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Graphical Abstract

In this study, a new approach called Predictive Dynamic Sized Structure Packing (PDSSP) have been proposed
to minimize the memory requirement of FSM algorithms. Proposed approach redesigns the internal data structures
of FSM algorithms without any algorithmic modifications.
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Figure. Avg. Memory usage (MBytes) and avg. Run Time durations (secs) comparison of Gaston to Gaston +
PDSSP.

Aim

In this study, a new approach called Predictive Dynamic Sized Structure Packing (PDSSP) have been proposed
to minimize the memory requirement of FSM algorithms.

Design & Methodology

Proposed approach redesigns the internal data structures of FSM algorithms without any algorithmic
modifications.

Originality

PDSSP has two contributions. The first one is the Dynamic Sized Integer Type (ds_Int) which is a newly designed
unsigned integer data type. The second contribution is “Data Structure packaging” component that uses a data
structure packing technique which changes the behaviour of the compiler.

Findings

A number of experiments have been conducted to examine the effectiveness and efficiency of the PDSSP approach
by embedding it into two state-of-art algorithms called gSpan and Gaston. Proposed implementation have been
compared to the official one. Almost all results show that the proposed implementation consumes less memory on
each support level.

Conclusion

Predictive Dynamic Sized Structure Packing (PDSSP) extensions can save memory and the peak memory usage
may decrease up to 38% depending on the dataset.

Declaration of Ethical Standards

The author(s) of this article declare that the materials and methods used in this study do not require ethical
committee permission and/or legal-special permission.



Politeknik Dergisi, 2021; 24(1) : 237-246 Journal of Polytechnic, 2021; 24 (1): 237-246

Sik Alt Cizge Madenciligi Algoritmalarinin Bellek
Gereksinimlerini En Aza Indirmek I¢in Yeni Bir
Yaklasim
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(Gelig/Received : 24.01.2020 ; Kabul/Accepted : 13.03.2020)
oz

Sik alt ¢izge madenciligi (SACM), ¢izge siniflandirma ve ¢izge kiimeleme i¢in yaygin olarak kullanilan bir ¢izge madenciligi alt
tirtidiir. Son on yilda, birgok verimli SACM algoritmas1 gelistirilmistir. Gelistirmeler genellikle algoritma yapisini degistirerek
veya paralel programlama teknikleri kullanarak zaman karmagsikligin1 azaltmaya odaklanmigtir. SACM algoritmalarinin ¢éziilmesi
gereken en dnemli problemlerinden biri yiiksek bellek tiiketimidir. Bu ¢alismada, SACM algoritmalarinin bellek gereksinimini en
aza indirmek icin Ongériicii Dinamik Boyutlu Yap1 Paketleme (ODBYP) ad1 verilen yeni bir yaklasim dnerilmistir. Onerilen
yaklasim SACM algoritmalarinin i¢ veri yapilarinda herhangi bir algoritmik degisiklik yapmadan yeniden tasarlamaya olanak
saglamaktadir. Bu ¢alisma kapsaminda gelistirilen ODBYP ile very madenciligi alanina iki 6nemli katki saglanmaktadir. Birincisi,
yeni tasarlanmug isaretsiz bir tamsay1 veri tiirli olan Dinamik Boyutlu Tamsay1 Tiiriidiir (ds_Int). Tkinci katki, derleyicinin
davramisim degistiren bir veri yapis1 paketleme teknigi kullanan “Veri Yapisi paketleme” bilesenidir. ODBYP yaklasimimin
etkinligini ve verimliligini, gSpan ve Gaston adli gilincel algoritmalara gomerek cesitli deneyler gergeklestirilmistir. Caligma
kapsaminda gelistirilen yontem ile algoritmalarin original halleri ile kiyaslanmistir. Neredeyse tiim sonuglar, 6nerilen uygulamanin
her destek diizeyinde daha az bellek harcadigim gostermektedir. Sonug olarak, ODBYP uzantilar1 bellek tasarrufu saglayabilir ve
veri kiimesine bagli olarak maksimum bellek kullanimi % 38 kadar diisiiriilebilmektedir.

Anahtar Kelimeler: Sik alt ¢izgeler, veri madenciligi, alan karmagikhgr.

A New Approach to Minimize Memory Requirements
of Frequent Subgraph Mining Algorithms

ABSTRACT

Frequent subgraph mining (FSM) is a subsection of graph mining domain which is extensively used for graph classification and
graph clustering purposes. Over the past decade, many efficient FSM algorithms have been developed. The improvements generally
focus on reducing time complexity by changing the algorithm structure or using parallel programming techniques. FSM algorithms
have another problem to solve, which is the high memory consumption. In this study, a new approach called Predictive Dynamic
Sized Structure Packing (PDSSP) have been proposed to minimize the memory requirement of FSM algorithms. Proposed approach
redesigns the internal data structures of FSM algorithms without any algorithmic modifications. PDSSP has two contributions. The
first one is the Dynamic Sized Integer Type (ds_Int) which is a newly designed unsigned integer data type. The second contribution
is “Data Structure packaging” component that uses a data structure packing technique which changes the behaviour of the compiler.
A number of experiments have been conducted to examine the effectiveness and efficiency of the PDSSP approach by embedding
it into two state-of-art algorithms called gSpan and Gaston. Proposed implementation have been compared to the official one.
Almost all results show that the proposed implementation consumes less memory on each support level. As a result, PDSSP
extensions can save memory and the peak memory usage may decrease up to 38% depending on the dataset.

