGB probes have 

higher Tm and are reported to hybridize with greater 

sequence specificity (Afonina et al., 1996; Kutyavin et al., 

2000). These short MGB probes are ideal for allele 

discrimination studies or for detection of single-

nucleotide polymorphisms (SNPs) because they are more 

significantly destabilised by nucleotide changes within 

the hybridisation site compared with probes of longer 

length (De Kok et al., 2002; Belousov et al., 2004; Itabashi 

et al., 2004). 

6.5. Molecular Beacons 

Molecular beacons are hairpin-shaped oligoprobes 

terminally labelled with a reporter and a quencher 

fluorophore (Tyagi and Kramer, 1996; Tyagi et al., 1998; 

Vet et al., 2002). 

6.6. Scorpion Primer 

The Scorpion technology is mainly used in allelic 

discrimination (Whitcombe et al., 1999; Thelwell et al., 

2000) and in SNP genotyping (Roberts, 2000). 

6.7. Locked Nucleic Acid (LNA) Probes 

Incorporation of LNA residues increases the Tm of the 

oligonucleotide sequence, allowing the use of markedly 

shorter probes as allele-specific tools in genotyping 

assays (Costa et al., 2004; Latorra et al., 2003; Braasch 

and Corey, 2001). 
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7. Conclusion 
This study is primarily concerned with avian oncogenic 

viruses, the economically most important viruses such as 

MDV, ALV and REV. And more focused on some of the 

molecular techniques most commonly used to improve 

avian oncogenic virus detection for diagnosis and disease 

control. We showed some advanced biotechnological 

approaches that allow early detection of pathogens that 

affect poultry. Conventional diagnostic techniques are 

frequently time consuming, labor intensive and require 

to be performed on sophisticated equipment. Real Time 

PCR is one of the most important of these 

biotechnological methods. The high sensitivity and ability 

to quantify viral targets, the substantial gain in specificity 

and the reduced risk of cross-contamination are 

important features of this technology. Also, applications 

of Real-Time PCR include measurements of viral load, 

gene expression studies, clinical diagnostics and various 

pathogen detection. 

Since it is suitable for the diagnosis of multiple viral 

infections, molecular techniques such as PCR and/or Real 

Time PCR are used for the diagnosis of avian oncogenic 

viruses (Silva et al., 2007). Nevertheless virus isolation is 

considered the "gold standard" for diagnosis and is often 

the starting point for more detailed studies (Nair, 2013). 

Virus-specific amplifications are confirmed by 

sequencing of precipitated PCR products. Using 

molecular methods can be useful for the rapid 

differential diagnosis of avian oncogenic viruses and for 

the detection of multiple infections (Gopal et al., 2012). 

Likewise, multiplex PCR primers can be useful in 

detecting the presence of ALV-J by modification in ALV 

primer sequences (Gopal et al., 2012). PCR has emerged 

as a chosen method for rapid and accurate diagnosis of 

viruses that appear in poultry. Multiplex PCR primers 

specific to MDV, ALV, REV and chicken DNA can be 

designed for rapid differential diagnosis (Gopal et al., 

2012). Preferred amplification frequently occurs in 

multiplex PCR as a result of the various efficiencies of 

different primer pairs and due to the layout of the primer 

dimers. This is more likely as the number of primers 

increases (Elnifro et al., 2000), and the problem of 

amplification failure disappears when the template DNA 

contains several copies. This problem can be solved by 

optimizing multiplex PCR by changing the primer 

sequences, concentrations and cycle conditions (Frumkin 

et al., 2008). 
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