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Graphical Abstract 

In this study, a new approach called Predictive Dynamic Sized Structure Packing (PDSSP) have been proposed 

to minimize the memory requirement of FSM algorithms. Proposed approach redesigns the internal data structures 

of FSM algorithms without any algorithmic modifications. 

 

 

Figure. Avg. Memory usage (MBytes) and avg. Run Time durations (secs) comparison of Gaston to Gaston + 

PDSSP. 

Aim 

In this study, a new approach called Predictive Dynamic Sized Structure Packing (PDSSP) have been proposed 

to minimize the memory requirement of FSM algorithms. 

Design & Methodology 

Proposed approach redesigns the internal data structures of FSM algorithms without any algorithmic 

modifications. 

Originality 

PDSSP has two contributions. The first one is the Dynamic Sized Integer Type (ds_Int) which is a newly designed 

unsigned integer data type. The second contribution is “Data Structure packaging” component that uses a data 

structure packing technique which changes the behaviour of the compiler. 

Findings 

A number of experiments have been conducted to examine the effectiveness and efficiency of the PDSSP approach 

by embedding it into two state-of-art algorithms called gSpan and Gaston.  Proposed implementation have been 

compared to the official one. Almost all results show that the proposed implementation consumes less memory on 

each support level. 

Conclusion  

Predictive Dynamic Sized Structure Packing (PDSSP) extensions can save memory and the peak memory usage 

may decrease up to 38% depending on the dataset. 
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 ÖZ 

Sık alt çizge madenciliği (SAÇM), çizge sınıflandırma ve çizge kümeleme için yaygın olarak kullanılan bir çizge madenciliği alt 

türüdür. Son on yılda, birçok verimli SAÇM algoritması geliştirilmiştir. Geliştirmeler genellikle algoritma yapısını değiştirerek 

veya paralel programlama teknikleri kullanarak zaman karmaşıklığını azaltmaya odaklanmıştır. SAÇM algoritmalarının çözülmesi 

gereken en önemli problemlerinden biri yüksek bellek tüketimidir. Bu çalışmada, SAÇM algoritmalarının bellek gereksinimini en 

aza indirmek için Öngörücü Dinamik Boyutlu Yapı Paketleme (ÖDBYP) adı verilen yeni bir yaklaşım önerilmiştir. Önerilen 

yaklaşım SAÇM algoritmalarının iç veri yapılarında herhangi bir algoritmik değişiklik yapmadan yeniden tasarlamaya olanak 

sağlamaktadır. Bu çalışma kapsamında geliştirilen ÖDBYP ile very madenciliği alanına  iki önemli katkı sağlanmaktadır. Birincisi, 

yeni tasarlanmış işaretsiz bir tamsayı veri türü olan Dinamik Boyutlu Tamsayı Türüdür (ds_Int). İkinci katkı, derleyicinin 

davranışını değiştiren bir veri yapısı paketleme tekniği kullanan “Veri Yapısı paketleme” bileşenidir. ÖDBYP yaklaşımının 

etkinliğini ve verimliliğini, gSpan ve Gaston adlı güncel algoritmalara gömerek çeşitli deneyler gerçekleştirilmiştir. Çalışma 

kapsamında geliştirilen yöntem ile algoritmaların original halleri ile kıyaslanmıştır. Neredeyse tüm sonuçlar, önerilen uygulamanın 

her destek düzeyinde daha az bellek harcadığını göstermektedir. Sonuç olarak, ÖDBYP uzantıları bellek tasarrufu sağlayabilir ve 

veri kümesine bağlı olarak maksimum bellek kullanımı % 38 kadar düşürülebilmektedir. 

Anahtar Kelimeler: Sık alt çizgeler, veri madenciliği, alan karmaşıklığı. 

A New Approach to Minimize Memory Requirements 

of Frequent Subgraph Mining Algorithms 

ABSTRACT 

Frequent subgraph mining (FSM) is a subsection of graph mining domain which is extensively used for graph classification and 

graph clustering purposes. Over the past decade, many efficient FSM algorithms have been developed. The improvements generally 

focus on reducing time complexity by changing the algorithm structure or using parallel programming techniques. FSM algorithms 

have another problem to solve, which is the high memory consumption. In this study, a new approach called Predictive Dynamic 

Sized Structure Packing (PDSSP) have been proposed to minimize the memory requirement of FSM algorithms. Proposed approach 

redesigns the internal data structures of FSM algorithms without any algorithmic modifications. PDSSP has two contributions. The 

first one is the Dynamic Sized Integer Type (ds_Int) which is a newly designed unsigned integer data type. The second contribution 

is “Data Structure packaging” component that uses a data structure packing technique which changes the behaviour of the compiler. 

A number of experiments have been conducted to examine the effectiveness and efficiency of the PDSSP approach by embedding 

it into two state-of-art algorithms called gSpan and Gaston.  Proposed implementation have been compared to the official one. 

Almost all results show that the proposed implementation consumes less memory on each support level. As a result, PDSSP 

extensions can save memory and the peak memory usage may decrease up to 38% depending on the dataset. 

Keywords: Frequent subgraphs, data mining, space complexity.