Keywords: Frequent subgraphs, data mining, space complexity.
1. INTRODUCTION sequencing. Recent works have attempted to solve the
The size of the graphs used in the graph mining area is ~ 9énome assembly problem by using graphical

growing rapidly up to trillion edges [1]. In the year 2015,
one of the largest reported experiments with a real-world
graph involved over 1.5 trillion edges [2]. Today, the
search engines have new infrastructures to support the
bigger web graphs, which has over a trillion vertices [3].
Another important area for graph mining is genome

*Sorumlu Yazar (Corresponding Author)
e-posta : turgay.bilgin@btu.edu.tr

representations for genomes. An example of a big
genome graph is the de Bruijn graph which was
generated based on k-mers calculation in Velvet
algorithms. The maximum number of nodes in that graph
was about 4 million [4]. The most widely used
application domain of graph mining is the graph pattern
mining problems, which is also called frequent subgraph
mining (FSM). It is a well-studied problem with
numerous applications in areas such as computational
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chemistry, bioinformatics, and social networks [5]. FSM
focuses on the enumeration of the frequent subgraphs,
either in a single graph or in a graph database. During
enumeration of the subgraphs, memory requirements get
exponentially larger compared to the input size of the
input data. For this reason, various methods have been
used to optimise memory and CPU usage of the FSM
algorithms. These improvements have focused on
distributing the computational power and memory
requirements to different nodes by parallelization
techniques like Map/Reduce, Message Passing Interface
(MPI). Using compression techniques, changing the
data-storing structure or format with new technologies
like Cassandra and Hadoop are other solutions that work.
All these techniques are used to modify and optimize the
FSM algorithms.

Using high-performance computing (HPC) for FSM is a
timely subject, especially on symmetric multiprocessing
(SMP) systems. In SMP systems, there is one shared
memory used by more than one core. Any FSM algorithm
paralleled on SMP systems needs more memory than a
single-threaded counterpart for increasing the level of
parallelization due to data sharing needs between threads.
As a result, the space complexity is getting a bigger
problem for these type of systems [6].

In this study, we have developed a new approach to
decrease the memory requirements of FSM algorithms
even if they run as a single-threaded implementation or
an HPC based structure. Our proposed approach does not
require the algorithms to be redesigned and it can also be
applied to various FSM algorithms [7].

The remaining part of this paper is organized as follows:
we define some FSM preliminaries and the problem in
Section 2. In section 3, we discuss our method, in section
4 we have performed an experimental study. The last
section draws the conclusions.

2. DEFINITIONS

A graph is constructed by pairing a set of vertices V and
a set of edges E. The graph is defined by G = (V, E), if
E € VxV and every edge e € E relates to a pair of
vertices (v1, v2).

Two graphs G, and G, are isomorphic, if G, = (V;,E;)
and G, = (V,, E,) are topologically identical. This means
that there is a mapping from G, to G, such that each edge
in E; is mapped to a single edge in E, and vice versa. If
the graph has labels, this mapping must also be between
the labels on the vertices and edges.

Subgraph G, = (V,, E,) of another graph G, = (V3,E;)
is that V, €V, and E, € E;"(v1,v2) €E, >V, €V,
and v, € V, can be found, as in Fig. 1.

A graph Gi= (Vi, E1) in Fig 1.(a) with vertex set
Vi={a,b,c,d,e} and edge set E;={ab,ad,bc,be,ce,de} is
given. So the graph G,= (V», E) in Fig 1.(b) with vertex
set Vo={,c,d,e} and edge set E,={ce,de} is a subgraph of
the graph Gi.

COO ©
OSCINOO

(a) (b)

Figure 1. (a) represents a graph, (b) represents a subgraph of

(@).

Subgraph isomorphism occur between two graphs G; =
(V\,Ey) and G, = (V,,E,) is when you find an
isomorphism between G, and a subgraph of G, that is, to
determine whether or not G, is included in G;.

The frequent subgraph is defined as a graph that occurs
frequently in the graph database, which is a special type
of database that comprises a single large graph or some
multiple small graphs. Given a labelled graph dataset
Gp = {G, G, ..., Gy}, support or frequency of a subgraph
g is the percentage (or number) of graphs in G, where g
is a subgraph [8]. If D is the input database, the graph
support G, is denoted by Sup (Gp).

