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Abstract
In this study, a matrix Rv is defined, and two closed form expressions of the matrix Rn

v ,
for an integer n ≥ 1, are evaluated by the matrix functions in matrix theory. These
expressions satisfy a connection between the generalized Fibonacci and Lucas numbers
with the Pascal matrices. Thus, two representations of the matrix Rn

v and various forms
of matrix (Rv+q△I)n are studied in terms of the generalized Fibonacci and Lucas numbers
and binomial coefficients. By modifying results of 2 × 2 matrix representations given in
the references of our study, we give various 3 × 3 matrix representations of the generalized
Fibonacci and Lucas sequences. Many combinatorial identities are derived as applications.
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1. Introduction
The generalized Fibonacci sequence {Un (p, q)}n≥0 and the generalized Lucas sequence

{Vn (p, q)}n≥0, for an integer n, are defined by the second order recurrence relation

Un = pUn−1 − qUn−2 U0 = 0, U1 = 1, (1.1)
Vn = pVn−1 − qVn−2 V0 = 2, V1 = p, (1.2)

where p and q
(
p ̸= 0 and q ̸= 0, p2 ̸= 4q

)
are arbitrary complex coefficients. From the

sequences
{Un}n≥0 := {Un (p, q)}n≥0 and {Vn}n≥0 := {Vn (p, q)}n≥0

we derive;
Fibonacci {Fn}n≥0 := {Un (1, −1)}n≥0 and Lucas {Ln}n≥0 := {Vn (1, −1)}n≥0,
Pell {Pn}n≥0 := {Un (2, −1)}n≥0 and Pell-Lucas {Qn}n≥0 := {Vn (2, −1)}n≥0,
Jacobsthal {Jn}n≥0 := {Un (1, −2)}n≥0 and Jacobsthal Lucas {jn}n≥0 := {Vn (2, −1)}n≥0,
sequences.

Any n-th entries of the sequences {Un}n≥0 and {Vn}n≥0 are generalized Fibonacci num-
ber Un and Lucas number Vn, respectively, are given by

Un = (αn − βn) / (α − β) , Vn = αn + βn, (1.3)
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where α =
(
p +

√
p2 − 4q

)
/2 and β =

(
p −

√
p2 − 4q

)
/2 are the roots of the equation

x2 −px+q = 0. These formulas given in (1.3) are called Binet’s formulas [18]. Throughout
this paper, we let n be an arbitrary positive integer, ∆ = p2 − 4q, α =

(
p +

√
∆
)

/2,

and β =
(
p −

√
∆
)

/2, where p and q
(
p ̸= 0 and q ̸= 0, p2 ̸= 4q

)
are arbitrary complex

coefficients.
Many authors have studied various fundamental properties, matrix representations, and

sums of their squares or products of consecutive numbers Un and Vn (see, e.g., [2, 4, 8, 12,
18,19]).

Among the generalized Fibonacci and Lucas sequences, the Fibonacci {Fn}n≥0 and
Lucas {Ln}n≥0 sequences have achieved a kind of celebrity status, and have been studied
extensively in number theory, matrix theory, and applied mathematics (see, e.g., [3, 5, 6,
13,14,17,20,21]).

In [5] and [6], the authors relate with altering sums of squares of odd and even terms
of the Fibonacci sequence and altering sums of their products to the product of the ap-
propriate Fibonacci and Lucas numbers. In [17], the authors give elementary methods
to investigate the reciprocal sums of products of two Fibonacci numbers in several ways.
Similar formulas for other special sequences such as the Pell, Pell Lucas, Jacobsthal, and
Jacobsthal Lucas sequences are obtained by the same methods in [7, 9, 10].

In [1] and [2], H. Belbachir and F. Bencherif give a number of formulas for sums and
alternating sums of product of the generalized Fibonacci and Lucas numbers. These
studies extend all results, and recover more easily as the methods in [5–7,9,10]. In [8], Z.
Čerin achieves explicit formulas for sums of products of a fixed number of the consecutive
generalized Fibonacci and Lucas numbers. These formulas are related to the results given
in [2], on the other hand, the author eliminates all restrictions.