1. INTRODUCTION 

The size of the graphs used in the graph mining area is 

growing rapidly up to trillion edges [1]. In the year 2015, 

one of the largest reported experiments with a real-world 

graph involved over 1.5 trillion edges [2]. Today, the 

search engines have new infrastructures to support the 

bigger web graphs, which has over a trillion vertices [3]. 

Another important area for graph mining is genome 

sequencing. Recent works have attempted to solve the 

genome assembly problem by using graphical 

representations for genomes. An example of a big 

genome graph is the de Bruijn graph which was 

generated based on k-mers calculation in Velvet 

algorithms. The maximum number of nodes in that graph 

was about 4 million [4]. The most widely used 

application domain of graph mining is the graph pattern 

mining problems, which is also called frequent subgraph 

mining (FSM). It is a well-studied problem with 

numerous applications in areas such as computational 
*Sorumlu Yazar  (Corresponding Author)  

e-posta :  turgay.bilgin@btu.edu.tr 



Turgay Tugay BİLGİN, Murat OĞUZ  / POLİTEKNİK  DERGİSİ, Politeknik Dergisi,2021;24(1): 237-246 

238 

chemistry, bioinformatics, and social networks [5]. FSM 

focuses on the enumeration of the frequent subgraphs, 

either in a single graph or in a graph database. During 

enumeration of the subgraphs, memory requirements get 

exponentially larger compared to the input size of the 

input data. For this reason, various methods have been 

used to optimise memory and CPU usage of the FSM 

algorithms. These improvements have focused on 

distributing the computational power and memory 

requirements to different nodes by parallelization 

techniques like Map/Reduce, Message Passing Interface 

(MPI). Using compression techniques, changing the 

data-storing structure or format with new technologies 

like Cassandra and Hadoop are other solutions that work. 

All these techniques are used to modify and optimize the 

FSM algorithms.  

Using high-performance computing (HPC) for FSM is a 

timely subject, especially on symmetric multiprocessing 

(SMP) systems. In SMP systems, there is one shared 

memory used by more than one core. Any FSM algorithm 

paralleled on SMP systems needs more memory than a 

single-threaded counterpart for increasing the level of 

parallelization due to data sharing needs between threads. 

As a result, the space complexity is getting a bigger 

problem for these type of systems [6]. 

In this study, we have developed a new approach to 

decrease the memory requirements of FSM algorithms 

even if they run as a single-threaded implementation or 

an HPC based structure. Our proposed approach does not 

require the algorithms to be redesigned and it can also be 

applied to various FSM algorithms [7]. 

The remaining part of this paper is organized as follows: 

we define some FSM preliminaries and the problem in 

Section 2. In section 3, we discuss our method, in section 

4 we have performed an experimental study. The last 

section draws the conclusions.  

 

2. DEFINITIONS 

A graph is constructed by pairing a set of vertices V and 

a set of edges E. The graph is defined by 𝐺 = (𝑉, 𝐸), if 

𝐸 ⊆ 𝑉𝑥𝑉 and every edge 𝑒 ∈ 𝐸 relates to a pair of 

vertices (𝑣1, 𝑣2).  

Two graphs 𝐺1 and 𝐺2 are isomorphic, if 𝐺1 = (𝑉1, 𝐸1) 

and 𝐺2 = (𝑉2, 𝐸2) are topologically identical. This means 

that there is a mapping from 𝐺1 to 𝐺2 such that each edge 

in 𝐸1 is mapped to a single edge in 𝐸2 and vice versa. If 

the graph has labels, this mapping must also be between 

the labels on the vertices and edges. 

Subgraph 𝐺2 = (𝑉2, 𝐸2) of another graph 𝐺1 = (𝑉1, 𝐸1) 

is that 𝑉2 ⊆ 𝑉1 and 𝐸2 ⊆ 𝐸1ˆ(𝑣1, 𝑣2) ∈ 𝐸2 → 𝑉1 ∈ 𝑉2 

and 𝑣2 ∈ 𝑉2 can be found, as in Fig. 1. 

A graph G1= (V1, E1) in Fig 1.(a) with vertex set 

V1={a,b,c,d,e} and edge set E1={ab,ad,bc,be,ce,de} is 

given. So the graph G2= (V2, E2) in Fig 1.(b) with vertex 

set V2={,c,d,e} and edge set E2={ce,de} is a subgraph of 

the graph G1. 

 
Figure 1. (a) represents a graph, (b) represents a subgraph of 

(a). 

 

Subgraph isomorphism occur between two graphs 𝐺1 =
(𝑉1, 𝐸1) and 𝐺2 = (𝑉2, 𝐸2) is when you find an 

isomorphism between 𝐺2 and a subgraph of 𝐺1, that is, to 

determine whether or not 𝐺2 is included in 𝐺1. 

The frequent subgraph is defined as a graph that occurs 

frequently in the graph database, which is a special type 

of database that comprises a single large graph or some 

multiple small graphs. Given a labelled graph dataset 

𝐺𝐷 = {𝐺1, 𝐺2, … , 𝐺𝑘}, support or frequency of a subgraph 

𝑔 is the percentage (or number) of graphs in 𝐺𝐷 where 𝑔 

is a subgraph [8]. If 𝐷 is the input database, the graph 

support 𝐺𝐷 is denoted by Sup (𝐺𝐷). 

Frequent subgraph mining is the discovery of subgraphs 

of the given set of graphs [9]. Let Fig. 2 (a) and Fig. 2 (b) 

be the given graphs. An example of frequent subgraph 

would be the graph shown in Fig. 2 (c). 