Frequent subgraph mining is the discovery of subgraphs
of the given set of graphs [9]. Let Fig. 2 (a) and Fig. 2 (b)
be the given graphs. An example of frequent subgraph
would be the graph shown in Fig. 2 (c).

a‘l a ° 5
a) b)

c)
Figure 2. (a), (b) are input graphs, (c) is a frequent subgraph.

Many efficient frequent subgraph mining algorithms
have been developed, such as gSpan [10], Gaston [11],
CloseGraph [12], SPIN [13], Mofa [14], EDC [15], FSG
[16]. Behind these studies, there are two basic approaches
to the frequent subgraph mining problem. The first
approach shares similar characteristics with Apriori-
based frequent item set mining algorithms. It starts to
search for small-size subgraphs and extends it by joining
subsequently found subgraphs. The well-known Apriori-
based frequent subgraph mining algorithms are AGM,
FSG and an edge-disjoint path-join algorithm [17].
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The second approach employs pattern-growth algorithms
that start from an initial edge and extend the graph by
directly adding a new edge in every possible position,
then checking whether or not this graph supports the
threshold. Well-known pattern-growth based graph
mining algorithms are gSpan, MoFa, SPIN, and Gaston
[18][19].

In this work, two algorithms gSpan and Gaston are used
to test our approach. gSpan (graph-based Substructure
pattern) uses DFS-codes for presenting and storing the
graphs. Searching and comparing frequent subgraphs for
isomorphism check test is done via DFS code tree. With
this feature, gSpan does not require any candidate pattern
generation. It generates all exact frequent subgraphs.
gSpan guarantees the completeness of mining results
with the minimum DFS codes, pruning non-minimal
children in the solution space. Table 1 describes the
pseudo-code of gSpan. This pseudo-code is an
integration of the algorithm descriptions presented in
[10].

All pattern growth algorithms generate duplicated
candidates during the enumeration process. In gSpan, the
duplicated candidates are non-minimal codes. Instead of
calculating the minimum DFS code of s from all possible
DFS codes, picking up the smallest one and comparing it
against s, gSpan defines a more efficient function
isMin(s) in Subgraph mining method. A
heuristic search was designed using the DFS
lexicographic order. Whenever some prefix of a DFS is
generated and it is less than s, then s is not minimal and
the search concludes.

Table 1. Pseudo-code of the gSpan algorithm

Enumeration of g: Finding all the exact positions of g in
another graph

For support calculation and candidate enumeration,
gSpan uses a TID list. The TID list (Transaction ID list)
contains the ID of each graph in the database that holds
the corresponding subgraph.

Table 2. Pseudo-code of Gaston algorithm

Algorithm Gaston

Input: U, one of the units of the database
sup, minimum support.
Output: P(U), the set of frequent subgraphs in U.

F, = {frequent edges in U};
foreachp €F1 {
L = {allowable extended edges of p};
for each allowable extended edge | €L {
G" = Adding I to p;
L* = {allowable extended edges of G };
if | is a node refinement {

if G™ is apath
find paths with G™ and L ;
else
find trees with G  and L™ ;
}
else

find cyclic graphs with G  and L™ ;
}
b

Algorithm gSpan

Metod 1: GraphSet_projection(GS, FS)
sort labels of the vertices and edges in GS by frequency;
remove infrequent vertices and edges;
relabel the remaining vertices and edges (descending);

sk= all frequent 1-edge graphs;
sort ST in DFS lexicographic order;
FS:= Sl;
for each edge e in S1 do
init g with e, set g.DS={h | heGS, eeE(h)};

Subgraph_mining(GS, FS, g);

GS:=GS-¢;
if |GS| < minSup
break;

Metod 2: Subgraph_mining(GS, FS, g)

if g # min(g)

return;
FS:=FS u{g};
enumerate g in each graph in GS and count g's children;
for each c (child of g) do

if support(c) > minSup

Subgraph_mining(GS, FS, c);

Many memory-based algorithms have been proposed to
discover the frequent graphs. In this work, we use the
Gaston algorithm to find the set of frequent graphs. The
Gaston (Graph sequence tree extraction) algorithm is
based on the observation that most frequent substructures
in practical graph databases are actually free trees and
employs a highly effective strategy to enumerate the
frequent free trees first. Gaston stores all embeddings
(both nodes and edges), to generate only refinements that
actually appear and to achieve fast isomorphism testing.
It firstly checks paths and trees, subgraph isomorphism
test is done as the last job. Gaston only outputs the cycled
graphs. So that, Gaston works faster than both gSpan,
FFSM or Mofa.

Table 2 gives an outline of the Gaston algorithm. Let
P(U) be a subgraph found in the U. The first line finds all
the frequent edges in the database (F:.) For each frequent
edge p, the algorithm generates the descendants G of p
with the set of allowable extended edges L (for each
block). According to the types of G™ and the extended
edges, the algorithm will decide to find paths, trees or
cyclic graphs in the database. If-else sections perform
these operations in pseudo-code given in Table 2.

