.w-ﬂN"VE%

Trakya Egitim Dergisi N Trakya Journal of Education
o
Cilt 10, Say1 1 - 2 Volume 10, Issue 1
Ocak 2020, 221-237 -~ January 2020, 221-237
e y

o

ISSN: 2630-6301

Gelis Tarihi: 11.06.2019

Doi: 10.24315/tred.575098

Yayina Kabul Tarihi: 12.02.2020

Arastirma Makalesi

The Influence of Pair Programming on Secondary School Students’ Confidence and
Achievement in Computer Programming

Esli Programlamanin Ortaokul Ogrencilerinin Bilgisayar Programlama Ozgiiven ve
Basarisina Etkisi

Habibe CAL!, Giilfidan CAN?

Oz: Bu arastirmada i¢ ice ge¢mis durum ¢alismasi yapilarak esli
programlamanin ortaokul &grencilerinin bilgisayar programlama
Ozgiiven ve bagarisina etkisi arastirilmigtir. Besinci sif
seviyesinde 35 6grenci bireysel (n=13) ve esli (n=22) programlama
gruplarma ayrilmis, Scratch programlama etkinlikleri kullanilarak
sekiz haftalik bir uygulama yiiriitiilmiistiir. Arastirmada nitel veri
goriismelerle, nicel veri ise Ozgiliven anketi ve rubriklerle
toplanmugtir. Veri analizi i¢in bagimsiz 6rneklemler t testi ve igerik
analizi kullanilmigtir. Uygulama sonunda esli programlama
Ogrencilerinin 6zgiiven ve basarisinin, bireysel programlama
Ogrencilerinden daha yiiksek oldugu bulunmustur. Bu c¢alisma,
ortaokul seviyesinde bilgisayar programlama 6zgiiveni ve
basarisini artirmak icin esli programlama yonteminin kullanimini
desteklemekte, ozellikle bilgisayar sayis1 yetersiz olan okullara,
rekabetci Ogrencilere ve programlamayi yeni Ogrenenlere bu
yontemi 6nermektedir.

Anahtar sozciikler: Esli programlama, bilgisayar programlama,
ozgiiven, bagari, ortaokul.

Cite this article as:

Abstract: The purpose of this embedded case study is to explore the
possible influence of pair programming on secondary school students’
confidence and achievement in computer programming. A total of 35
students in a fifth-grade class were divided into individual (n=13) and
pair programmers (n=22), who then used Scratch programming
activities during an eight week implementation. Qualitative data were
collected with interviews and quantitative data were collected with a
confidence questionnaire and rubrics. Content analysis and
independent-samples t tests were conducted for data analysis. The
results showed that pair programmers’ confidence and achievement
for computer programming was higher compared to individual
programmers after the implementation. The study supports the use of
pair programming in secondary schools, especially where there are
limited numbers of computers, competitive students, and novice
programmers to increase the confidence and achievement in computer
programming.

Keywords: Pair programming, computer programming, confidence,
achievement, secondary school..

Cal, H.& Can, G. (2020). The influence of pair programming on secondary school students’ confidence and achievement in computer

programming. Trakya Egitim Dergisi, 10(1), 221-237.

UZUN OZET

Giris

Ogrencilere bir dizi yazilimin kullanimini gretmek yerine, programlama ile problem ¢dzme
aktivitelerinin saglanmasi, onlarin biligsel olarak daha aktif, sistematik ve arastirmaci olmasina
yardimec1 olmaktadir. Ancak programlamanin zorunlu olarak miifredata eklenmesi konusunda farkl
goriisler vardir. Bilgisayar programlamada baslangic seviyesinde olan Ogrenciler, programlama

kavramlarim1 anlamakta, hatalarini

diizeltmekte ve karmagik programlar yaratmakta zorluk

cekmektedirler. Bu sebeple cocuklarin programlamayi kolayca 6grenebilmesi igin Scratch gibi basit ve
gorsel programlama ortamlart olusturulmus ve farkli 6gretim yontemleri denenmistir. Etkili
yontemlerden biri olan esli programlamada iki &grenci bir bilgisayarda g¢alismakta, biri kodlari
olustururken digeri kodlar1 gézlemleyip esine yardimc1 olmaktadir. K-12 alaninda yapilan arastirmalar
esli programlamanin problem ¢dzme ve kritik diisiinme becerilerini gelistirdigini ve programlama

1 Ogretmen, Yenikent Ilksan Ortaokulu, E-posta: habibe_krgll@gmail.com , ORCID: 0000-0001-6365-2020

2Dr. Ogr. Uyesi, Orta Dogu Teknik Universitesi, E-posta: gcan@metu.edu.tr, ORCID: 0000-0003-0337-4166.

221

mailto:habibe_krgll@gmail.com
mailto:gcan@metu.edu.tr

Habibe CAL, Giilfidan CAN

Ogrenimini giiclendirdigini raporlamistir. Ayrica, dgrenciler arasindaki etkilesimi ve sosyallesmeyi
artirarak bilgi paylasgimimi sagladigi bulunmustur. Alan yazinda esli programlamanin etkisini aragtiran
caligmalar genellikle yetiskinlerle yapilmis ve deneysel yontemler kullanilmistir. Ortaokullarda
bilgisayar sayis1 konusundaki yetersizliklere ¢oziim olabilecek ve ogrencilerinin programlama
egitimine katki saglayabilecek bu yontemin kullanimi hakkinda alan yazinda yeterince bilgi
bulunmamaktadir. Ayrica bu yontemin 6grencilerin bilgisayar programlama 6zgiliveni ve basarisina
etkisi konusunda daha fazla arastirmaya ihtiya¢ vardir. Bu sebeple bu arastirmanin amaci, esli
programlamanin ortaokul 6grencilerinin bilgisayar programlama Ozgiiven ve basarisina etkisini
incelemektedir.

Yontem

Ic ice gecmis durum calismasi yapilarak esli programlamanin etkisi derinlemesine
incelenmistir. Calismada nitel veri nicel veri ile desteklenmistir. Aragtirma i¢in ilk yazarin 6gretmen
olarak calistigi, Ankara’da diisiik gelir seviyesi olan bir ilcedeki devlet ortaokulunda, bilgisayar
programlamay1 yeni 6grenen 5. Siniflar arasindan, sinif mevcudu en diisiik olan sinif segilmistir.
Smuftaki 35 6grencinin yaglar1 10 ve 11 arasinda degigsmektedir. Bu 6grencilerden 19°u kiz, 16’s1 erkek
ogrencidir. Bilisim Teknolojileri ve Yazilim dersinin ilk haftasinda 6grenciler bireysel (n=13) ve esli
programlama (n=22) gruplarina ayrilmis, onlara ders ve uygulama hakkinda bilgi saglanmistir. Sonraki
sekiz hafta boyunca ise Scratch web sayfasinda bulunan ders planlari, etkinlikler ve rubrikler
uygulanmustir. Esli programlama grubundaki 6grencilerin rolleri her iki haftada bir degistirilmistir. iki
saatlik dersin ilk saatinde, ders planlar1 ve i¢inde bulunan etkinliklerden biri kullanilarak diiz anlatim
yontemi ile ders yapilmisg, 6grencilere etkinlik sirasinda yardim ve geri bildirim saglanmistir. Dersin
ikinci saatinde ise, ilk 10 dakika 6grencilere ikinci etkinlik ve rubrik hakkinda bilgi verilmis ve daha
sonra Ogrencilerin etkinligi 30 dakika i¢inde 6gretmen destegi olmadan tamamlamalari istenmistir. Ders
sonunda Ogretmen oOgrencilerin sorularini yanitlamis ve geri bildirim saglamistir. Uygulanan
programlama etkinlikleri haftalik olarak rubriklerle degerlendirilmis ve degerlendirmeler iki kez
yapilarak dogrulugu kontrol edilmistir. Ayrica, donem iginde iki kez diger bir Bilisim Teknolojileri ve
Yazilim 6gretmeni ayni rubrik ile bagimsiz degerlendirme yapmus, iki 6gretmenin degerlendirmeleri
tutarli bulunmustur (ilk uygulama tutarlik=0.82, ikinci uygulama=0.87). Ogrencilerin bilgisayar
programlama 6zgiivenlerini 6lgmek amaciyla iki farkli dl¢ek birlestirilerek olusturulan bir anket donem
icinde iki kez uygulanmistir (ilk uygulama Cronbach’s Alpha=0.81, ikinci uygulama Cronbach’s Alpha
=0.88). Ogretmen dénemin son {i¢ haftasinda &grenmeyi pekistirmek amaciyla etkinliklerle dersi
gbozden gegirmis ve problem yasayan ogrencilere destek saglamistir. Bu son ii¢ haftada, dgrenciler
bireysel veya esli programla yapma konusunda serbest birakilmistir. Donem sonunda goniillii 20
ogrenci ile (7 bireysel, 13 esli programlama 6grencisi) gorlismeler yapilmistir. Nicel veri analizi i¢in
bagimli 6rneklem t testi, bagimsiz 6rneklemler t testi ve Mann-Whitney U testi; nitel veri analizi igin
ise igerik analizi kullanilmustir.