 

 

Figure 2. (a), (b) are input graphs, (c) is a frequent subgraph. 

Many efficient frequent subgraph mining algorithms 

have been developed, such as gSpan [10], Gaston [11], 

CloseGraph [12], SPIN [13], Mofa [14], EDC [15], FSG 

[16]. Behind these studies, there are two basic approaches 

to the frequent subgraph mining problem. The first 

approach shares similar characteristics with Apriori-

based frequent item set mining algorithms. It starts to 

search for small-size subgraphs and extends it by joining 

subsequently found subgraphs. The well-known Apriori-

based frequent subgraph mining algorithms are AGM, 

FSG and an edge-disjoint path-join algorithm [17]. 
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The second approach employs pattern-growth algorithms 

that start from an initial edge and extend the graph by 

directly adding a new edge in every possible position, 

then checking whether or not this graph supports the 

threshold. Well-known pattern-growth based graph 

mining algorithms are gSpan, MoFa, SPIN, and Gaston 

[18][19]. 

In this work, two algorithms gSpan and Gaston are used 

to test our approach. gSpan (graph-based Substructure 

pattern) uses DFS-codes for presenting and storing the 

graphs. Searching and comparing frequent subgraphs for 

isomorphism check test is done via DFS code tree. With 

this feature, gSpan does not require any candidate pattern 

generation. It generates all exact frequent subgraphs.  

gSpan guarantees the completeness of mining results 

with the minimum DFS codes, pruning non-minimal 

children in the solution space. Table 1 describes the 

pseudo-code of gSpan. This pseudo-code is an 

integration of the algorithm descriptions presented in 

[10].  

All pattern growth algorithms generate duplicated 

candidates during the enumeration process. In gSpan, the 

duplicated candidates are non-minimal codes. Instead of 

calculating the minimum DFS code of s from all possible 

DFS codes, picking up the smallest one and comparing it 

against s, gSpan defines a more efficient function 

isMin(s) in Subgraph_mining method. A 

heuristic search was designed using the DFS 

lexicographic order. Whenever some prefix of a DFS is 

generated and it is less than s, then s is not minimal and 

the search concludes. 

Table 1. Pseudo-code of the gSpan algorithm 

Algorithm gSpan 

Metod 1: GraphSet_projection(GS, FS) 

  sort labels of the vertices and edges in GS by frequency; 

  remove infrequent vertices and edges; 

  relabel the remaining vertices and edges (descending); 

  S
1

:= all frequent 1-edge graphs; 

  sort S
1

 in DFS lexicographic order; 

  FS := S
1

; 

  for each edge e in S
1 

do 

    init g with e, set g.DS={h | h∈GS, e∈E(h)};
 

    Subgraph_mining(GS, FS, g); 
    GS := GS - e; 

    if |GS| < minSup 

      break; 

 

Metod 2: Subgraph_mining(GS, FS, g) 

  if g ≠ min(g) 

    return; 

  FS := FS ∪ {g}; 

  enumerate g in each graph in GS and count g's children; 

  for each c (child of g) do  

    if support(c) ≥ minSup 

      Subgraph_mining(GS, FS, c); 

Enumeration of g: Finding all the exact positions of g in 

another graph 

For support calculation and candidate enumeration, 

gSpan uses a TID list. The TID list (Transaction ID list) 

contains the ID of each graph in the database that holds 

the corresponding subgraph.  

Table 2. Pseudo-code of Gaston algorithm 

Algorithm Gaston 

Input: U, one of the units of the database 

sup, minimum support. 

Output: P(U), the set of frequent subgraphs in U. 

  

F1 = {frequent edges in U};  

for each p ∈ F1 {  

  L = {allowable extended edges of p};  

  for each allowable extended edge l ∈ L {  

       G` = Adding l to p;  

       L` = {allowable extended edges of G` };  

       if l is a node refinement {  

  if G` is a path  

                  find paths with G` and L` ;  

  else  

      find trees with G` and L` ;  

       }  

       else  

             find cyclic graphs with G` and L` ;  

   }  

} 

 

Many memory-based algorithms have been proposed to 

discover the frequent graphs. In this work, we use the 

Gaston algorithm to find the set of frequent graphs. The 

Gaston (Graph sequence tree extraction) algorithm is 

based on the observation that most frequent substructures 

in practical graph databases are actually free trees and 

employs a highly effective strategy to enumerate the 

frequent free trees first. Gaston stores all embeddings 

(both nodes and edges), to generate only refinements that 

actually appear and to achieve fast isomorphism testing.  

It firstly checks paths and trees, subgraph isomorphism 

test is done as the last job. Gaston only outputs the cycled 

graphs. So that, Gaston works faster than both gSpan, 

FFSM or Mofa. 

Table 2 gives an outline of the Gaston algorithm. Let 

P(U) be a subgraph found in the U. The first line finds all 

the frequent edges in the database (F1.) For each frequent 

edge p, the algorithm generates the descendants G`  of p 

with the set of allowable extended edges L (for each 

block). According to the types of G` and the extended 

edges, the algorithm will decide to find paths, trees or 

cyclic graphs in the database.  If-else sections perform 

these operations in pseudo-code given in Table 2. 