An existing formula for any n-th power of a m × m matrix or particular matrices with
various matrix identities etc. can also be used to derive various combinatorial identities.
In [15], J. Mc Laughlin shows how to derive various combinatorial identities by using a
formula for any n-th power of a 2 × 2 matrix. As an illustration, the well-known 2 × 2
Fibonacci matrix Qn gives the ninety-first formula from Vajda’s list in [21] and various
formulas can be similarly derived by this method. As other formulas for any n-th power
of matrices of order 2 , we see that many properties of the Fibonacci and Lucas sequences
are derived by the Fibonacci matrix Qn [20] and Lucas matrix Qn

L [14]. These properties
in the context of 2 × 2 matrices U(p, q) and V (p, q) associated with the numbers Un(p, q)
and Vn(p, q) are generalized by using the identities of these numbers in induction method,
it can be shown that the matrices Un(p, q) and V n(p, q) are the generalized Fibonacci and
Lucas matrices, all elements of which are related to indices of the numbers Un and Vn [4].
Also, several properties of the generalized Fibonacci sequence {Hk,n} are given by using
the same matrix methods [22].

In [19], Melham shows that any n-th integer powers of the matrix R of order 3 is related
with the numbers Un (p, q), and applies some matrix functions to obtain new infinite sums
to the matrix Rn

(
n ∈ Z+), which is derived as

Rn =

 q2U2
n−1 q2Un−1Un q2U2

n

−2qUn−1Un −q
(
U2

n + Un−1Un+1
)

−2qUnUn+1
U2

n UnUn+1 U2
n+1

 . (1.4)

In [16], the authors obtain a general polynomial identity in k variables, a closed form
expression for the entries of the powers of a k × k matrix is given by using this identity
for k ≥ 2 an arbitrary positive integer. Various combinatorial identities are also derived
by using these results.

In [1], H. Belbachir and F. Bencherif derive a formula expressing the general term of a
linear recurrent sequence. This result generalizes the result of J. Mc Laughlin about the
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powers of a 2 × 2 matrix in [15] to the case of a m × m matrix, m ≥ 2. These results
are used to derive various identities concerning the Fibonacci and Stirling numbers and
combinatorial relations.

In this work we aim to find different relations between matrices containing sequences
alike the generalized Fibonacci and Lucas sequences. As far as we know in the litera-
ture, matrix representations of the generalized Fibonacci sequence {Un}n≥0 have been
introduced and investigated. We consider matrix representations of the generalized Lucas
sequence {Vn}n≥0, which both establish various summation identities involving squares
of terms from the sequences {Un}n≥0 and {Vn}n≥0, and derive properties of the Lucas,
Pell Lucas, Jacobsthal Lucas numbers by taking advantage of the ideas introduced for the
Fibonacci, Pell, and Jacobsthal numbers in the literature.

2. The closed form expressions of the matrix Rn
v

Several generalizations of the Pascal matrix are defined in [23] and a number of the-
oretic properties associated with the generalized Fibonacci and Lucas sequences and the
Pascal-type matrix are studied in [3] and [19]. Unless otherwise stated, xn

ij , i, j = 1, 2, 3
denotes the entry in the i-th row and j-th column of n-th powers of any matrix X of
order 3, we define first and third column vectors, (un

i1), (un
i3), (vn

i1), and (vn
i3), i = 1, 2, 3,

including their squares or consecutive product of entries from the sequences {Un(p, q)}n≥0
and {Vn(p, q)}n≥0, respectively;

(un
i1) =

((
2

i − 1

)
(−qUn−1)3−i U i−1

n

)t

, (un
i3) =

((
2

i − 1

)
(−qUn)3−i U i−1

n+1

)t

, i = 1, 2, 3

and

(vn
i1) =

((
2

i − 1

)
(−qVn−1)3−i V i−1

n

)t

, (vn
i3) =

((
2

i − 1

)
(−qVn)3−i V i−1

n+1

)t

, i = 1, 2, 3,

where
(a

b

)
denotes the binomial coefficient. Now, let us consider a matrix Rv of order 3 as

Rv =

 4q2 2pq2 p2q2

−4pq −q
(
2p2 + ∆

)
−2pq

(
p2 − 2q

)
p2 p

(
p2 − 2q

) (
p2 − 2q

)2

 , ∆ = p2 − 4q, (2.1)

which includes all matrices considered as special cases like Lucas, Pell Lucas, and Jacob-
sthal Lucas matrices, etc. It is seen that the matrix Rv is related with column vectors(
un

ij

)
and

(
vn

ij

)
, j = 1, 3 such as

Rv (un
i1) = (vn

i3) and Rv (vn
i1) = ∆2 (un

i3) , for i = 1, 2, 3.