Bulgular ve Tartisma

Nitel analiz sonuglari, esli programlama kullanilmasinin 6grencilerinin bilgisayar programlama
Ozgiliven ve basarisini artirdigini gostermistir. Esli programlama sirasinda 6grencilerin birbirlerine
yardimc1 olmasi, bilgi paylasimi yapmasi, hatalarini diizelterek problemleri kolayca ¢6zmesi, verilen
etkinlikleri hizl1 ve kaliteli bir sekilde tamamlamasi, onlarin programlama 6zgiivenlerini yiikseltmistir.
Esler arasindaki tartigmalar ise Ozgiivenlerinin diismesine sebep olmustur. Benzer sekilde, esler
arasinda bilgi paylasimi, yardimlasma ve yaraticilik ile 6grenciler daha dogru kodlar olusturduklarini,
etkinlikleri daha hizl1 bitirip ve daha yiiksek puanlar aldiklarini belirtmislerdir. Ayrica, programlamada
Ozgliven ve basar1 arasinda giiclii bir baglantt bulunmustur. Nicel veri analizleri bu sonuglar
desteklemistir. Bireysel ve esli programlama &grencilerinin bilgisayar programlama 6zgiiven degerleri
arasinda donem baginda 6nemli bir fark bulunmazken, donem sonunda esli programlama dgrencilerinin
anlamli bir farkla bireysel 6grencilere gore daha 6zgiivenli oldugu bulunmustur. Ayni sekilde, esli
programlama Ogrencilerinin etkinlik puanlar1 bireysel programlama dgrencilerinden anlaml bir sekilde
daha fazladir.

Bulgular, alan yazinda K-12 alaninda esli programlama i¢in yapilan az sayidaki ¢aligmanin
raporladig1 olumlu etkiler agisindan tutarlidir. Bireysel ve esli programla 6grencilerinin ayni1 ortamda
bulunmasi arastirma sonuglarini etkilemis olabilir; ancak bu durum uygulama basinda rekabetci olan ve

222

Habibe CAL, Giilfidan CAN

bireysel ¢alismak isteyen ogrencilerin uygulama sonunda birlikte ¢alisma ve yardimlasma tutumlarini
gelistirmistir. Ozellikle yetersiz sayida bilgisayar1 olan okullarda 6grenciler halihazirda bir bilgisayar
birlikte kullanmak zorunda kalmaktadirlar. Bilgisayar sayisit yeterli olsa dahi esli programlama
ogrencilerin 6grenme, 6zgiliven ve sosyallesmesini desteklemesi sebebiyle diizenli olarak kullanilmali,
boylece programlama yaparken 6grencilerin 6zerkliginin yan1 sira isbirlik¢i tutumunun da gelismesi
saglanmalidir. Bu aragtirma bir durum aragtirmasi olmasi sebebiyle sonuglarinin diger baglamlara
genellemesi smirlidir. Ayrica bu calismada esli programlama &grencilerinin etkinliklerdeki bireysel
performanslar1 dl¢tilmemistir. Farkli 6grenci gruplari ile calismanin tekrari veya bilgisayar sayisi yeterli
okullarda ters cevrilmis esli programlamanin incelenmesi faydali olabilir. Bunu yaninda, etkili
eslestirme yontemleri, esli programlama 6lgme degerlendirme yontemlerinin arastirilmasi, 6grencilerin
hata bulma ve diizeltme becerilerini gelistirmek i¢in yontemler ve 6gretmen goriislerinin arastirilmasi
alan yazina katki saglayabilir. Bu calisma, ortaokullarda bilgisayar programlama O6zgiivenini ve
basarisim artirmak i¢in esli programlama kullaniminmi desteklemekte, 6zellikle yetersiz bilgisayar sayisi
olan okullara, rekabet¢i 6grencilere ve programlamayi yeni 6grenenlere bu yontemi 6nermektedir.

1. INTRODUCTION

There has been a recent focus on computer fluency rather than computer literacy.
Providing problem-solving activities using information technology has been suggested instead
of teaching students how to use a list of software (Werner & Denning, 2009). Compared to
direct teaching, programming can help children become more cognitively active, systematic,
exploratory, and self-directed in solving problems (Maloney, Resnick, Rusk, Silverman, &
Eastmond, 2010; Papert, 1980) and it can improve mathematical and social skills (Fessakis,
Gouli, & Mavroudi, 2013). As programming gained global popularity in K-12, Turkey has also
integrated programming into secondary school curricula, as from 2012.

However, including a new topic into established curricula requires examining students’
readiness as well as the required instructional methods, and there are debates ongoing with
regards to mandating Computational Thinking into school curricula (Grover & Pea, 2013).
Novice programmers in K-12 sometimes experience difficulty with programming concepts,
correcting mistakes, or producing complex programs (Denner, Werner, & Ortiz, 2012). One of
the strategies suggested to help children learn programming more easily and effectively is the
provision of an easy to use programing environment for kids such as LOGO, Scratch, Code.org,
and Alice (Fessakis et al., 2013; Grover & Pea, 2013). Several studies reported on the cognitive
and affective advantages of using Scratch in schools (Akpinar & Aslan, 2015; Maloney et al.,
2010; Wilson & Moftat, 2010; Yiinkiil, Durak, Cankaya, & Misirli, 2017). However,
conflicting results have shown that although students’ motivation and enjoyment increased
with the use of Scratch, there were minimal cognitive improvements realized (Kalelioglu &
Giilbahar, 2014; Wilson & Moffat, 2010). One possible reason for these conflicting results
might be due to differences in the instructional methods applied. Introducing a new software
for children without the appropriate instructional method does not guarantee the realization of
the intended benefits; and it is therefore necessary to examine the effectiveness of instructional
methods for programming at the K-12 level (Fessakis et al., 2013).

Consequently, another strategy for facilitating students’ learning programming is to use
known effective instructional methods such as pair programming. Pair programming is referred
as a “modern pedagogical method of teaching” (Nancovska, Kauci¢, & Rugelj, 2008, p. 45) or
a “teaching-learning strategy” (Mentz, van der Walt, & Goosen, 2008, p. 247). It originated as
one of the major practices of Extreme Programming, which differs from traditional software
development methods in that it aims to increase the efficiency and the quality of the developed
product (Beck, 1999). Pair programming requires programmers to work collaboratively on a
task together using a single computer. Each pair has a distinct role. The “Driver” controls the
programming environment, creates codes, and tests the codes, while the “Navigator” or
“Observer” observes the codes, asks questions, brainstorms, and provides suggestions and
corrections (Williams & Upchurch, 2001). These roles should change round on regular basis

223

Habibe CAL, Giilfidan CAN

to ensure that each pair adequately experiences both roles (Umapathy & Ritzhaupt, 2017;
Williams, Wiebe, Yang, Ferzli, & Miller, 2002). Although pair programming is frequently used
with adult learners and considered as a collaborative method, it has been suggested that it can
also be applied to cooperative learning (Mentz et al., 2008).