3. PREDICTIVE DYNAMIC SIZED STRUCTURE
PACKING (PDSSP)

In this section, we have described our contribution to the
standard FSM algorithm. FSM algorithm read the
datasets from an external resource, process the data and
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write them into the disk. Basic flowchart of standard
FSM algorithm is depicted in Fig. 3 (a).

Our proposed PDSSP approach redesigns the internal
data structures of the FSM algorithm without any
algorithmic modifications, therefore it acts as an
extension to the FSM algorithm. After applying the
PDSSP to standard FSM implementation
(FSM_PDSSP), modifications are depicted in Fig. 3 (b).

Graph
Datazst

Graph
Datazet

Drynamic Sized Integer

v

FSM CORE

v

Data Structure
Packaging

FSM CORE

Frequent
Subgraphs

Frequent
Subgraphs

(a) (b)
Figure 3. Flowcharts of standard FSM and PDSSP_FSM.

Generally, all FSM implementations use a fixed-type
integer for all variables. The main idea behind PDSSP is
that, if the maximum value to be stored in the integer-
based variables could be estimated, then varying-length
integer data types could be employed. In this way,
memory requirements of FSM implementations may be
reduced.

We have analyzed the FSM implementations and we
noticed that, due to the structure of the input data, only
unsigned integers are employed. Table 3 shows the
standard unsigned integer types with their storage sizes
and value ranges [20]. We have observed that choosing
improper integer data types causes high memory usage.
Consequently, we have focused on finding a solution to
create varying-length unsigned integer data type.
FSM_PDSSP has two contributions. The first one is the
Dynamic Sized Integer Type (ds_Int) which is a newly
designed unsigned integer data type that has a varying
capacity range from 0 to 2%* . The capacity of ds_Int
could be changed on demand. The second contribution is
“Data Structure packaging” component that uses a data
structure packing technique which changes the behaviour
of the compiler. The details of the contributions are given
in the following sections.

Table 3. Standard unsigned integer types and their storage
sizes and ranges.

Type Storage | Value range
size
unsigned | 1 byte | 0to 255 (28)
char
unsigned | 2 bytes | 0 to 65,535 (219)
short int
unsigned | 4 bytes | 0to 4,294,967,295 (23?)
int
unsigned | 8 bytes | 0to
long int 18,446,744,073,709,551,616
(2°%

Table 4. Input dataset file format.

t # <graph id>
v <vertex id> <vertex label>
e <edge from> <edge to>

<edge label>

<next graph or end of file>

FSM implementations work in such a way that they store
maximum possible values of graph features in memory
as integer data type regardless of the number of samples,
the number of edges and vertices in the data set. PDSSP
is designed to convert this static memory usage into a
dynamic state. Our proposed model has 2 stages. The
flowchart of our implementation has been given in Fig 4.
The first stage is Predictive Version Switch (PVS) that
scans the input dataset file which stores the graphs
digitized in DIMACS [21] format as shown in Table 4.
On the “analyze dataset” module in Fig 4, PVS
determines the proper integer value range and then
chooses the appropriate precompiled PDSSP version to
execute. FSM_PDSSP is an FSM version of which
primitive integer data types replaced by dynamic length
ds_Int data type. An appropriate size of ds_Int is
determined by the range of values given in Table 7.

C/C ++ languages allow changing primitive integer data
types only at compile time, not during runtime.
Therefore, the FSM_PDSSP code is pre-compiled before
the operation for each type of ds_Int. As shown in Fig 4,
a determiner module chooses the optimum pre-compiled
binary FSM_PDSSP, according to the number of edges,
vertices and graph size.

If the determiner module cannot determine which version
to execute, then the original binary executed. In the end,
the detected frequent sub-graphs are written to the disk.
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)
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True S —
[ run original binary ]
e

Table 5. Pseudo-code of Predictive Version Switch
(PVS)

Algorithm PVS

PVS (A dataset file ds_file, an algorithm selection
alg_select, a minimum support level min_sup, an output
file out_file)
Set TransactionCount, maxVertex, maxEdge, maxLabel
to zero;
Read graphs from ds_file into Dataset
for each row in Dataset do
if type of row is transaction then
Increase TransactionCount by 1
else if type of row is label and label_ID of row is
greater than maxLabel then
Set maxLabel to label_ID
else if type of row is vertex and vertex_ID of row is
greater than maxVertex then
Set maxVertex to vertex_ID
else if type of row is edge and edge_ID of row is
greater than maxEdge then
Set maxEdge to edge_ID
end if
end for
if alg_select is gSpan then
Run “gSpan PDSSP” with ds_file, min_sup, out_file
else if alg_select is Gaston then
Run “Gaston PDSSP” with ds_file, min_sup, out_file
end if

€

Figure 4. Our proposed flowchart to use FSM with PDSSP.

3.1. Predictive Version Switch (PVS)

PVS is a preprocessing module that has been developed
as independent software. In this study, it has been
modified to meet the requirements of gSpan and Gaston.
PVS takes the following input parameters: input dataset
file, the name of the algorithm, minimum support level
and output file. The pseudo-code of PVS is given in
Table 5.