 

3.  PREDICTIVE DYNAMIC SIZED STRUCTURE 

PACKING (PDSSP)  

In this section, we have described our contribution to the 

standard FSM algorithm. FSM algorithm read the 

datasets from an external resource, process the data and 
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write them into the disk. Basic flowchart of standard 

FSM algorithm is depicted in Fig. 3 (a). 

Our proposed PDSSP approach redesigns the internal 

data structures of the FSM algorithm without any 

algorithmic modifications, therefore it acts as an 

extension to the FSM algorithm. After applying the 

PDSSP to standard FSM implementation 

(FSM_PDSSP), modifications are depicted in Fig. 3 (b).   

 

 

Figure 3. Flowcharts of standard FSM and PDSSP_FSM. 

Generally, all FSM implementations use a fixed-type 

integer for all variables. The main idea behind PDSSP is 

that, if the maximum value to be stored in the integer-

based variables could be estimated, then varying-length 

integer data types could be employed. In this way, 

memory requirements of FSM implementations may be 

reduced.  

We have analyzed the FSM implementations and we 

noticed that, due to the structure of the input data, only 

unsigned integers are employed. Table 3 shows the 

standard unsigned integer types with their storage sizes 

and value ranges [20]. We have observed that choosing 

improper integer data types causes high memory usage. 

Consequently, we have focused on finding a solution to 

create varying-length unsigned integer data type.  

FSM_PDSSP has two contributions. The first one is the 

Dynamic Sized Integer Type (ds_Int) which is a newly 

designed unsigned integer data type that has a varying 

capacity range from 0 to 264 . The capacity of ds_Int 

could be changed on demand. The second contribution is 

“Data Structure packaging” component that uses a data 

structure packing technique which changes the behaviour 

of the compiler. The details of the contributions are given 

in the following sections. 

Table 3. Standard unsigned integer types and their storage 

sizes and ranges. 

Type Storage 

size 

Value range 

unsigned 

char 

1 byte 0 to 255 (28) 

unsigned 

short int 

2 bytes 0 to 65,535 (216) 

unsigned 

int 

4 bytes 0 to 4,294,967,295 (232) 

unsigned 

long int 

8 bytes 0 to 

18,446,744,073,709,551,616 

(264) 

 

Table 4. Input dataset file format. 

t # <graph_id> 

v <vertex_id> <vertex_label> 

e <edge_from> <edge_to> 

<edge_label> 

<next_graph_or_end_of_file> 

 
FSM implementations work in such a way that they store 

maximum possible values of graph features in memory 

as integer data type regardless of the number of samples, 

the number of edges and vertices in the data set. PDSSP 

is designed to convert this static memory usage into a 

dynamic state. Our proposed model has 2 stages. The 

flowchart of our implementation has been given in Fig 4. 

The first stage is Predictive Version Switch (PVS) that 

scans the input dataset file which stores the graphs 

digitized in DIMACS [21] format as shown in Table 4. 

On the “analyze dataset” module in Fig 4, PVS 

determines the proper integer value range and then 

chooses the appropriate precompiled PDSSP version to 

execute. FSM_PDSSP is an FSM version of which 

primitive integer data types replaced by dynamic length 

ds_Int data type. An appropriate size of ds_Int is 

determined by the range of values given in Table 7.  

C/C ++ languages allow changing primitive integer data 

types only at compile time, not during runtime. 

Therefore, the FSM_PDSSP code is pre-compiled before 

the operation for each type of ds_Int. As shown in Fig 4, 

a determiner module chooses the optimum pre-compiled 

binary FSM_PDSSP, according to the number of edges, 

vertices and graph size.  

If the determiner module cannot determine which version 

to execute, then the original binary executed. In the end, 

the detected frequent sub-graphs are written to the disk. 
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Figure 4. Our proposed flowchart to use FSM with PDSSP. 

 

3.1. Predictive Version Switch (PVS) 

PVS is a preprocessing module that has been developed 

as independent software. In this study, it has been 

modified to meet the requirements of gSpan and Gaston. 

PVS takes the following input parameters: input dataset 

file, the name of the algorithm, minimum support level 

and output file. The pseudo-code of  PVS is given in 

Table 5. 

 

Table 5. Pseudo-code of Predictive Version Switch 

(PVS)  

Algorithm PVS 

PVS (A dataset file ds_file, an algorithm selection 

alg_select, a minimum support level min_sup, an output 

file out_file) 

Set TransactionCount, maxVertex, maxEdge, maxLabel 

to zero; 

Read graphs from ds_file into Dataset 

for each row in Dataset do 

   if type of row is transaction then 

      Increase TransactionCount by 1 

      else if type of row is label and label_ID of row is 

greater than maxLabel then 

          Set maxLabel to label_ID 

      else if type of row is vertex and vertex_ID of row is 

greater than maxVertex then 

          Set maxVertex to vertex_ID 

      else if type of row is edge and edge_ID of row is 

greater than maxEdge then 

          Set maxEdge to edge_ID 

   end if 

end for 

if alg_select is gSpan then 

   Run “gSpan_PDSSP” with ds_file, min_sup, out_file 

   else if alg_select  is Gaston then  

      Run “Gaston_PDSSP” with ds_file, min_sup, out_file 

end if 

 
PVS scans the input dataset and finds the maximum 

integer values that will be used to store transaction count, 

vertex number, edge number and label numbers. After the 

decision process, PVS runs the appropriate PDSSP 

version. 