Relevant research studies on pair programming have mostly been conducted with adult
learners. They have frequently compared individual programming and pair programming, and
reported that pair programmers performed more effectively on one or more performance
measures including successfully passing programming courses, obtaining higher grades,
completing assignments, improving problem-solving and higher-order thinking skills, learning
programming, understanding programming concepts, producing quality programs with correct
codes and fewer errors, increasing productivity, and faster programming (DeClue, 2003;
Dongo, Reed, & O’Hara, 2016; Isong et al., 2016; McChesney, 2016; McDowell, Werner,
Bullock, & Fernald, 2006; Nagappan et al., 2003; Nancovska et al., 2008; Salge & Berente,
2016; Umapathy & Ritzhaupt, 2017; Williams & Upchurch, 2001; Williams et al., 2002).
However, although pair programmers have been shown to perform better in assignments, there
has been no significant difference identified in terms of their exam scores (Nagappan et al.,
2003; Williams et al., 2002). It is therefore suggested that each pair programmer learned as
much as individual programmers instead of one pair doing all the work (Nagappan et al., 2003).

Collaborative interaction in pair programming can increase adults’ confidence in
programming (Dongo et al., 2016; McChesney, 2016; McDowell et al., 2006; Williams &
Upchurch, 2001), and they can develop more positive feelings and experiences than individual
programmers (Dongo et al., 2016; Isong et al., 2016; McChesney, 2016; McDowell et al., 2006;
Williams & Upchurch, 2001). Working as pairs can increase effort and motivation (DeClue,
2003; Nagappan et al., 2003) and feel more satisfied having a partner with whom to solve
problems through creative and efficient means (Williams & Upchurch, 2001). However,
problems with pair working have also been reported due to personality clashes, scheduling,
unequally distributed workload, difficulties in communication, and difference in skill levels
(DeClue, 2003; McChesney, 2016; Nagappan et al., 2003; Nancovska et al., 2008).

Compared to extensive literature on adult pair programmers, few studies have explored
pair programming in schools. For middle school female students using Macromedia’s Flash
MX, pair programming was found to be an effective method to increase metacognitive
activities and enhance problem-solving abilities (Werner & Denning, 2009). By engaging in
communication with their pair partner in solving problems, students detected and corrected
their errors together and helped each other learn the processes of code debugging (Werner &
Denning, 2009). Similar cognitive advantages were also reported for high school students using
Delphi programming language; with students seen to question, discuss, and solve problems
together through pair programming, their critical thinking was enhanced and programming
skills improved (Bailey & Mentz, 2017). In the Turkish literature, Demir and Seferoglu (2017)
found pair programing to be effective in allowing tacit knowledge to be open, and thereby
facilitating knowledge transfer among pairs, and increasing efficiency through faster coding
with fewer errors.

Pair programming has also been shown to facilitate interaction and socialization among
programmers (Bailey & Mentz, 2017). In one study, pair programming for sixth-grade students
using Alice helped students to socialize, develop friendships, and increase positive attitudes
toward programming (Zhong, Wang, Chen, & Li, 2017). It has also reportedly increased
enjoyment in coding (Demir & Seferoglu, 2017). However, conflicting results have shown that
when students work on their own computers and collaborate frequently with others, they
complete activities faster as pair programmers and face less conflicts (Lewis, 2011). Gender
has not been found to be a statistically significant factor for compatibility in pairs, confidence,
or performance; however, females were found to work more harmoniously, were more
motivated, and performed better than their male counterparts (Zhong et al., 2017).

224

Habibe CAL, Giilfidan CAN

Most research reported in the literature have been experimental studies conducted with
adults of varying age and programming expertise, while only a few studies have examined K-
12 application of this method. Moreover, it is questionable whether or not the available studies
were conducted based on the proper implementation of pair programming (Umapathy &
Ritzhaupt, 2017). Examining the factors influencing the confidence and achievement of the
students using pair programming can help teachers, curriculum developers, and educators to
make better informed decisions regarding the use of this method within secondary school
programming courses. Also, due to a lack of computers in some schools in Turkey, the use of
this method has the potential to alleviate the problem while improving students’ attitudes
towards working and learning together. Therefore, it is crucial to understand how pair
programming influences secondary school students’ confidence and achievement in
programming through in-depth exploration.

2. METHODOLOGY
2.1. Research Design

The main research question of this study is “How does the application of pair programming
influence the confidence and achievement level of secondary school students in computer
programming?” Embedded case research design was chosen for in-depth exploration of the research
guestion within a real environment (Yin, 2003). The collected qualitative data were supported by
quantitative data for the purposes of triangulation. Instead of only focusing on pair programmers, the
current study intended to also deeply understand both pair and individual programmers’ experiences
within the same fifth-grade class, and to reveal factors relating to their confidence and achievement.

2.2. Context

The context of the study is representative of many urban public secondary schools with limited
resources in Turkey. Based on the records of the counseling service in the school where the data were
collected for this study, most of the students were from low income families, with parental salaries
below the poverty line. In 2017, when the data were collected, the selected school had 1,207 secondary
school students with an average class size of 40 students. Each classroom was equipped with a
smartboard that included an Internet connection. The school had one computer laboratory that contained
one smartboard and 27 computers with an Internet connection. Most of the computers were running on
Windows XP operating system, whist a few had Windows 7 with a 2GB memory. Prior to the
implementation of this research, the students worked in pairs, but only due to necessity based on the
school’s limited number of computers.

In Turkey, secondary school refers to students typically aged nine to 15 years old. An
“Information Technologies and Software” course is offered to fifth and sixth grade secondary school
students as two-hour compulsory course (Milli Egitim Bakanligi [Turkish Ministry of National
Education], 2018). While in the first semester of the fifth grade, students receive a general introduction
to programming, they start actively programming in the second semester. Therefore, the data for the
current study were collected during the second semester. The first author of the study was employed as
a teacher at the selected school, and the students were familiar with the teacher prior to the
implementation. The grading policy for the course included 50% for activities which were a part of this
research, 20% for examination, and 30% were project-related.

For the implementation of the current study, Scratch programing environment, lesson plans,
and rubrics provided on the Scratch website were all employed. Although all 10 lesson plans were
applied during the semester, only the first eight were included in the research study because the ninth
lesson plan’s activity was relatively short and the 10th was project-based (see Table 1). Each lesson
plan typically provided two or three activities. The teacher usually spent the first activity teaching and
one of the other activities for implementation. For each lesson plan, the Scratch website also provided
example rubrics with five criteria at the three levels (scored as 0 to 2 points). Therefore, the highest
achievement score from a rubric was 10 points for each activity. The Scratch website also allowed
students to share their projects within their online community; allowing novice programmers to inspect
a variety of projects and thereby also provided discussion opportunities.

225

Habibe CAL, Giilfidan CAN

2.3. Teacher’s Observations and Reflections Prior to Implementation

One semester prior to the implementation, the teacher observed that most of the fifth
grade students had acted selfishly by trying to use certain computers known to work best and
attempted to work by themselves even though there were insufficient computers for all of the
students in the class. When forced to sit together and work on a single computer, they were
mostly noncooperative and did not allow their peers use of the computer in a fair manner, and
most complained about the unfair use of the equipment. Most of the students had limited access
to computers at home and therefore wanted to use them as much as possible in class. The
teacher also observed that the students would frequently compete with each other and did not
want to help their classmates. This situation might have been related to the competitive
emphasis of the examination system within Turkish K-12 schooling. The teacher believed most
of the students were very concerned and motivated about simple grade achievement rather than
their actual learning capability or performance.