In addition, we present two closed form expressions of h-th powers of the matrix Rv, one
of them is the matrix representation.

Theorem 2.1. Let Rh
v be any h-th positive integer powers of matrix given in (2.1). Then,

R2n
v = ∆2n

 q2U2
2n−1 q2U2n−1U2n q2U2

2n

−2qU2n−1U2n −q
(
U2

2n + U2n−1U2n+1
)

−2qU2nU2n+1
U2

2n U2nU2n+1 U2
2n+1

 , (2.2)

R2n−1
v = ∆2n−2

 q2V 2
2n−2 q2V2n−2V2n−1 q2V 2

2n−1
−2qV2n−2V2n−1 −q

(
V 2

2n−1 + V2n−2V2n
)

−2qV2n−1V2n

V 2
2n−1 V2n−1V2n V 2

2n

 . (2.3)

Proof. By using the induction method on h ∈ Z+, (2.2) and (2.3) are proved according
to whether h is even or not.

Firstly, since RvRv = R2
v and R2

vRv = R3
v, the matrix R2

v for n = 1 in (2.2) and the
matrix R3

v for n = 2 in (2.3) are proved by computing the elements r2
i1 and r3

i1, i = 1, 2, 3
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of the matrices R2
v and R3

v, respectively. Other elements can be showed similar to them.
The element r2

11 is q2 (p2 − 4q
)2. Thus, by using p2 − 4q = ∆ and U1 = 1, we find

that r2
11 = ∆2q2. The element r2

21 is −2pq
(
−4q + p2)2. By using U2 = p, we see that

r2
21 = −2∆2qU2. The element r2

31 is p2 (p2 − 4q
)2 = ∆2U2

2 . So, the elements r2
i1, i = 1, 2, 3

of the matrix R2
v are valid for n = 1. By using U3 = p2 − q, and due to the manner in

which elements of the matrix R2
v are computed, we note that the matrix R2

v is true for
n = 1.

Since R2
vRv = R3

v, the elements r3
11 = q2∆2V 2

2 , r3
21 = −2q∆2V2V3, r3

31 = ∆2V 2
3 are

given by using V2 = p2 − 2q and V3 = p
(
p2 − 3q

)
. Then, the elements r3

i1, i = 1, 2, 3 of
the matrix R3

v are valid for n = 2. When other elements of the matrix R3
v are evaluated

by using V4 = p4 − 4p2q + 2q2, we note that the matrix R3
v is valid for n = 2.

Now, we suppose that they are true for h ≤ 2N , N ≥ 2. Due to R2N
v Rv = R2N+1

v

or R2N−1
v R2

v = R2N+1
v , by using the induction hypothesis and Rv or R2

v, we obtain the
R2N+1

v . Then, elements r2N+1
i1 , i = 1, 2, 3 of R2N+1

v = R2N
v Rv are given with

r2N+1
11 = q2 (pU2N − 2qU2N−1)2 = q2V 2

2N ,

r2N+1
21 = −2q (pU2N − 2qU2N−1) (pU2N+1 − 2qU2N ) = −2qV2N V2N+1,

r2N+1
31 = (pU2N+1 − 2qU2N )2 = V 2

2N+1,

by using the recurrence relation given in (1.2) and Vn = 2Un+1 − pUn = Un+1 − qUn−1.
All elements of the R2N+1

v can be proved similar to them.
By using the induction hypothesis and the R2

v, we can write R2N
v R2

v = R
2(N+1)
v . Then,

the elements r2N+2
i1 , i = 1, 2, 3 of the R

2(N+1)
v are given by using the recurrence relation

given in (1.1), respectively, as

r2N+2
11 = q2 (pU2N − qU2N−1)2 = q2U2N+1,

r2N+2
21 = −2q (pU2N+1 − qU2N ) (pU2N − qU2N−1) = −2qU2N+2U2N+1,

r2N+2
31 = (pU2N+1 − qU2N )2 = U2

2N+2.

Other elements can be proved similar to them. Thus, the Rh
v holds for all positive integer

h. �

Let us mention the properties of the matrix Rh
v ;

Remark 2.2. The entries r2n
13 = q2r2n

31 and r2n−1
13 = q2r2n−1

31 involve always the numbers
q2U2

2n and q2V 2
2n−1, respectively. And also, the entry rh

33 involves the numbers U2
h+1 or

V 2
h+1 for even and odd h, respectively.