PVS scans the input dataset and finds the maximum
integer values that will be used to store transaction count,
vertex number, edge number and label numbers. After the
decision process, PVS runs the appropriate PDSSP
version.

3.2. Dynamic Sized Integer Type (ds_Int)

A newly designed unsigned integer variable type, ds_Int,
has been developed as the part of the solution. As can be
seen in the pseudo-code of ds_Int implementation given
in Table 6, the main idea is to store unsigned integer
values in an unsigned array by using bit-shifting
operations. With this method, ds_Int can also support
bigger numbers than 2%* with minimal algorithmic
modification. For this work, we have limited it to 26* in
order to compare with the unsigned long integer type.

Table 6. Pseudo-code of ds_Int algorithm

Algorithm ds_Int
struct ds_Int (An unsigned integer data InputData,
size of ds_Int value byte_size)
Set StoredData with an empty unsigned char array
in byte_size size
function get () returns integer
Set OutputData to zero
for i from O to byte_size do
Set OutputData with OutputData & (i x 8-byte
left shifted StoredData[i])
end for
return OutputData
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end function
function set (InputData) returns nothing
for j from 0 to byte_size do
Set StoredDatalj] to StoredData & (j x 8-byte
right shifted InputData)
end for
end function

The difference between ds_Int and the standard unsigned
integer type is that ds_Int can be declared to store 1 to 7
bytes and from 0 to 26 value correspondingly. In C/C++
languages, the primitive unsigned integers typically
require 1, 2, 4 or 8-bytes, but not 3, 5, 6 or 7 bytes.
Dynamic sized ds_Int enables the programmer to define
3,5,6 or 7 bytes integers, therefore a significant amount
of memory depending on the dataset may be saved.

Table 7. Comparison of ds_Int and standard integer types

Value Standard Data Type | ds_Int Type/ | Saving
Range | /Size (byte) Size (byte) (byte)
0to 28 nsigned char/1 ds Int<1>/1 | 0
0to 2%® unsigned shortint/2 | ds_Int<2>/2 | 0
0to 22* unsigned int/ 4 ds Int<3>/3 | 1
0 to 232 unsigned int/ 4 ds_Int<4>/4 | 0
0to 24 unsigned long int/8 | ds_Int<5>/5 | 3
0to 2*® unsigned longint/8 | ds_Int<6>/6 | 2
0to 25¢ unsigned longint/8 | ds_Int<7>/7 | 1
0to 2% unsigned longint/8 | ds_Int<8>/8 | 0

A comparison of ds_Int and standard unsigned integer
data types and storage savings are shown in Table 7. As
shown in the table, when the value range upper-limit gets
higher, especially when it is greater than 232, memory
space savings increases. In order to demonstrate the
strength of ds_Int employment, we may give an example.
Assume that there are 222 integer items in an array and
the maximum value which will be stored is 235, If
standard integer types are used to store the array, an
unsigned long integer type has to be preferred due to its
supported size limit. If we calculate the memory space

requirement for this operation, the amount will be
(X2Z,8)/1024 = 32,768 KB. ~ Whereas,  when
ds_Int<5> integer type is used for the same operation, the
memory space requirement will be (X225)
/1024 = 20,480 KB. It can be clearly stated that, using
ds_Int results in a reduction in memory requirement up

to (1 - ﬂ) = 37%.

32768
3.3. Data Structure Packing

Data structure packing is the last and fundamental part of
the PDSSP approach. Before explaining, it is necessary

to understand how data is stored and accessed in the
memory.
In computer systems, stored data in memory has two
properties. The first one is its value and the second is its
storage location (address in memory). Data alignment
means that the address of the data should be evenly
divisible by any power of 2 because the CPU does not
read one byte at a time. By default, the value of the word
size depends on the architecture of a system. Generally,
word size is 4 in most cases. If the size of data is smaller
than a word size, some extra empty spaces are added to
the end of the data for data alignment. This phenomenon
is called “padding”.
The compiler padding is illustrated in the following
example. Here, an int is assumed to be 4 bytes and
a char is asingle byte.
struct mydata {

char C;

int L;

char B;

int J;
}i
Fig 5. lllustrates how “struct mydata” would be
padded to align with 4-byte boundaries. As the alignment
of an int on this platform is 4 bytes, 3 bytes are added
after char C, and 3 bytes are added at the end of char B.
Because of the padding, the addresses of the data in this
structure are evenly divisible by 4. This is called structure
member alignment. Obviously, the size of the structure
in memory grows as a consequence.
In this case, the CPU needs to perform extra operations
to access the data, such as loading two chunks of data,
shifting out unwanted bytes then combining them
together. These extra operations slow down the
performance of the CPU [22].
In this study, we have created a new data type called
dynamic sized integer (ds_lInt). It is fully adjustable from
1-byte to 8-byte storage sizes and it avoids misaligned
data access by means of compiler alignment options. In
our C/C++ implementation, we use ‘“#pragma”
preprocessor directive. The pragma directive makes the
compiler work with the specified structure packing size
when it is activated [23].