2.4. Participants

One particular school was chosen for this case study as the first author was an appointed teacher
for the Information Technologies and Software course. Purposeful sampling strategy was used to select
one case among others to reach a rich case and to reveal in-depth information. Fifth-grade students were
chosen purposefully because they are considered novice programmers. Among 12 different fifth-grade
classes, one class was chosen purposefully as there were fewer students in the class, which enabled the
better forming of both pair and individual programmers and allowed for more effective observation of
the students during the application. Among the 35 students, 32 had no prior programming experience
and the remaining three had only little according to their self-reports.

The students’ ages ranged between 10 (40%) and 11 (60%) years old, with an average
of M = 10.60. There were 16 (45.7%) male and 19 (54.3%) female students in the class. A
confidence questionnaire was administered twice during the implementation to all 35 students.
A total of 20 students in the class also volunteered to be interviewed for the study (seven male
and 13 female, seven individual programmers and 13 pair programmers), and were considered
representative to the class composition in terms of their ages, gender, and achievement scores.
In terms of the implementation’s weekly activities, four of the students (two pair programmers
and two individual programmers) had one week of absenteeism each.

2.5. Implementation and Collection of Data

After receiving the approval of the Human Subjects Ethics committee of the Middle
East Technical University, the Turkish Ministry of National Education, the principal of the
participant school, and of the students and their parents, the research was conducted for a period
of eight weeks during the second semester with a total of 35 fifth-grade students. The teacher
systematically and randomly organized the students into 11 pair programmers (22 students)
and 13 individual programmers by first randomly choosing a number in the classroom list and
then skipping two numbers.

During the first week of the semester, the teacher provided the students with an introduction to
the course, the computer laboratory rules, the Scratch website, activities, rubrics, and showed the
students some programming examples. The teacher then explained about the implementation of the
study and announced the list of individual and pair programmers. The teacher also informed the students
about the distinct roles of drivers and navigators in pair programming (see Table 1).

Table 1. Implementation and data collection process

Week Implementation Rubrics Application Other Data Collection
Week 1 Information

Week 2 Lesson Plan 1 Rubric 1 Applied

Week 3 Lesson Plan 2 Rubric 2 Applied Interrater reliability
Week 4 Lesson Plan 3 Rubric 3 Applied Confidence questionnaire
Week 5 Lesson Plan 4 Rubric 4 Applied

Week 6 Lesson Plan 5 Rubric 5 Applied

226

Habibe CAL, Giilfidan CAN

Week 7 Lesson Plan 6 Rubric 6 Applied

Week 9 Lesson Plan 7 Rubric 7 Applied Inter-rater reliability
Week 10 Lesson Plan 8 Rubric 8 Applied Confidence questionnaire
Week 11 Activity, Review, and Feedback Students’ choice Interviews

Week 12 Activity, Review, and Feedback Students’ choice Interviews

Week 13 Summary and Game Students’ choice

Throughout the implementation, for the first 40-minute sessions of each class, the teacher
provided a lesson by way of the direct instruction method utilizing Scratch lesson plans. First, the
teacher stated the objectives of the lesson, then explained and showed the first activity step-by-step
using the classroom smartboard. As the students applied the activity on their respective computers, the
teacher provided them with the necessary help, guidance, and feedback. During the second session, for
the first 10 minutes of each lesson, the teacher provided information about the activity and its rubric on
the smartboard, as well as providing directions and guidance to the class. Both groups were asked to
complete the activity within a period of 30 minutes, and without the teacher’s help. If a student became
stuck, they were permitted to use the available resources on the Scratch website. Students who
completed the activities before the end of the 30-minute period were asked to continue exploring the
Scratch programming environment. Undertaking any activities on the computers that were irrelevant to
the assigned programming activity were not permitted. During the period when the students were
working, the teacher only observed them. At the end of the 30-minute session, the teacher then answered
the students’ questions and provided feedback on their work. During a 15-minute break that followed,
the teacher also evaluated the task performance using the rubrics from the Scratch website. Within one
week and prior to the next scheduled class session, the teacher re-evaluated the students’ activities to
assure the accuracy of the scores recorded.

Pair programmers were asked to stay in the same role for periods of two weeks to adapt to each
role. The teacher kept track of switching the roles. Throughout the implementation, the teacher made
sure that each student in pair programming contributed to each activity.

The teacher administered a programming confidence questionnaire twice; once at the end of
the forth week and again at the end of the 10" week. Since the students had no prior experience in
completing a Likert-type instrument, the teacher explained how the students should complete the
guestionnaire and explained the importance for applying their honesty during each administration. The
students completed the questionnaire within a period of 30 minutes. The necessary permissions were
taken from the school for this level of duration. During the third and the ninth weeks, a second teacher
who gave the same course to a different class evaluated the participant students’ performances using
the same rubric for the purposes of interrater reliability.

For the 11" and 12" weeks of the semester, the students were permitted to select whether to
work as individual programmer or pair programmer. The teacher used the activities to reinforce learning
during these two weeks of the course and provided feedback to those students who had experienced
difficulties. Interviews were also conducted during the same two weeks at the end of the lesson, and
were audio-recorded using a digital recording device with the permission of the students. It was
observed that the students exhibited no discomfort due to the presence of the recording device. The
interviews were conducted individually in the computer laboratory or in the school’s library. To make
the students feel comfortable, a series of warm-up questions were asked by the interviewer. The
interviews each lasted for an average of M=6.37 (SD=1.50) minutes. During the final week of the
course, the teacher provided a review and recap lesson and permitted the students to play games that
they had created themselves using Scratch.

2.6. Instruments

For this case study research, several types of data sources were employed including audio-
recordings of the students’ interviews, results from a twice administered confidence questionnaire, and
the students’ achievement scores based on rubrics on the Scratch website.

Confidence questionnaire: Due to nonexistence of a comprehensive scale to measure student
programming confidence, items from two different scales were combined. From the “Computer Science
Attitude Survey” using five-point, Likert-type items, 11 of the items were selected to measure the
students’ confidence in learning computer science and computer programming (Wiebe, Williams, Yang,
& Miller, 2003). The Cronbach’s Alpha internal consistency coefficient was found to be .91 for the

227

Habibe CAL, Giilfidan CAN

scale (Wiebe, Williams, Yang, & Miller, 2003). Minor revisions were applied to some of the selected
scale items in terms of changing the phrase “computer science” to “programming”.

The second scale that was used was “The TIMSS 2011 Students Confident in Mathematics
Scale” and included nine items aimed at eight-grade students (Martin & Mullis, 2012). The scale’s
Cronbach’s Alpha coefficient was found to be .87 for the context of Turkey (Martin & Mullis, 2012).
Due to the relationship between mathematics and programming (Papert, 1980), all nine of the scale’s
items were included in the confidence questionnaire created for application within the current study,
with minor changes applied by substituting the word “Programming” for “Mathematics”.

As both of the aforementioned scales were developed for the English Language, items of the
newly creatd confidence questionnaire were translated into Turkish by the researchers of this study, and
then the translations reviewed by two English language experts familiar with the subject of
programming. The translated confidence questionnaire was then tested with four additional students
with similar educational levels and backgrounds as the participants of the study. Using the think-aloud
procedure, the four reviewing students provied feedback about the questionnaire items’ clarity. After
content validity review of the final questionnaire with two faculty members from the Computer
Education and Instructional Technology (CEIT) program, the items were approved as sufficiently
representative to measure secondary school students’ programming confidence level. The Cronbach
Alpha coefficient of the final 20-item questionnaire was found to be .81 for the first implementation
and .88 for the second implementation.

Interview Protocol: A semi-structured interview protocol with five primary questions was
developed by the researchers of the current study to explore the participant students’ opinions regarding
their experiences, perceived confidence and achievement in programming throughout the
implementation. To test the clarity of the questions, four students from the sixth grade at the same
participant school were interviewed. After the interview protocol was revised for its clarity, bias, and
the target students’ age level, it was further examined in terms of its content validity by a computer
teacher and two faculty members from the CEIT department.