3.2. Dynamic Sized Integer Type (ds_Int) 

A newly designed unsigned integer variable type, ds_Int, 

has been developed as the part of the solution. As can be 

seen in the pseudo-code of ds_Int implementation given 

in Table 6, the main idea is to store unsigned integer 

values in an unsigned array by using bit-shifting 

operations. With this method, ds_Int can also support 

bigger numbers than 264 with minimal algorithmic 

modification. For this work, we have limited it to 264 in 

order to compare with the unsigned long integer type. 

Table 6. Pseudo-code of ds_Int algorithm 

Algorithm ds_Int 

struct ds_Int (An unsigned integer data InputData, 

size of ds_Int value byte_size)  

   Set StoredData with an empty unsigned char array 

in byte_size size 

   function get () returns integer    

      Set OutputData to zero 

      for i from 0 to byte_size do 

         Set OutputData with OutputData & (i × 8-byte 

left shifted StoredData[i]) 

       end for 

       return OutputData 
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    end function 

    function set (InputData) returns nothing 

       for j from 0 to byte_size do 

          Set StoredData[j] to StoredData & (j × 8-byte 

right shifted InputData)         

       end for 

    end function 

 
The difference between ds_Int and the standard unsigned 

integer type is that ds_Int can be declared to store 1 to 7 

bytes and from 0 to 264 value correspondingly. In C/C++ 

languages, the primitive unsigned integers typically 

require 1, 2, 4 or 8-bytes, but not 3, 5, 6 or 7 bytes. 

Dynamic sized ds_Int enables the programmer to define 

3,5,6 or 7 bytes integers, therefore a significant amount 

of memory depending on the dataset may be saved.  

 

Table 7. Comparison of ds_Int and standard integer types 

Value 

Range 

Standard Data Type 

/ Size (byte) 

ds_Int Type / 

Size (byte) 

Saving 

(byte)  

0 to 28 unsigned char / 1  ds_Int<1> / 1   0  

0 to 216 unsigned short int / 2  ds_Int<2> / 2  0  

0 to 224 unsigned int / 4  ds_Int<3> / 3 1  

0 to 232 unsigned int / 4  ds_Int<4> / 4 0  

0 to 240 unsigned long int / 8  ds_Int<5> / 5 3  

0 to 248 unsigned long int / 8 ds_Int<6> / 6 2  

0 to 256 unsigned long int / 8 ds_Int<7> / 7 1  

0 to 264 unsigned long int / 8 ds_Int<8> / 8 0  

 
A comparison of ds_Int and standard unsigned integer 

data types and storage savings are shown in Table 7. As 

shown in the table, when the value range upper-limit gets 

higher, especially when it is greater than 232, memory 

space savings increases. In order to demonstrate the 

strength of ds_Int employment, we may give an example. 

Assume that there are 222 integer items in an array and 

the maximum value which will be stored is 235.  If 

standard integer types are used to store the array, an 

unsigned long integer type has to be preferred due to its 

supported size limit. If we calculate the memory space 

requirement for this operation, the amount will be 

(∑ 8222

n=1 )/ 1024 = 32,768 𝐾𝐵. Whereas, when 

ds_Int<5> integer type is used for the same operation, the 

memory space requirement will be (∑ 5222

n=1 )

/1024 = 20,480 𝐾𝐵. It can be clearly stated that, using 

ds_Int results in a reduction in memory requirement up 

to  (1 −
20480 

32768 
) = 37%. 

3.3. Data Structure Packing 

Data structure packing is the last and fundamental part of 

the PDSSP approach. Before explaining, it is necessary 

to understand how data is stored and accessed in the 

memory.  

In computer systems, stored data in memory has two 

properties.  The first one is its value and the second is its 

storage location (address in memory). Data alignment 

means that the address of the data should be evenly 

divisible by any power of 2 because the CPU does not 

read one byte at a time.  By default, the value of the word 

size depends on the architecture of a system. Generally, 

word size is 4 in most cases. If the size of data is smaller 

than a word size, some extra empty spaces are added to 

the end of the data for data alignment. This phenomenon 

is called “padding”.  

The compiler padding is illustrated in the following 

example. Here, an int is assumed to be 4 bytes and 

a char is a single byte. 

struct mydata { 

    char C; 

    int L; 

    char B; 

    int J; 

};  

Fig 5. Illustrates how “struct mydata” would be 

padded to align with 4-byte boundaries. As the alignment 

of an int on this platform is 4 bytes, 3 bytes are added 

after char C, and 3 bytes are added at the end of char B. 

Because of the padding, the addresses of the data in this 

structure are evenly divisible by 4. This is called structure 

member alignment. Obviously, the size of the structure 

in memory grows as a consequence. 

In this case, the CPU needs to perform extra operations 

to access the data, such as loading two chunks of data, 

shifting out unwanted bytes then combining them 

together. These extra operations slow down the 

performance of the CPU [22]. 

In this study, we have created a new data type called 

dynamic sized integer (ds_Int). It is fully adjustable from 

1-byte to 8-byte storage sizes and it avoids misaligned 

data access by means of compiler alignment options. In 

our C/C++ implementation, we use “#pragma” 

preprocessor directive. The pragma directive makes the 

compiler work with the specified structure packing size 

when it is activated [23]. 