Remark 2.3. The entries rh
i1, i = 1, 2, 3 of the matrix Rh

v are equal to the values of

∆h

((
2

i − 1

)
(−qUh−1)3−i U i−1

h

)
and ∆h−1

((
2

i − 1

)
(−qVh−1)3−i V i−1

h

)
, i = 1, 2, 3

in the expansions ∆2n (Uh − qUh−1)2 and ∆2(n−1) (Vh − qVh−1)2 for even and odd h, re-
spectively. And also, the entries rh

i3, i = 1, 2, 3 of Rh
v are equal to the values of

∆h

((
2

i − 1

)
(−qUh)3−i U i−1

h+1

)
and ∆h−1

((
2

i − 1

)
(−qVh)3−i V i−1

h+1

)
, i = 1, 2, 3
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in the expansions ∆h (Uh+1 − qUh)2 and ∆h−1 (Vh+1 − qVh)2 for even and odd h, respec-
tively. That is, for i = 1, 2, 3,

rh
i1 = ∆h

((
2

i − 1

)
(−q)3−i U3−i

h−1U i−1
h

)
for even h,

rh
i1 = ∆h−1

((
2

i − 1

)
(−q)3−i V 3−i

h−1V i−1
h

)
for odd h,

where
(a

b

)
is a positive integer known as a binomial coefficient. The matrix Rh

v can be
expressed as a Pascal-type matrix [23].

The other closed form expression is a polynomial representation, Rh
v = c0I+c1Rv+c2R2

v,
the coefficients c0, c1, and c2 are given with the numbers Uh and Vh based on the eigenvalues
λj , j = 1, 2, 3 of the matrix Rv. Let us suppose that it is a function f(x) = xn, n ∈ Z+,
then, polynomial expression f (Rv) gives Rn

v as

f (Rv) =
3∑

i=1

3∏
j=1
i ̸=j

f (λi)
λi − λj

[Rv − λjI] , (2.4)

where I is the 3 × 3 identity matrix. The polynomial λ3 −
(
p2 − 3q

)
∆
(
λ2 − q∆λ

)
+ q3∆3

is the characteristic polynomial of Rv, and so, λ1 = ∆α2, λ2 = −∆αβ, λ3 = ∆β2 are the
eigenvalues of the matrix Rv [11].

Theorem 2.4. Let Rh
v be any h-th positive integer power of the matrix given in (2.1),

and I is the 3 × 3 identity matrix. Then,

R2n
v = ∆2n−2

p2

[
U2nV2n−1R2

v + q∆2U2nU2n−2Rv − q3∆2U2n−2V2n−1I
]

, (2.5)

R2n−1
v = ∆2n−3

p2

[
U2n−2V2n−1R2

v + q∆V2n−1V2n−3Rv − q3∆2U2n−2V2n−3I
]

. (2.6)

Proof. By inserting the eigenvalues λ1 = ∆α2, λ2 = −∆q, λ3 = ∆β2 into (2.4), we
consider it as two equations according to whether h is even or odd, and rewrite the right
hand side of f (Rv) = Rh

v by grouping similar members with respect to matrices R2
v, Rv,

and I,

R2n
v = ∆2n−2

p2

 (α4n−1
√

∆
+ q2n−1 − β4n−1

√
∆

)
R2

v + ∆
(
βα4n−1 −

(
p2 − 2q

)
q2n−1

+αβ4n−1)Rv − q∆2
(

β2α4n−1
√

∆
− qn − α2β4n−1

√
∆

)
I

 ,

R2n−1
v = ∆2n−3

p2

 (α4n−3
√

∆
− q2n−2 − β4n−3

√
∆

)
R2

v + ∆
(
βα4n−3 +

(
p2 − 2q

)
q2n−2

+αβ4n−3)Rv − q∆2
(

β2α4n−3
√

∆
+ q2n−1 − α2β4n−3

√
∆

)
I

 .

We arrange these equations according to the Binet’s formulas given in (1.3) and we get
the desired results;

R2n
v = ∆2n−2

p2

 α2n−β2n
√

∆

(
α2n−1 + β2n−1)R2

v + q∆
(
α2n − β2n

)(
α2n−2 − β2n−2)Rv − q3∆2 α2n−2−β2n−2

√
∆

(
α2n−1 + β2n−1) I

 ,

R2n−1
v = ∆2n−3

p2

 α2n−2−β2n−2
√

∆

(
α2n−1 + β2n−1)R2

v + q∆
(
α2n−3 + β2n−3)(

α2n + β2n
)

Rv − q3∆2 α2n−2−β2n−2
√

∆

(
α2n−3 + β2n−3) I

 .