Rubrics: The example rubrics were taken from the Scratch website and slightly revised in
accordance with the activities selected for this study’s implementation, and were then examined by two
content experts from the CEIT department. The rubrics were subsequently translated into the Turkish
language and approved by two language experts familiar with programming. The two computer teachers
who conducted the interrater reliability for the current study then reviewed and discussed the rubric
items prior to implementation to ensure they understood the same criteria while evaluating the students’
activities. The two teachers’ scores were found to be consistent for both application (82% and 87%
consistency).

2.7. Data Analysis

For the analysis of the interviews, the audio recordings of the interviews were
transcribed verbatim, and then analyzed according to themed content analysis (Yildirrm &
Simsek, 2016). Codes were created, classified, and then themes developed, organized, and
defined. Among the 20 interviews that were conducted, two of the interviews (10%) were
coded independently by two coders and their categories compared and combined through
mutual discussion. Data saturation has deemed to have been achieved following analysis of
about half the interview transcripts. For the analysis of the quantitative data, descriptive
statistics, independent-samples t-test, and Mann-Whitney U Test were conducted.

2.8. Trustworthiness

In terms of assessing the study’s credibility (Lincoln & Guba, 1985) the implementation
duration lasted for a period of eight weeks, and a variety of data were collected for the purposes
of triangulation. Two researchers from the CEIT department and one computer teacher
evaluated and discussed the research and provided feedback to the researchers. For
transferability, thick descriptions about the context and the implementation were used in
reporting the study. For dependability, interrater reliability assessment was conducted. For
confirmability, the teacher maintained a diary throughout the implementation semester to
record all the process in detail and in a reflexive manner. A variety of data were collected for

228

Habibe CAL, Giilfidan CAN

the confirmation of the study’s results, and the whole research process was reported in detail.
Throughout the research process, the teacher attempted to control any self-bias biases and
encouraged the participant students to provide honest responses.

3. QUALITATIVE DATA ANALYSIS RESULTS

3.1. Factors Influenced Programming Confidence

Both groups attributed their increased or decreased confidence to similar factors. Pair
programmers frequently reported the advantages of cooperation, while individual programmers
attributed their decreased confidence to being unsupported when they experienced difficulties. The pair
programmers reported that when they encountered problems during programming, being in pairs
increased their confidence (see Table 2). Their confidence increased toward programming when they
helped each other to complete the activities faster and more effectively, they shared knowledge,
corrected their mistakes, and found solutions easily together through brainstorming during the problem-
solving process. For individual programmers on the other hand, finding solutions through a series of
trial and error were reported to be difficult and that they often could not spot their own mistakes. They
felt that they needed help from their teacher, classmates, or other resources to complete the activity.
Table 2. Factors influenced programming confidence

Pair programmer confidence Pair n Individual programmer confidence Indiv. n Total
A. Problem Solving Process A. Problem Solving Process

Finding solutions (easy) 8 Finding solutions (hard) 7 15
Helping each other 13 Helping each other 0 13
Sharing knowledge 10 Sharing knowledge 0 10
Correcting mistakes 7 Correcting mistakes 0 7
Knowledge source for problem solving 0 Knowledge source for problem solving 5 5
B. Programming Process B. Programming Process

Task completion time (fast) 7 Task completion time (slow) 7 14
Learning programming (high) 9 Learning programming (low) 4 13
Quality of product (high) 4 Quality of product (low) 5 9
Motivation (high) 5 Motivation (low) 3 8
C. Being in Pair or Individual C. Being in Pair or Individual

Programming ability differences (good) 7 Programming ability differences 0 7
Heavy workload 0 Heavy workload 7 7
Disagreements (high) 6 Disagreements (low) 0 6

In terms of programming process, the pair programmers’ confidence in programming increased
as they learned programming, increased in motivation, and completed their assigned activities both
quickly and to a high quality. Similarly, when individual programmers completed the activities very
slowly or not at all within the class duration, when they felt they could not learn much about
programming, when they produced low quality products, or when they felt unmotivated due to these
sorts of difficulties, their confidence dropped as a result. Pair programmers reported that having a more
knowledgeable pair partner made them feel more confident. However, disagreements between pairs
negatively influenced their confidence. For individual programmers, their confidence dropped as they
felt overwhelmed with the workload.

My friend contributed to me in programming. With my friend we completed our coding quicker

and faster... I was able to ask my friend when I made a mistake. Even in difficult work we
believed we completed our work quicker together, and so we believed in ourselves. (Pair
programmer)

At the beginning of the programming course | had some self-confidence. And it made
me happy to sit at the computer by myself and use the computer. But once | did coding
in Scratch, | felt a lack of confidence toward programming. When | encountered
problems, I had difficulty with codes to solve them... I tried to solve by trial and error;
some worked, but some didn’t... As the coding got harder, my success dropped... When
I couldn’t find the solutions, my confidence dropped too. (Individual programmer)

229

Habibe CAL, Giilfidan CAN

3.2. Factors Influenced Programming Achievement

According to the pair programmers, sharing knowledge, getting help from their pair
partners, testing codes together, and being creative by brainstorming with their partner were
methods that contributed to achievement (see Table 3). Access to resources were important for
individual programmers’ success. In terms of achievement, the students frequently reported the
importance of working codes, grades, completion duration, and required effort.

Individual programmers reported that the required effort for success was higher for
them compared to pair programmers who completed activities relatively faster, with fewer
coding errors, and therefore received higher grades. Individual programmers reported having
several coding errors, completing the activities very slowly, and thereby receiving lower
grades.

The interview results showed that the students’ confidence and achievement were
closely linked, and that the students’ emotional state also played a role. Pair programmers
frequently reported positive emotions such as feeling confident, relaxed, productive, motivated,
friendly, and having fun. However, the emotions stated by the individual programmers were
mostly negative, including feeling diffident, panicked, unproductive, unmotivated, isolated,
frightened, and even desperate.

The coding started to get harder, and everything I did turned out wrong... I couldn’t
maintain my focus and my mind would drift. I couldn’t solve the problems when I was
alone... My self-confidence dropped. I had a hard time as I made mistakes. I wished I'd
worked with my friends to help me find my mistakes by talking to them. I would have
had more self-confidence and be more successful if my friend could have told me what
to do. (Individual programmer)

While we were working together with my friend, we did better by combining our
knowledge. I added the codes, and my friend checked the accuracy of the codes... My
friend corrected my mistakes and checked my work. This made us more successful as a
team. (Pair programmer)

Table 3. Factors influenced programming achievement

Pair programmer achievement Pair n Individual programmer achievement Indiv.n Total
A. Method used for Achievement A. Method used for Achievement

Knowledge sharing 13 Knowledge sharing 0 13
Getting help 13 Getting help 0 13
Testing codes together 8 Testing codes together 0 8
Access to resources 0 Access to resources 5 5
Being creative 4 Being creative 0 4
B. Programming Process B. Programming Process

Amount of coding errors (low) 10 Amount of coding errors (high) 6 16
Activity completion duration (fast) 7 Activity completion duration (slow) 5 12
Grades for activities (high) 7 Grades for activities (low) 5 12
Required effort to achieve (low) 0 Required effort to achieve (high) 6 6

3.3. Final Observations and Reflections of the Teacher

The teacher observed that the students liked the Scratch programing interface and
enjoyed working with it during the implementation. Compared to the previous semester prior
to the implementation, most of the students’ interviews revealed a significant change of attitude
from their working individually to collaboratively. Instead of their previous attempt to utilize
the few computers for themselves, they wanted instead to work in pairs, both for their
achievement and also for their self-confidence. The teacher also observed that even though
some of the individual programmers experienced difficulties, they continued to work hard to
complete all of the activities instead of just giving up. The students’ competitive attitude was
seen to continue to be exhibited. In each lesson, the students still competed to achieve the best

230

Habibe CAL, Giilfidan CAN

score and to have the fastest task completion time. The teacher still felt that the students were
focused more on achieving their course grades than in the learning of programming, and that
the students’ confidence was still linked to realizing high grades from the course.