 

Figure 5. Memory alignment and padding of struct mydata. 
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Predictive Version Switch (PVS) scans the input dataset 

file. On the “analyze dataset” step in Fig 4, PVS finds the 

integer value range and then determines the appropriate 

ds_Int type. As a result, If 3-byte fits for the integer data 

type, then our proposed "data structure packaging 

system" will select the ds_Int <3> data type. 

 
Figure 6. Memory alignment when ds_Int<3> used. 

 

Fig 6 illustrates the new memory alignment when integer 

data type shrinks to 3 bytes. As a result, totally 6 bytes of 

waste has been saved by the help of our proposed method. 

3.4. Embedding PDSSP into FSM Algorithms 

As we mentioned in the previous section, PDSSP is an 

extension to FSM implementations. In order to embed 

PDSSP into an FSM implementation, one should perform 

memory profiling to determine the most memory 

demanded data structures. If any greedy data structures 

found, our proposed ds_Int types may replace these. 

In this study, we have used Valgrind and Massif 

Visualizer tools [24] to profile the memory consumption 

of gSpan and Gaston implementations. By means of these 

tools, the most memory demanding data structures have 

been determined. The greedy data structures are replaced 

with ds_Int type. The original data structures and 

replaced ones are shown in Table 8. 

Table 8. The comparison of original data structures and 

PDSSP structures. 

Original data structure 

g
S

p
a

n
-1

 

struct Edge{ 

    int from;    

    int to;   

    int elabel;   

    unsigned int id;  

    //other codes 

}; 

g
S

p
a

n
-2

 

struct PDFS { 

   unsigned int id; 

   Edge *edge; 

   PDFS *prev; 

  //other codes 

}; 

G
a

st
o

n
-1

 struct LegOccurrence{ 

   Tid tid; 

   OccurrenceID ccurrenceid; 

   NodeId tonodeid, fromnodeid; 

   //other codes 

}; 

 

 

 

 

PDSSP data structure 

g
S

p
a

n
-1

 

#pragma pack(n) 

struct Edge{ 

   ds_Int<v_max> from;  

   ds_Int<v_max>to;  

   ds_Int<elabel_max> elabel; 

   ds_Int<e_max> id;  

   //other codes 

}; 

#pragma pack() 

g
S

p
a

n
-2

 

#pragma pack(n) 

struct PDFS { 

   ds_Int<tid_max> id; 

   Edge *edge; 

   PDFS *prev; 

   //other codes 

}; 

#pragma pack() 

G
a

st
o

n
-1

 

#pragma pack(n) 

struct LegOccurrence{ 

 ds_Int<tid_max> tid; 

 ds_Int<tid_max+1> occurrenceid; 

ds_Int<v_max>tonodeid,frmnodeid; 

 //other codes 

}; 

#pragma pack() 

 

4.  EXPERIMENTS 

We conducted experiments to examine the effectiveness 

and efficiency of the PDSSP approach by embedding it 

into two state-of-art algorithms called gSpan and Gaston.  

We compared our proposed FSM_PDSSP 

implementations to the official implementations. 

4.1. Data Sets 

To evaluate the performance of the PDSSP approach, we 

have conducted experiments with three real-world data 

sets: Anti-cancer screen datasets (NCI) [25], Dobson and 

Doig (DD) molecule data set [26] and AIDS antiviral 

screen data set (AIDS) [27]. In addition to the real 

datasets, we have also generated three synthetic datasets 

named T10KV5KE14K, T58KV100E100 and 

T114KV200E200. The metadata of the real and synthetic 

databases are given in Table 9.  

Table 9. Benchmark datasets and their characteristics. 

Dataset  

Ɠ 

|Ɠ| |VMAX 

(Ɠ)| 

|EMAX 

(Ɠ)| 

|LMAX-

V| 

|LMAX-

E| 

NCI 20586 112 119 64 3 

DD 1178 5747 14267 88 0 

AIDS 56213 221 247 61 3 

T10KV5 

KE14K 

10317 5747 14267 88 3 

T58KV1 

00E100 

58242 112 119 63 3 

T114KV 

200E200 

114455 221 247 63 3 

| Ɠ |: the total number of graphs in the dataset  

|V MAX(Ɠ)|: maximum number of vertices in any graph 

|E MAX(Ɠ)|: maximum number of edges in any graph 

| L MAX-V |: maximum number of vertex labels 
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|L MAX-E|: maximum number of edge labels 

4.2. Test Environment 

In this study, gSpanCORK an implementation of the 

gSpan algorithm which is developed by Thoma, Marisa, 

et al. has been employed. It has been downloaded from 

the web page provided in their article entitled 

“Discriminative frequent subgraph mining with 

optimality guarantees” [28]. Gaston was downloaded 

from the Gaston official web site [29]. Since both 

implementations are open source and coded in C/C++ 

programming language, we have easily embedded our 

proposed PDSSP implementation into them. All source 

codes are compiled for x64 architecture in CentOS Linux 

release 7.1, with GCC 4.8.3. The C ++ compiler version 

that supports C11 standards was used to compile PDSSP 

binaries. The test hardware had 2-core Intel Xeon CPU 

E5-2670 2.60GHz processors and 4 GB RAM memory. 