C Padding

Padding Padding

L0 L1 L2| L3

Padding Padding Padding

BO

Jo| J1 |J2 | J3

Figure 5. Memory alignment and padding of struct mydata.
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Predictive Version Switch (PVS) scans the input dataset
file. On the “analyze dataset” step in Fig 4, PVS finds the
integer value range and then determines the appropriate
ds_Int type. As a result, If 3-byte fits for the integer data
type, then our proposed "data structure packaging
system” will select the ds_Int <3> data type.

C |LO |L1 |L2

BO| JO || J1 |J2

Figure 6. Memory alignment when ds_Int<3> used.

Fig 6 illustrates the new memory alignment when integer
data type shrinks to 3 bytes. As a result, totally 6 bytes of
waste has been saved by the help of our proposed method.

3.4. Embedding PDSSP into FSM Algorithms

As we mentioned in the previous section, PDSSP is an
extension to FSM implementations. In order to embed
PDSSP into an FSM implementation, one should perform
memory profiling to determine the most memory
demanded data structures. If any greedy data structures
found, our proposed ds_Int types may replace these.

In this study, we have used Valgrind and Massif
Visualizer tools [24] to profile the memory consumption
of gSpan and Gaston implementations. By means of these
tools, the most memory demanding data structures have
been determined. The greedy data structures are replaced
with ds_Int type. The original data structures and
replaced ones are shown in Table 8.

Table 8. The comparison of original data structures and
PDSSP structures.

Original data structure
struct Edge({
int from;
int to;
int elabel;

PDSSP data structure
#pragma pack (n)
struct Edge({
ds Int<v_max> from;
ds_Int<v_max>to;
ds_Int<elabel max> elabel;
ds Int<e max> 1id;
//other codes

i

#pragma pack ()

#pragma pack (n)

struct PDFS {
ds_Int<tid max> id;
Edge *edge;
PDFS *prev;
//other codes

gSpan-1

}i

#pragma pack ()

#pragma pack (n)
struct LegOccurrence(

ds_ Int<tid max> tid;

ds Int<tid max+1> occurrenceid;
ds Int<v_max>tonodeid, frmnodeid;
//other codes

}i

#pragma pack ()

gSpan-2

Gaston-1

4. EXPERIMENTS

We conducted experiments to examine the effectiveness
and efficiency of the PDSSP approach by embedding it
into two state-of-art algorithms called gSpan and Gaston.
We  compared our proposed FSM_PDSSP
implementations to the official implementations.

4.1. Data Sets

To evaluate the performance of the PDSSP approach, we
have conducted experiments with three real-world data
sets: Anti-cancer screen datasets (NCI) [25], Dobson and
Doig (DD) molecule data set [26] and AIDS antiviral
screen data set (AIDS) [27]. In addition to the real

—
% unsigned int id; datasets, we have also generated three synthetic datasets
> |, T114KV200E200. The metadata of the real and synthetic
struct PDFS | databases are given in Table 9.
unsigned int id; Table 9. Benchmark datasets and their characteristics.
o Edge *edge; Dataset |G] [Vmax | |Emax |[Lmax- | |Lmax-
G PDES *prev; G (G)| (G)| vl |
& //other codes NCI 20586 112 119 64 3
Ry DD 1178 5747 | 14267 | 88 0
— | struct LegOccurrence AIDS 56213 221 247 61 3
c Tid tid; T10KV5 10317 5747 14267 88 3
o
B OccurrencelD ccurrenceid; KE14K
o NodeId tonodeid, fromnodeid; T58KV1 | 58242 112 119 63 3
//other codes 00E100
}; T114KV 114455 221 247 63 3
200E200

| G |: the total number of graphs in the dataset

[V max(G)|: maximum number of vertices in any graph
|E Max(G)|: maximum number of edges in any graph

| L max-v |: maximum number of vertex labels
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|L max-g|: maximum number of edge labels
4.2. Test Environment

In this study, gSpanCORK an implementation of the
gSpan algorithm which is developed by Thoma, Marisa,
et al. has been employed. It has been downloaded from
the web page provided in their article entitled
“Discriminative  frequent subgraph mining with
optimality guarantees” [28]. Gaston was downloaded
from the Gaston official web site [29]. Since both
implementations are open source and coded in C/C++
programming language, we have easily embedded our
proposed PDSSP implementation into them. All source
codes are compiled for x64 architecture in CentOS Linux
release 7.1, with GCC 4.8.3. The C ++ compiler version
that supports C11 standards was used to compile PDSSP
binaries. The test hardware had 2-core Intel Xeon CPU
E5-2670 2.60GHz processors and 4 GB RAM memory.
The implementations were developed to run in single
threaded mode.