4. QUANTITATIVE DATA ANALYSIS RESULTS

To support the qualitative data of the current study, quantitative data were also collected. The
data were analyzed using IBM SPSS v22.0 statistical analysis software. The data were prepared for
guantitative analysis and negative items were reverse-coded. There were no missing data found in the
confidence questionnaires returned, but there were four instances of missing values in the achievement
data due to four students’ absenteeism (two pair programmers and two individual programmers). These
missing values were replaced with the sample mean, for the sake of data completeness. Normality
assumption was met for the confidence questionnaire data and for the individual programmers’
achievement data, but not for the pair programmers’ achievement data based on Shapiro-Wilk test, Q-
Q plots, and histograms. Both t-tests and nonparametric procedures were applied and the results
compared as the sample sizes between two groups were not equal and the sample size considered to be
small.
4.1. Programming Confidence

The differences in mean scores in the confidence questionnaire data between individual
programmers and pair programmers were analyzed for both applications of the questionnaire
using independent-samples t-test and Mann-Whitney U Test. Independent-samples t-test
results showed that, for the first application of the confidence questionnaire there was no
significant difference found between the scores of the individual and pair programmers (t(33)
= .13, p = .90) (see Table 5). In the second application, however, there were significant
differences found between the mean scores of the individual and pair programmers (t(33) = -
2.76, p < .05), with a large effect size (eta square = .19). Mann-Whitney U Test confirmed
these results (see Table 9).

Table 5. Independent-samples t-test results for confidence questionnaire data

M (SD) M (SD) Levene’s Test for t-test for Equality of Means
Eq. of Variances
o . . Sig. (2- .

Individ. Pair F Sig. t df tailed) M Diff.
Confidence Equal 3.13 3.11
Questionnaire variances (-:97) (1.04) .07 .80 13 33.00 .90 .02
Application 1 assumed
Confidence Equal 2.93 3.29
Questionnaire variances (5g) (1.03) 14 71 -2.76 33.00 .01 -.36

Application 2 assumed

Descriptive analysis of the confidence questionnaire data is presented in Table 6. As can be
seen, the participants’ ratings mostly showed positive confidence scores. They were most confident
about learning programming and performing well on the programming course. Their confidence ratings
for advanced programming or difficult programming problems were also shown to be positive.

231

Table 6. Confidence questionnaire results for two implementations

Habibe CAL, Giilfidan CAN

Individual Pair
programmers programmers
Confid. 1 Confid. 2 Confid. 1 Confid. 2
M (SD) M (SD) M (SD) M (SD)
1. lamsure that | could do advanced work in computer 4.15(.89) 3.30(.85) 3.86(.71) 4.40(.66)
science.
2.l am sure that I can learn programming. 461(.76) 3.76(92) 4.54(.85) 4.63(.58)
3. Ithink I could handle more difficult programming 3.84(1.14) 3.07(1.18) 3.68(.94) 3.90(.75)
problems.
4. | can get good grades in programming course. 4.15(1.06) 3.61(.65) 4.04(.84) 4.54(.50)
5. I have a lot of self-confidence when it comes to 4.23(1.01) 3.76(.92) 4.40(.73) 4.27(.93)
programming.
6. I1am no good at programming. 1.53(.66) 2.30(1.18) 1.95(1.04) 2.31(1.46)
7. 1 do not think I could do advanced programming. 3.15(1.28) 2.84(1.21) 2.63(1.17) 2.36(1.09)
8. I am not the type to do well in computer 2.69(1.37) 2.23(1.36) 1.90(1.01) 2.22(1.23)
programming.
9. For some reason even though | work hard at it, 2.00(1.35) 2.30(1.10) 2.36(1.49) 2.13(1.32)
programming seems unusually hard for me.
10. Most subjects | can handle O.K., but I have a knack 3.07(1.65) 3.38(1.19) 2.50(1.30) 2.36(1.36)
for flubbing up programming problems.
11. Programming has been my worst subject. 1.84(1.28) 2.15(1.06) 1.77(1.19) 2.22(1.30)
12. 1 usually do well in programming. 3.69 (1.25) 3.38(1.32) 4.36(.90) 4.22(1.19)
13. Programming is more difficult for me than for many 2.46 (1.45) 2.30(1.03) 2.27(1.12) 2.50(1.14)
of my classmates.
14. Programming is not one of my strengths. 2.30(1.31) 2.38(.96) 2.13(.94) 250(1.62)
15. 1 learn things quickly in programming. 3.69 (1.54) 3.46(1.19) 4.09(1.01) 4.22(.75)
16. Programming makes me confused and nervous. 2.15(1.06) 2.23(.83) 1.81(95) 2.36(1.25)
17. 1 am good at working out difficult programming 3.53(1.12) 3.00(1.15) 3.63(1.00) 4.09 (1.06)
problems.
18. My teacher thinks I can do well in programming 4.15(.89) 3.38(.86) 4.27(.82) 4.31(.94)
lessons with difficult materials.
19. My teacher tells me | am good at programming. 3.61(1.12) 3.30(.63) 3.95(.95 4.18(1.05)
20. Programming is harder for me than any other subject. 1.69 (.94) 2.38(.86) 2.04 (1.43) 2.00(1.19)
Average 3.13(97) 293(.58) 3.11(1.04) 3.29(1.03)

Note: 1. Strongly Disagree, 2. Disagree, 3. Neutral, 4. Agree, 5. Strongly Agree.
4.2. Programming Achievement

The individual programmers’ mean scores for achievement data ranged between M =
6.23 (SD = 1.87) and M = 9.46 (SD = .77). For the pair programmers, the mean scores for
achievement data ranged between M = 9.81 (SD = .39) and M = 9.36 (SD = 1.25) (see Table
7). While the pair programmers’ scores fluctuated around a score of 9, the individual
programmers scores were around 8 and then dropped towards the end of the semester. The
main difference between the mean scores of the two groups was observed for Activity 7, which
required the students to design a game.

Table 7. Descriptive statistics for achievement

Activity Act 1 Act 2 Act 3 Act 4 Act 5 Act 6 Act 7 Act 8 Total
Indiv. programmers 7.92 8.53 8.00 9.46 8.53 7.76 6.23 7.69 63.38
M (SD) (1.38) (1.61) (1.52) (.77) (.96) (1.53) (1.87) (1.31) (6.47)
Pair programmers 9.72 9.81 9.63 9.36 9.45 9.72 9.54 9.54 76.27
M (SD) (.45) (.39) (.65) (1.25) (1.01) (.45) (.80) (.50) (4.33)
Mean difference 1.80 1.28 1.63 -.10 .92 1.96 331 1.85 12.89

232

Habibe CAL, Giilfidan CAN

Homogeneity of variance assumption was not met based on Levene’s Test for the
achievement rubric (F = 6.72, and p =.01) (see Table 8). Independent-samples t-test showed
that significant difference (t(18.45) = -6.38, p = .00) was found between the individual
programmers’ achievement mean scores (M = 63.38, SD = 6.47) and pair programmers’
achievement mean scores (M = 76.27, SD = 4.33), with a large effect size (eta square= .55).
Mann-Whitney U Test confirmed these results (see Table 9).

Table 8. Independent-samples t-test results for achievement scores

Levene’s Test for Eq. of t-test for Equality of Means
Variances
F Sig. t df Sig. (2-tailed) M Diff.
Equal variances assumed 6.72 .014 -7.06 33 .00 -12.88
Equal variances not assumed -6.38 18.45 .00 -12.88

Table 9. Mann-Whitney U Test for programming confidence and achievement

n M Rank Sum of z p Conclusion t-test

. _ _ Ranks
Qe pOAL e IR am e e A
Quosowars weasl 1 2R TR e o soen Agees
A ol 13 82 150 aon o0 s Aged

5. DISCUSSION AND CONCLUSION

In this study of fifth-grade secondary school students who worked as pair programmers or
individual programmers for an eight-week implementation with Scratch, the pair programmers showed
higher levels of confidence and achievement compared to the individual programmers. Quantitative and
qualitative data analysis results both showed that while the students’ confidence toward programming
was not found to be significantly different between the two groups at the beginning of the semester, as
the semester progressed and the programming activities became more complicated, the individual
programmers started to lose confidence, while the pair programmers gained in confidence. In terms of
achievement, the pair programmers received relatively higher scores than the individual programmers.