The implementations were developed to run in single 

threaded mode. 

4.3. Experimental Results 

We have executed our implementation and the original 

one on the benchmark datasets given in Table 9. Original 

implementations of gSpanCORK and Gaston are 

compared to the corresponding FSM_PDSSP 

implementations whose are called gSpan+PDSSP and 

Gaston+PDSSP. Total running times and the maximum 

memory consumptions (peak memory) are collected for 

various support levels. All tests are carried out three 

times to make sure that they are consistent. 
Table 10.  Comparison of gSpan and  gSpan+PDSSP on 

benchmark datasets. 

D
at

as
et

 

S
u

p
p

. 
(%

) Mem. Usage (MB's) Run Time (Sec) 

gSpan  

Orig. 

gSpan + 

PDSSP 

gSpan  

Orig. 

gSpan + 

PDSSP 

N
C

I 

5 142,57 107,29 37,97 37,84 

10 113,4 85,26 11,15 11,03 

15 94,33 71,18 6,66 6,44 

20 86,01 62,83 4,68 4,58 

25 74,36 54,38 3,71 3,69 

30 75,8 54,75 3,3 3,32 

D
D

 

5 84,68 59,72 718,24 717,87 

10 82,46 57,17 171,21 168,14 

15 80,95 55,95 77,03 77,89 

20 81,14 55,38 47,72 47,37 

25 79,54 54,51 32,56 31,72 

30 78,79 54,39 23,47 23,28 

A
ID

S
 

5 147,82 110,12 10,93 10,7 

10 96,98 71,83 5,19 5,11 

15 92,86 68,18 4,1 4,02 

20 86,27 65,86 3,32 3,29 

25 78,4 58,27 2,68 2,61 

30 75,86 57,26 2,47 2,39 

T
5

8
K

V
1
0

0
E

1
0

0
 

5 2434 1827 684,71 671,71 

10 1699 1304 179,46 172,87 

15 1418 1050 102,59 99,27 

20 1188 906,99 71,42 69,81 

25 1001 765,91 58,29 57,62 

30 877,57 648,09 47,87 47,7 

T
1

1
4

K
V

2
0
0

E
2

0
0
 

5 1927 1594 236,45 227,01 

10 1412 1086 103,9 103,18 

15 1191 956,61 73,16 72,45 

20 1042 841,67 59,03 57 

25 927,74 746,53 51,2 50,99 

30 919,89 731,68 46,27 45,88 

T
1

0
K

V
5

K
E

1
4

K
 5 190,18 138,58 25,80 25,99 

10 153,78 110,98 12,54 12,38 

15 145,49 104,14 10,04 10,18 

20 135,00 99,48 9,13 9,39 

25 128,77 92,43 8,65 8,69 

30 125,51 91,95 8,08 8,18 

The results of our experiments are shown in Table 10 and 

Table 11. For each benchmark, memory usage in 

megabytes and run time in seconds are given. “gSpan 

Orig.” column corresponds to the original 

implementation and “gSpan+PDSSP” column 

correspond to the PDSSP employed version. In Table 10 

and Table 11, bold values indicate better results. 

Tests are repeated for various support levels ranging from 

5% to 30%. At lower support levels, the run times are 

longer as expected. That's why it requires more time to 

find frequent subgraphs at a low support level and 

consumes more memory. Owing to the subgraph 

isomorphism tests performed during the frequent 

subgraph mining, run time and the allocated memory 

increases exponentially with the size of the dataset.  
Table 11. Comparison of Gaston and  Gaston+PDSSP on 

benchmark datasets. 

D
at

as
et

 

S
u

p
p

. 
(%

) Mem. Usage (MB's) Run Time (Sec) 

Gaston  

Orig. 

Gaston + 

PDSSP 

Gaston  

Orig. 

Gaston + 

PDSSP 

N
C

I 

5 77,01 48,48 4,54 5,8 

10 55,88 34,81 1,45 1,93 

15 45,33 28,62 0,87 1,13 

20 36,41 24,13 0,6 0,76 

25 30,49 20,13 0,46 0,59 

30 28,46 13,89 0,39 0,27 

D
D

 

5 40,27 34,15 142,86 164,15 

10 37,68 31,55 40,32 50,37 

15 35,2 30,43 21,12 23,32 

20 33,88 29,04 12,61 15,42 

25 33,33 28,74 8,42 9,83 

30 32,47 27,8 6,18 7,06 

A
ID

S
 

5 53,84 34,23 1,36 1,88 

10 48,36 29,86 0,7 0,93 

15 43,55 27,47 0,51 0,66 

20 41,06 26,25 0,4 0,52 

25 35,64 23,84 0,32 0,38 

30 33,14 21,71 0,25 0,05 

T
5

8
K

V
1
0

0
E

1
0

0
 5 1224 772,82 97,68 112,91 

10 836,11 513,39 29,58 34,6 

15 636,45 397,22 18,15 20,86 

20 527,4 331,93 12,37 14,85 

25 427,06 279,71 9,82 12,13 

30 382,12 246,1 7,95 9,08 

T
1

1
4 K V
2

0
0

E
2

0
0
 

5 964,08 747,84 38,57 44,56 
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10 627,82 490,56 17,79 21,15 