�
Remark 2.5. Equating all the entries of the closed form given in (2.2) with (2.5), and
(2.3) with (2.6) we obtain several identities of the numbers Un and Vn.
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Remark 2.6. The matrix equations such that Rn
v Rm

v = Rn+m
v , Rn

v Rn+1
v = R2n+1

v , and
Rn

v R−m
v = Rn−m

v etc., give some identities of sums or difference of indices for their squares
or products of consecutive numbers Un and Vn. Since these identities and their proofs can
be carried out by means of analogous arguments considering by many mathematician, we
state only the essential details and omit the identities, and their proofs.

3. The closed form expressions of the matrix (Rv + q∆I)n

Throughout Section 3, let I denote the 3 × 3 identity matrix and n be an arbitrary
positive integer. From the Cayley Hamilton theorem, R3

v −
(
p2 − 3q

)
∆
(
R2

v − q∆Rv
)

+
q3∆3I = 0 is valid, multiplying with Rn

v of this matrix equation yields

Rn+3
v + q3∆3Rn

v = ∆V3
p

(
Rn+2

v + q∆Rn+1
v

)
. (3.1)

Remark 3.1. Various identities can be obtained from the cases whether n is even integer
or not in (3.1). If n = 2k, k ≥ 1, then

pV 2
n+3 + q3p∆U2

n = V3
(
∆U2

n+2 + qV 2
n+1

)
,

qpVn+2Vn+3 + q3p∆Un−1Un = V3 (∆Un+1Un+2 + VnVn+1) ,

and, if n = 2k − 1, k ≥ 1, then

p∆U2
n+3 + q3pV 2

n = V3
(
V 2

n+2 + q∆U2
n+1

)
,

p∆Un+2Un+3 + q3pVn−1Vn = V3 (Vn+1Vn+2 + q∆UnUn+1) .

Similar identities can also be given with matrix equation

Rn+3
v + q3∆3Rn

v = ∆V3
p

Rn+1
v (Rv + q∆I) .

After a little algebraic manipulation on the expansion (Rv + q∆I)3, we obtain a matrix
equation as

(Rv + q∆I)3 = ∆p2Rv (Rv + q∆I) . (3.2)
Now, we give closed form expressions and some matrix equations on the matrix (Rv + q∆I)n

to produce summation identities involving terms from the sequences {Un} and {Vn}.

Theorem 3.2. Let Rn
v be any n-th powers of the matrix given in (2.1), 0 ̸= p, q ∈ C,

∆ = p2 − 4q, and X := [Rv + q∆I] is a matrix X = [xij ]3×3. Then,

X2n+1 = ∆np2nRn
v (Rv + q∆I) , (3.3)

X2n+2 = p2n+2∆2n+1
[
(−q)3−i

(
2

i − 1

)
V2n+i+j−2

]
3×3

. (3.4)

Proof. By using the induction method on n and (Rv + q∆I)3 = ∆p2Rv (Rv + q∆I) given
in (3.2), the relation (3.3) can be proved. After the equation given in (3.3) is valid, an
equation (Rv + q∆I)2n+2 = ∆np2nRn

v (Rv + q∆I)2 is established by multiplying the right
hand side of the equation (3.3) with (Rv + q∆I). Then, by using the matrix Rn

v in (2.2)
and (2.3), the proof is completed. �

Theorem 3.3. Let X := [Rv + q∆I] be a matrix X = [xij ]3×3 and 0 ̸= p, q ∈ C, ∆ =
p2 − 4q, then

Xn = pn∆n−1
[
(−q)3−i

(
2

i − 1

)
Vn+i+j−4

]
3×3

, i, j = 1, 2, 3. (3.5)
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Proof. By using the induction method on n with the following identities

pVn+2 − 4qVn+1 + pqVn = ∆Vn+1,

Vnp3 − 2Vn−1p2q + Vn−2pq2 − 3Vnpq + 4Vn−1q2 = ∆Vn+1,

the desired results can be proved. �

In [2], the authors establish several formulas for sums and alternating sums of products
of generalized Fibonacci and Lucas numbers. Especially, the authors extend, more easily,
some results of Z. Čerin [5–7, 9, 10]. By equating the entries r2n+1

21 and r2n+1
31 of matrices

given in (3.3), (3.4), and (3.5), we derive new finite sums involving their squares or products
of terms from the generalized Fibonacci and Lucas sequences {Un} and {Vn}.