4.3. Experimental Results

We have executed our implementation and the original
one on the benchmark datasets given in Table 9. Original
implementations of gSpanCORK and Gaston are
compared to the corresponding FSM_PDSSP
implementations whose are called gSpan+PDSSP and
Gaston+PDSSP. Total running times and the maximum
memory consumptions (peak memory) are collected for
various support levels. All tests are carried out three
times to make sure that they are consistent.

Table 10. Comparison of gSpan and gSpan+PDSSP on

30 | 877,57 648,09 47,87 47,7
=B 1927 1594 | 236,45| 227,01
o |10 1412 1086 103,9| 103,18
S [15 1191 956,61 73,16 72,45
Z |20 1042 841,67| 59,03 57
S [25 [ 927,74 746,53 51,2 50,99
~ [30 [ 919,89 731,68 46,27 45,88
« |5 190,18 138,58 25,80 25,99
E 10 | 153,78 110,98 12,54 12,38
X [15 | 14549 104,14 10,04 10,18
> [20 | 13500 99,48 9,13 9,39
S |25 | 12877 92,43 8,65 8,69
F 30| 12551 91,95 8,08 8,18

The results of our experiments are shown in Table 10 and
Table 11. For each benchmark, memory usage in
megabytes and run time in seconds are given. “gSpan
Orig.” column corresponds to the original
implementation and  “gSpan+PDSSP”  column
correspond to the PDSSP employed version. In Table 10
and Table 11, bold values indicate better results.

Tests are repeated for various support levels ranging from
5% to 30%. At lower support levels, the run times are
longer as expected. That's why it requires more time to
find frequent subgraphs at a low support level and
consumes more memory. Owing to the subgraph
isomorphism tests performed during the frequent
subgraph mining, run time and the allocated memory
increases exponentially with the size of the dataset.
Table 11. Comparison of Gaston and Gaston+PDSSP on

benchmark datasets.

benchmark datasets. 5 g Mem. Usage (MB's) Run Time (Sec)
. | @ [ Mem. Usage (MB's) Run Time (Sec) § S| Gaston | Gaston+ | Gaston | Gaston+
21s @ | Orig. PDSSP Orig. PDSSP
S| £ gSpan gSpan + gSpan gSpan + 5 77,01 48,48 4,54 5,8
D | Orig. PDSSP Orig. | PDSSP 10 | 5588 34,81 1,45 1,93
5 142,57 107,29 37,97 37,84 IS 15 45,33 28,62 0,87 1,13
10 113,4 85,26 11,15 11,03 Z |20 36,41 24,13 0,6 0,76
IS 15 94,33 71,18 6,66 6,44 25 30,49 20,13 0,46 0,59
Z 120 86,01 62,83 4,68 4,58 30 28,46 13,89 0,39 0,27
25 74,36 54,38 3,71 3,69 5 40,27 34,15 142,86 164,15
30 75,8 54,75 3,3 3,32 10 37,68 31,55 40,32 50,37
5 84,68 59,72 718,24 717,87 o |15 35,2 30,43 21,12 23,32
10 82,46 57,17 171,21 168,14 8 |20 33,88 29,04 12,61 15,42
n |15 80,95 55,95 77,03 77,89 25 33,33 28,74 8,42 9,83
0 20 81,14 55,38 47,72 47,37 30 32,47 27,8 6,18 7,06
25 79,54 54,51 32,56 31,72 5 53,84 34,23 1,36 1,88
30 78,79 54,39 23,47 23,28 10 48,36 29,86 0,7 0,93
5 147,82 110,12 10,93 10,7 8 15 43,55 27,47 0,51 0,66
10 96,98 71,83 5,19 511 < |20 41,06 26,25 0,4 0,52
8 15 92,86 68,18 4,1 4,02 25 35,64 23,84 0,32 0,38
< |20 86,27 65,86 3,32 3,29 30 33,14 21,71 0,25 0,05
25 78,4 58,27 2,68 2,61 o |5 1224 772,82 97,68 112,91
30 75,86 57,26 2,47 2,39 E 10 836,11 513,39 29,58 34,6
E 5 2434 1827 684,71 671,71 § 15 636,45 397,22 18,15 20,86
S 10 1699 1304 179,46 172,87 i 20 527,4 331,93 12,37 14,85
; q15 1418 1050 102,59 99,27 Q|25 427,06 279,71 9,82 12,13
< (20 1188 906,99 71,42 69,81 F 30 | 382,12 246,1 7,95 9,08
E |25 1001 765,91 58,29 57,62 Z 35 964,08 747,84 38,57 44,56
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10 | 627,82 490,56 17,79 21,15
15 | 489,02 390,57 11,21 12,73
20 | 427,09 351,73 8,22 10,06
25 | 3957 318,78 6,61 8,02
30 | 387,75 309,25 5,48 6,01
« |5 107,21 90,07 6,51 8,71
5 10 | 71,99 59,63 1,47 1,83
X |15 | 4563 38,70 0,75 0,83
> |20 | 4135 35,52 0,65 0,73
S 25| 3681 33,23 0,60 0,66
=130 37,25 32,77 0,53 0,41

Table 12 and Table 13 show the overall memory and run
time improvements achieved through our PDSSP
approach. As shown in Table 12, the memory usage is
significantly reduced in all the cases. The memory
savings range from 27.44% to 19.88% on the 6 of the 6
benchmark datasets. The average improvement is
25.66%. The average memory usage and run time
durations for all cases are given in Fig.7.