15 489,02 390,57 11,21 12,73 

20 427,09 351,73 8,22 10,06 

25 395,7 318,78 6,61 8,02 

30 387,75 309,25 5,48 6,01 

T
1

0
K

V
5

K
E

1
4

K
 5 107,21 90,07 6,51 8,71 

10 71,99 59,63 1,47 1,83 

15 45,63 38,70 0,75 0,83 

20 41,35 35,52 0,65 0,73 

25 36,81 33,23 0,60 0,66 

30 37,25 32,77 0,53 0,41 

Table 12 and Table 13 show the overall memory and run 

time improvements achieved through our PDSSP 

approach. As shown in Table 12, the memory usage is 

significantly reduced in all the cases. The memory 

savings range from 27.44% to 19.88% on the 6 of the 6 

benchmark datasets. The average improvement is 

25.66%. The average memory usage and run time 

durations for all cases are given in Fig.7. 

Table 12 and the charts in Fig 7. indicates that 

improvement is accomplished by our PDSSP approach. 

On the other hand, the run time is slightly better than the 

original implementation. The average run time of 6 

benchmarks denotes that our PDSSP employed gSpan 

algorithm requires 1.15% less time to run. 
Table 12. Memory and run time improvement for the PDSSP 

employed gSpan algorithm. 

Dataset 
Memory Usage 

gSpan with 

PDSSP (%) 

Run Time  
gSpan with 

PDSSP (%) 

NCI -25,90 -1,13 

DD -30,87 -0,81 

AIDS -25,31 -2,06 

T58KV100E100 -24,57 -2,09 

T114KV200E200 -19,88 -1,72 

T10KV5KE14K -27,44 0,90 

AVERAGE -25,66 -1,15 

 

 

Figure 7. Avg. Memory usage (MBytes) and avg. Run Time 

durations (secs) comparison of gSpan to gSpan + 

PDSSP. 

Table 13.  Memory and run time improvement for the PDSSP 

employed Gaston algorithm. 

Dataset 

Memory Usage 

Gaston with 

PDSSP (%) 

Run Time  

Gaston with 

PDSSP (%) 

NCI -38,42 19,15 

DD -14,58 17,25 

AIDS -35,87 11,54 

T58KV100E100 -36,70 17,55 

T114KV200E200 -20,29 16,89 

T10KV5KE14K -14,03 11,44 

AVERAGE -26,65 15,64 

The results of our second set of experiments are shown 

in Table 13. As the previous experiment with gSpan with 

PDSSP, the memory usage is also significantly reduced 

in Gaston with PDSSP. The reduction ranges from 

38.42% to 14.03% on the 6 of the 6 benchmark datasets. 

The average improvement is 26.65%. The average 

memory usage and run time durations for all cases of 

Gaston and Gaston + PDSSP are given in Fig.8. 
 

 

Figure 8. Avg. Memory usage (MBytes) and avg. Run Time 

durations (secs) comparison of Gaston to Gaston + 

PDSSP. 

In this case, total run time on all experiments are slightly 

worse than the original implementation. The average run 

time is 15.16% longer than the original. gSpan uses 

adjacency list for graph representation, whereas Gaston 

uses a hash table. This approach makes the Gaston the 

fastest out of 4 algorithms named MoFa, gSpan, FFSM 

and Gaston [30]. We have used gSpan as “fairly 

optimized” representative, whereas the Gaston has been 

chosen as “well optimized” representative to demonstrate 

our approach. Our PDSSP approach may cause some 

delay in Gaston which is the worst case for our approach. 

We may say that PDSSP approach may cause delay at 

most 15% in the worst case. In general, an actual delay 

will be much smaller. A delay of 15% is not bad, since 

Gaston algorithm may operate up to 50% faster than 

gSpan. The corresponding lines of Table 10 and Table 11 

may be used to compare the run times of gSpan and 

Gaston on the same dataset with the same support level. 

The memory requirements of the FSM algorithms are 

inversely proportional to the level of support. Almost all 

results show that our proposed PDSSP implementation 

consumes less memory on each support level. The 

experimental results show that FSM_PDSSP can save 

memory and the peak memory usage decreases 

dramatically up to 38% depending on the dataset.  

5. RESULTS AND DISCUSSION 
Frequent subgraph mining is one of the most challenging 

problems in the graph-mining domain. This article 
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provides a novel approach to minimize the memory 

consumption of FSM algorithms. We call our approach 

as Predictive Dynamic Sized Structure Packing (PDSSP).  

In order to demonstrate the efficiency of PDSSP, a 

number of experiments have been carried out on both 

real-life datasets and large synthetic datasets. Total run 

times and the maximum memory consumption (peak 

memory) are compared with the original 

implementations. The experimental results clearly stated 

that PDSSP can significantly decrease memory usage. 

There may be some delay in the total run time of some 

well-optimized FSM implementations such as Gaston.  

Our PDSSP approach has two contributions. The first one 

is the Dynamic Sized Integer Type (ds_Int) which is a 

newly designed unsigned integer data type. The second 

contribution is “Data Structure packaging” component 

that uses a data structure packing technique which 

changes the behaviour of the compiler. 

As future work, we are planning to use Map/Reduce and 

Message Passing Interface (MPI) in order to improve the 

overall performance of the PDSSP embedded FSM 

algorithms. 
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