Theorem 3.4. If n = 2k, k ≥ 1, then
k∑

i=0

(
n

2i

)
q2i∆U2

n−2i +
k∑

i=1

(
n

2i − 1

)
q2i−1V 2

n−2i+1 = pnVn,

k∑
i=0

(
n

2i

)
q2i∆Un−2i−1Un−2i +

k∑
i=1

(
n

2i − 1

)
q2i−1Vn−2iVn−2i+1 = pnVn−1,

and if n = 2k − 1, k ≥ 1, then
k∑

i=0

(
n

2i

)
q2iV 2

n−2i +
k∑

i=1

(
n

2i − 1

)
q2i−1∆U2

n−2i+1 = pnVn,

k∑
i=0

(
n

2i

)
q2iVn−2i−1Vn−2i +

k∑
i=1

(
n

2i − 1

)
q2i−1∆Un−2iUn−2i+1 = pnVn−1.

Proof. Let X := [Rv + q∆I] be a matrix X = [xij ]3×3, by using the binomial formula for
the left hand side of the expression given in (3.5), we rewrite

Xn =
n∑

t=0

(
n

t

)
(q∆)n−t Rt

v = pn∆n−1
[
(−q)3−i

(
2

i − 1

)
Vn+i+j−4

]
3×3

, i, j = 1, 2, 3.

The desired results are obtained by equating the entries (2,1) and (3,1) of the appropriate
matrices given in (2.2) or (2.3) on the above results. �

By using the similar steps, we establish the following matrix equations.

Corollary 3.5. Let Rn
v be any n-th powers of matrix given in (2.1), and 0 ̸= p, q ∈ C,

∆ = p2 − 4q ̸= 0. Then,

p2n∆nRn
v [Rv + q∆I]n = [Rv + q∆I]3n . (3.6)

Proof. By using the techniques given above and the well-known identities V2n−1U2n+1 −
qV2n−2U2n = V4n−1, V2nU2n+1 −qV2n−1U2n = V4n and V2n−2V2n −qV2n−1V2n−3 = ∆U4n−3,
the desired result is obtained. �

We also observe that the following identity is valid;[
R3

v + q3∆3I
]n

= ∆nV n
3

pn
Rn

v [Rv + q∆I]n . (3.7)

Remark 3.6. Manipulating the equation given in (3.6) yields[
R3

v + q3∆3I
]n

= ∆nV n
3

pn
Rn

v [Rv + q∆I]n = V n
3

p3n
[Rv + q∆I]3n (3.8)
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and, expanding (3.8) and (3.5) gives
n∑

i=0

(
n

i

)
(q∆)3(n−i) R3i

v = ∆nV n
3

pn

n∑
i=0

(
n

i

)
(q∆)(n−i) Rn+i

v (3.9)

= ∆3n−1V n
3

 q2V3n−2 q2V3n−1 q2V3n

−2qV3n−1 −2qV3n −2qV3n+1
V3n V3n+1 V3n+2

 . (3.10)

Many identities similar to the identities given below can be established by using the matrix
equation given in (3.10).

Theorem 3.7. The following identities are valid:
k∑

i=0

[(
n

2i

)
qn−2i∆U2

n+2i +
(

n

2i + 1

)
qn−2i−1V 2

n+2i+1

]
= pnV3n, n = 2k,

k−1∑
i=0

[(
n

2i

)
qn−2iV 2

n+2i +
(

n

2i + 1

)
qn−2i−1∆U2

n+2i+1

]
= pnV3n, n = 2k − 1.

Proof. By equating the (3, 1) entry of the matrix given in (3.10) with the (3, 1) entry of
(3.9) which is obtained by the help of (2.2) if n is even (or (2.3) if n is odd), we obtain
the desired results. �

4. Conclusion
In this paper, two different closed forms of the matrix functions f(Rv) = Rn

v are in-
troduced for the generalized Fibonacci and Lucas sequences. Several new identities are
obtained for the generalized Fibonacci and Lucas numbers from these closed forms. The
generalized Lucas matrix is also described by the matrix (Rv + q∆I)n. From odd and
even cases of n, many combinatorial identities are obtained.
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