The results of the current study were consistent with the other limited number of studies in the
literature, in that pair programming positively affected increased confidence in programming (Dongo
et al., 2016; McChesney, 2016; McDowell et al., 2006; Williams & Upchurch, 2001). The main factors
that increased the pair programmers’ confidence in programming in the current study were solving
problems easily, helping each other, sharing knowledge, correcting each other’s mistakes, completing
the activities quickly and to a good quality, increased learning, increased motivation, and working with
a peer who had a higher programming ability. Similar to most studies in the literature based on K-12
students, pair programmers’ achievement in programming was also positively influenced by pair
programming. Their achievement increased when they shared knowledge, received help, tested codes
together, were creative, had fewer coding errors, and completed tasks quickly (Bailey & Mentz, 2017,
Demir & Seferoglu, 2017; Werner & Denning, 2009). Therefore, this current study supports that pair
programming is an effective method to increase the confidence and achievement of secondary school
students in computer programming.

Having pair programmers and individual programmers working alongside each other
in the same learning environment might have influenced the validity of the current study’s
results. The pair programmers’ increased confidence and achievement might also have
negatively influenced the individual programmers’ confidence and achievement. However, the
reverse scenario may also have been possible if the individual programmers had outperformed

233

Habibe CAL, Giilfidan CAN

the pair programmers. As seen in the literature, pair programmers did not always report better
performance over individual programmers (Salge & Berente, 2016). However, as an advantage
of having both pair and individual programmers working alongside each other in the same
environment, almost all of the students in the current study showed a preference for working
cooperatively for the remainder of the semester following the implementation, while they were
observed to be highly individualistic during the previous semester. This suggests that, for a
competitive group of students with limited available educational resources, pair programing
can help students to develop more positive attitudes toward cooperation, sharing, and learning
from each other. If young students’ preference for competition needs to be satisfied, competing
teams instead of competing individually is also an option (Denner et al., 2012; Fessakis et al.,
2013) to be considered at the design stage of future implementations.

The interview results showed a strong mutual interaction between the confidence and
achievement levels of the students for programming. The students in this study reported that they could
be successful by attentively listening to the first lesson and then reviewing at home; however, they
mostly preferred to work in pairs because they considered the presence of a peer to increase their levels
of confidence and achievement (Dongo et al., 2016; McChesney, 2016; McDowell et al., 2006;
Williams & Upchurch, 2001). This suggests that pair programming can be beneficial for novice
programmers in secondary schools to increase their confidence in learning programming during their
programming education.

The application of pair programming can be arranged based on the number of available
computers in the classroom or laboratory environment. It was reported in the literature that when each
student worked on their own computers and collaborate frequently, they completed the activities faster
than pair programmers who worked together throughout each task (Lewis, 2011). If there are adequate
numbers of computers for each student in the class, another alternative is to use inverted pair
programming, in which pairs design the program together, then split to work individually during the
implementation, and then come together again as a pair for the testing stage (Swamidurai & Umphress,
2015). However, when there is an inadequate number of computers, the students may have to sit in pairs
just from a numerical and practical perspective (Demir & Seferoglu, 2017). Therefore, it is
pedagogically more advantageous to use pair programming by applying the procedures and practices to
make this method more effective, than simply leaving the collaboration between pairs to chance. The
formation can be regularly changed between pair programming and individual programming to provide
students with both experiences of working autonomously and collaboratively. So as to make sure each
student in the pairs adequately learns the prescribed level of programming, they can be asked to
undertake a similar activity on their own after the application of pair programming.

The matching of pairs needs to be addressed with due care while applying pair programming.
In the literature, the problems reported for adult pair programmers such as scheduling, unequal
workload, differences in skill levels, or difficulties in communication (DeClue, 2003; Isong et al., 2016;
McChesney, 2016; Nagappan et al., 2003; Nancovska et al., 2008) were not observed in the current
study. Nancovska et al. (2008) reported that most of the disadvantages associated with pair
programming related to the professional software environment may not appear as they are largely
irrelevant to the educational setting. As the students in the current study were all novice programmers
enrolled at the same secondary grade, there was not much difference in terms of their programming
expertise or age level. The disagreements they did have were mostly minimal and related to the design
of the program instead of the actual coding. Although pair programming can facilitate positive emotions
(Demir & Seferoglu, 2017; Zhong et al., 2017), disagreements in the pairs had a decreasing effect on
their confidence. In the current study, the students’ interviews did not show any indication that gender
was an important factor (Zhong et al., 2017). However, gender composition of programming pairs could
also be examined at the K-12 level.

In the current study, as the activities became more difficult, both groups started to make
more mistakes and experienced difficulties in performing code debugging. However, the pair
programmers were able to correct more of their mistakes, whilst the individual programmers
sometimes struggled to complete the activities. It is possible, however, that the students’
debugging capabilities in both groups were low due to their being novice programmers.

234

Habibe CAL, Giilfidan CAN

Therefore, it is advisable to teach students debugging strategies prior to the implementation
process and to provide them with more extensive resources throughout the implementation.

In order for pair programming to be successful, it is important that students fully
understand the roles and the procedures. Therefore, aside from teachers’ presentations about
these roles and procedures, a small pamphlet or handbook for pair programming could be
provided to the participating students (Zhong et al., 2017). Similarly, for individual
programmers, a variety of resources and step-by-step self-learning materials could be provided.
The assessment and evaluation methods for pair programming should also be examined in
future studies for secondary school students (Williams et al., 2002).

In the current study, the students mostly focused on task completion duration. This was likely
due to the tasks needing to be completed within a 30-minute deadline. However, spending longer
periods on programming may increase students’ understanding and thereby improve the quality of the
developed product (Salge & Berente, 2016). With pair-explanations, code reviews, and reflections,
students can learn better during pair programming (Williams & Upchurch, 2001). However, within a
limited class time it may not be feasible; teachers may still attempt to concentrate more on motivating
students through increased reflection and pair-explanation rather than simply targeting students to
complete the activities as quickly as possible.

Pair programming has been associated with problems related to increased noise levels
in computer laboratories (Isong et al., 2016). However, on the positive side, pair programming
can help teachers to manage lessons better with peers helping each other (Nagappan et al.,
2003). With simple questions being handled within pairs, the teacher can use their time better
in addressing the more significant questions (Nagappan et al., 2003). Moreover, with pair
programming, fewer assignments need to be evaluated by the teacher, instances of cheating
being reduced (Williams & Upchurch, 2001), and teacher stress diminished as a result
(Williams et al., 2002). Therefore, the current study supports the use of pair programming to
help teachers as well as their students. Exploring teachers’ perspectives on pair programming
can be valuable.

The current research was designed and conducted as a case study, and therefore the
results may not be generalizable to other contexts or student groups. One limitation of the
current study is that pair programmers’ individual performances were not measured. The study
instead attempted to reveal any differences in achievement and confidence scores between two
distinct groups. Moreover, due to the age level of the students, the participants of the current
study did not provide in-depth explanations during their interviews. The application of different
research designs for the purposes of generalization could help future studies to be comparable
to the current study. Moreover, the use of pair programming with other programming
environments, different participant age groups, and different expertise level students in other
contexts could provide a valuable addition to the literature. Compared to pair programming
with adult software developers, whose focus is largely on software quality, cost, and
development duration, the current study contributes to the literature by providing an educator’s
perspective that could guide further studies in applying this method to other K-12 educational
contexts.