Table 12 and the charts in Fig 7. indicates that
improvement is accomplished by our PDSSP approach.
On the other hand, the run time is slightly better than the
original implementation. The average run time of 6
benchmarks denotes that our PDSSP employed gSpan
algorithm requires 1.15% less time to run.

Table 12. Memory and run time improvement for the PDSSP

employed gSpan algorithm.

Memory Usage Run Time
Dataset gSpan with gSpan with
PDSSP (%) PDSSP (%)
NCI -25,90 -1,13
DD -30,87 -0,81
AIDS -25,31 -2,06
T58KV100E100 -24,57 -2,09
T114KV200E200 -19,88 -1,72
T10KV5KE14K -27,44 0,90
AVERAGE -25,66 -1,15
Average Memory Average Run Time in
Usage in MBytes secs
(Lower is better) (Lower is better)
700 100
600 80
500
400 60
300 40
200
100 2
0 0
gSpan Orig. gSpan+ gSpan Orig. gSpan +
PDSSP PDSSP

Figure 7. Avg. Memory usage (MBytes) and avg. Run Time
durations (secs) comparison of gSpan to gSpan +
PDSSP.

Table 13. Memory and run time improvement for the PDSSP
employed Gaston algorithm.

Memory Usage Run Time
Dataset Gaston with Gaston with
PDSSP (%) PDSSP (%)
NCI -38,42 19,15
DD -14,58 17,25

AIDS -35,87 11,54
T58KV100E100 -36.70 17,55
T114KV200E200 -20,29 16,89
T10KV5KE14K -14,03 11,44
AVERAGE -26,65 15,64

The results of our second set of experiments are shown
in Table 13. As the previous experiment with gSpan with
PDSSP, the memory usage is also significantly reduced
in Gaston with PDSSP. The reduction ranges from
38.42% to 14.03% on the 6 of the 6 benchmark datasets.
The average improvement is 26.65%. The average
memory usage and run time durations for all cases of
Gaston and Gaston + PDSSP are given in Fig.8.

Average Memory
Usage in MBytes
(Lower is better)

Average Run Time in
secs
(Lower is better)

300 25
250 20
200
15
150
10
100
50 3
0 0
Gaston Orig. gSpan + Gaston Orig. gSpan+
PDSSP PDSSP

Figure 8. Avg. Memory usage (MBytes) and avg. Run Time
durations (secs) comparison of Gaston to Gaston +
PDSSP.

In this case, total run time on all experiments are slightly
worse than the original implementation. The average run
time is 15.16% longer than the original. gSpan uses
adjacency list for graph representation, whereas Gaston
uses a hash table. This approach makes the Gaston the
fastest out of 4 algorithms named MoFa, gSpan, FFSM
and Gaston [30]. We have used gSpan as “fairly
optimized” representative, whereas the Gaston has been
chosen as “well optimized” representative to demonstrate
our approach. Our PDSSP approach may cause some
delay in Gaston which is the worst case for our approach.
We may say that PDSSP approach may cause delay at
most 15% in the worst case. In general, an actual delay
will be much smaller. A delay of 15% is not bad, since
Gaston algorithm may operate up to 50% faster than
gSpan. The corresponding lines of Table 10 and Table 11
may be used to compare the run times of gSpan and
Gaston on the same dataset with the same support level.
The memory requirements of the FSM algorithms are
inversely proportional to the level of support. Almost all
results show that our proposed PDSSP implementation
consumes less memory on each support level. The
experimental results show that FSM_PDSSP can save
memory and the peak memory usage decreases
dramatically up to 38% depending on the dataset.

5. RESULTS AND DISCUSSION

Frequent subgraph mining is one of the most challenging
problems in the graph-mining domain. This article
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provides a novel approach to minimize the memory
consumption of FSM algorithms. We call our approach
as Predictive Dynamic Sized Structure Packing (PDSSP).
In order to demonstrate the efficiency of PDSSP, a
number of experiments have been carried out on both
real-life datasets and large synthetic datasets. Total run
times and the maximum memory consumption (peak
memory) are compared with the original
implementations. The experimental results clearly stated
that PDSSP can significantly decrease memory usage.
There may be some delay in the total run time of some
well-optimized FSM implementations such as Gaston.
Our PDSSP approach has two contributions. The first one
is the Dynamic Sized Integer Type (ds_Int) which is a
newly designed unsigned integer data type. The second
contribution is “Data Structure packaging” component
that uses a data structure packing technique which
changes the behaviour of the compiler.

As future work, we are planning to use Map/Reduce and
Message Passing Interface (MPI) in order to improve the
overall performance of the PDSSP embedded FSM
algorithms.
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