6. REFERENCES

Akpinar, Y., & Aslan, U. (2015). Supporting children’s learning of probability through video game
programming. Journal of Educational Computing Research, 53(2), 228-259.
doi:10.1177/0735633115598492

Bailey, R., & Mentz, E. (2017). The value of pair programming in the IT classroom. Independent Journal of
Teaching and Learning, 12(1), 90-103.

Beck, K. (1999). Embracing change with extreme programming. Computer, 32(10), 70-77.
doi:10.1109/2.796139

DeClue, T. H. (2003). Pair programming and pair trading: Effects on learning and motivation in a CS2 course.
Journal of Computing Sciences in Colleges, 18(5), 49-56.

Demir, O., & Seferoglu, S. S. (2017, October). Isbirlikli problem ¢ézmenin kodlama ogretimine yansimasi
olarak esli kodlamanin incelenmesi. Paper presented at the International Instructional Technologies &

235

Habibe CAL, Giilfidan CAN

Teacher Education Symposium (ITTES 2017), Izmir, Turkey. Abstract retrieved from
https://www.researchgate.net/publication/321824838_Ishirlikli_Problem_Cozmenin_Kodlama_Ogreti
mine_Yansimasi_Olarak_Esli_Kodlamanin_Incelenmesi

Denner, J., Werner, L., & Ortiz, E. (2012). Computer games created by middle school girls: Can they be used to
measure understanding of computer science concepts? Computers & Education, 58(1), 240-249.
d0i:10.1016/j.compedu.2011.08.006

Dongo, T., Reed, A. H., & O’Hara, M. (2016). Exploring pair programming benefits for MIS majors. Journal of
Information Technology Education-Innovations in Practice, 15, 223-239. doi:10.28945/3625

Fessakis, G., Gouli, E., & Mavroudi, E. (2013). Problem solving by 5-6 years old kindergarten children in a
computer programming environment: A case study. Computers & Education, 63, 87-97.
d0i:10.1016/j.compedu.2012.11.016

Grover, S., & Pea, R. (2013). Computational thinking in K-12: A review of the state of the field. Educational
Researcher, 42(1), 38-43. doi:10.3102/0013189x12463051

Isong, B., Moemi, T., Dladlu, N., Motlhabane, N., Ifeoma, O., & Gasela, N. (2016). Empirical confirmation of
pair programming effectiveness in the teaching of computer programming. In H. R. Arabnia, L.
Deligiannidis, & M. Yang (Eds.), Proceedings of the International Conference on Computational
Science and Computational Intelligence (CSCI) (pp. 276-281). IEEE/ Conference Publishing Services
(CPS). do0i:10.1109/csci.2016.59

Kalelioglu, F., & Giilbahar, Y. (2014). The effects of teaching programming via Scratch on problem solving
skills: A discussion from learners’ perspective. Informatics in Education, 13(1), 33-50.

Lewis, C. M. (2011). Is pair programming more effective than other forms of collaboration for young students?
Computer Science Education, 21(2), 105-134.

Lincoln, Y. S., & Guba, E. G. (1985). Naturalistic inquiry. Newbury, CA: Sage.

Maloney, J., Resnick, M., Rusk, N., Silverman, B., & Eastmond, E. (2010). The Scratch programming language
and environment. ACM Transactions on Computing Education (TOCE), 10(4), 16.
d0i:10.1145/1868358.1868363

Martin, M. O., & Mullis, I. V. S. E. (2012). Methods and procedures in TIMSS and PIRLS 2011: The TIMSS
2011 students confident in mathematics scale, eighth grade. Retrieved from
https://timssandpirls.bc.edu/methods/pdf/T11_G8_M_Scales_ SCM.pdf

McChesney, 1. (2016). Three years of student pair programming: Action research insights and outcomes
In Proceedings of the 47th ACM Technical Symposium on Computing Science Education (SIGCSE)
(pp. 84-89). New York, NY: ACM. doi:10.1145/2839509.2844565

McDowell, C., Werner, L., Bullock, H. E., & Fernald, J. (2006). Pair programming improves student retention,
confidence, and program quality. Communications of the ACM, 49(8), 90-95.
d0i:10.1145/1145287.1145293

Mentz, E., van der Walt, J. L., & Goosen, L. (2008). The effect of incorporating cooperative learning principles
in pair programming for student teachers. Computer Science Education, 18(4), 247-260.
d0i:10.1080/08993400802461396

Milli Egitim Bakanlig1. (2018). Bilisim teknolojileri ve yazilim dersi 6gretim programi. Ankara: Milli Egitim
Bakanlig1. Retrieved from http://mufredat.meb.gov.tr/ProgramDetay.aspx?P1D=374

Nagappan, N., Williams, L., Ferzli, M., Wiebe, E., Yang, K., Miller, C., & Balik, S. (2003). Improving the CS1
experience with pair programming. SIGCSE Bulletin, 35, 359-362. doi:10.1145/792548.612006

Nancovska, I., Kauci¢, B., & Rugelj, J. (2008). Pair programming as a modern method of teaching computer
science. International Journal of Emerging Technologies in Learning, 3(S2), 45-49.

Papert, S. (1980). Mindstorms: Children, computers, and powerful ideas. New York: Basic Books.
d0i:10.1007/978-3-0348-5357-6

Salge, C. A. L., & Berente, N. (2016). Pair programming vs. solo programming: What do we know after 15
years of research? In T. X. Bui & R. H. Sprague, Jr (Eds.), Proceedings of the Hawaii International
Conference on System Sciences (pp. 5398-5406). IEEE. doi:10.1109/HICSS.2016.667

Swamidurai, R., & Umphress, D. (2015). Inverted pair programming. In IEEE SoutheastCon-Proceedings.
IEEE. doi:10.1109/SECON.2015.7133010

Umapathy, K., & Ritzhaupt, A. D. (2017). A meta-analysis of pair-programming in computer programming
courses: Implications for educational practice. ACM Transactions on Computing Education, 17(4),
Article 16. doi:10.1145/2996201

Werner, L., & Denning, J. (2009). Pair programming in middle school: What does it look like? Journal of
Research on Technology in Education, 42(1), 29-49. doi:10.1080/15391523.2009.10782540

Wiebe, E., Williams, L., Yang, K., & Miller, C. (2003). Computer science attitude survey (Report No. TR-2003-
01). Raleigh, NC: NC State University.

Williams, L., & Upchurch, R. L. (2001). In support of student pair-programming. SIGCSE Bulletin, 33(1), 327-
331. doi:10.1145/364447.364614

236

Habibe CAL, Giilfidan CAN

Williams, L., Wiebe, E., Yang, K., Ferzli, M., & Miller, C. (2002). In support of pair programming in the
introductory computer science course. Computer Science Education, 12(3), 197-212.
d0i:10.1076/csed.12.3.197.8618

Wilson, A., & Moffat, D. C. (2010). Evaluating Scratch to introduce younger schoolchildren to programming. In
J. Lawrance & R. Bellamy (Eds.), Proceedings of the 22nd annual workshop of the psychology of
programming interest group — PP1G2010, 64-74. Retrieved from
http://scratched.media.mit.edu/sites/default/files/wilson-moffat-ppig2010-final.pdf

Yildirim, A., & Simsek, H. (2016). Sosyal bilimlerde nitel aragtirma yontemleri (10th ed.). Ankara, Turkey:
Seckin Yaymcilik.

Yin, R. K. (2003). Case study research, design and methods (3rd ed.). Newbury Park: Sage Publications.

Yiinkiil, E., Durak, G., Cankaya, S., & Misirli, Z. A. (2017). Scratch yaziliminin 6grencilerin bilgisayarca
diisiinme becerilerine etkisi. Necatibey Egitim Fakiiltesi Elektronik Fen ve Matematik Egitimi Dergisi,
11(2), 502-517.

Zhong, B., Wang, Q., Chen, J., & Li, Y. (2017). Investigating the period of switching roles in pair programming
in a primary school. Educational Technology & Society, 20(3), 220-233.

237

