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Abstract
This article is about a discrete-time predator-prey model obtained by the forward Euler
method. The stability of the fixed point of the model and the existence conditions of the
Neimark-Sacker bifurcation are investigated. In addition, the direction of the Neimark-
Sacker bifurcation is given. Moreover, OGY control method is to implement to control
chaos caused by the Neimark-Sacker bifurcation. Finally, Neimark-Sacker bifurcation,
chaos control strategy, and asymptotic stability of the only positive fixed point are verified
with the help of numerical simulations. The existence of chaotic behavior in the model is
confirmed by computing of the maximum Lyapunov exponents.
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1. Introduction
The dynamics relationship in population models attract great attention in both biol-

ogy and mathematical biology. There are two types of the mathematical models in the
theory of population dynamic models: the continuous-time models governed by differ-
ential equations, and the discrete-time models described by difference equations. There
are many research papers which are related to continuous time population models and
discrete-time populations models [2, 16, 26, 37]. Discrete-time models are very important
in application and these models are related to applied sciences such as ecology, biology,
physics, engineering, etc. [4,12–14,24,34,36]. Zhang and Zou emphasized the importance
of the difference equations in their studies [37]. "In natural, some predatory or parasitoid
insects and their preys are univoltine and have no overlapping generations. The growth of
those species displays discrete systems and can be described by difference equations. Even
if some species have a long life and overlapping generations, when population quantities
are relatively small, discrete models are appropriate to depict these populations. Addi-
tionally, people usually study population change year by year (month by month, or day by
day) [37]". In 1976, the possible rich dynamic behaviors in a simple discrete-time models
were clearly shown by May [30]. Moreover, Jing et al. [18], Liu et al. [27], and Liu
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and Dongmei [28] remarked that discrete time models can exhibit more complex dynamic
behavior than continuous time models. We need to investigate discrete-time population
models to compare between the continuous time population models and discrete-time pop-
ulation models. The discretization of continuous models is an important way to obtain
discrete models. Recently, many scholars have paid attention to the discrete-time popu-
lation models by using the forward Euler method. Cheng et al. [3] investigated stability
and bifurcation analysis of discrete-time prey-predator model with Allee effect. Atabaigi
[1] studied the stability of fixed points and analyzed bifurcation phenomena of discrete
predator-prey model with group defense by using the forward Euler method. He et al.
[15] investigated the dynamics of a discrete-time predator-prey model of Holling-III type.
Studies of the discrete-time population models which were obtained by Euler method can
be seen in [10,11,17,19–22,27,33,38].

Chaos theory investigates dynamic models, and complicated and nonlinear structures.
This theory has several areas of application in different disciplines such as engineering,
sociology, medicine, and economics. Especially biological models, due to their complex
structure, are one of the most widely used applications of chaos theory. A chaotic model
is a nonlinear deterministic model which represents complex and unpredictable behaviors.
The chaos control problems deal with the attempt to stabilize a chaotic model to either
a periodic orbit or an equilibrium. On the other hand, the Lyapunov exponent quantifies
the sensitivity of the initial conditions of a dynamic system and its value is positive for
the chaotic system. So it plays an important role in the chaotic systems [5–9].

A predator-prey model which is called Leslie-Gower predator prey model has been
suggested in [25]. In this model the predator growth function is different from the predator
predation function. The authors supposed that the predator growth function is defined by
a function of the ratio of predators and their prey. A general form of the presented model
with the semi-ratio dependent functional response is as follows [32]:

dN (t)
dt

= N (t) g(.) − P (t) h(.),
dP (t)

dt
= P (t) (r2 − θ

P (t)
N (t)

),
(1.1)

where N (t) and P (t) represent population densities of prey and predator at time t, respec-
tively. The function g(.) is the per capita growth rate of the prey in the lack of predator,
h(.) is the so-called predator functional response to prey, r2 is the intrinsic growth rates
of predator, and θ is a measure of the food quality that the prey ensures for conversion
into predator birth. The Leslie-Gower term is the expression θ P (t)

N(t) . This term measures
the loss in the predator population on account of rareness (per capita P (t)

N(t)) of its favorite
food N (t) . The functions g(.) and h(.) supply the classic properties. In the literature,
the per capita growth rate of the prey in the lack of predator g(.) may be constant or
a function dependent on N (t) such as g1(N) := r1

(
1 − N(t)

K

)
. A predator functional

response to prey can be prey dependent i.e. h(.) = h(N (t)) or predator dependent i.e.
h(.) = h(N (t) , P (t)). Moreover, predator functional response functions have different
types; for example, Holling Type-I functional response, ratio-dependent type are used in
mathematical modelling.

In recent times, a few articles in literature discussed the dynamics of predator-prey
model with Leslie type. Zhou et al. [39] studied the following model:

dN (t)
dt

= r1N (t) − εP (t) N (t) ,

dP (t)
dt

= P (t) (r2 − θ
P (t)
N (t)

),
(1.2)
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where the constants r1, r2, ε, and θ are larger than zero. Zhou et al. first considered the
stability conditions of the fixed point for the model and then by introducing so called
Allee effect in different forms, they researched the impact of this effect on the dynamics
of this predator-prey model [39]. In [2], Celik incorporated the term of delay τ into the
model (1.2), where τ ≥ 0 denotes the delay time for the predator density. In this modified
model, predator density is logistic with time delay and the carrying capacity proportional
to prey density. In [29], Lv et al. considered a ratio-dependent predator-prey model with
multiple delays where the dynamics are logistic with the carrying capacity proportional
to prey population. They investigated the stability of the positive fixed point and the
presence of Hopf bifurcation.

In [15], applying the forward Euler scheme to considered model, the authors investigated
the model (1.2) with the following functions g(.) = g1(N) and h(.) = αN (t) /

(
N2 (t) + β2) .

Here the predator consumes the prey according to the Holling type-III functional response.
In [33], the authors considered the model (1.1) with the following functions g(.) = g1(N)
and h(.) = βN (t) /(N2 (t)+ b) which denotes the functional response of simplified Holling
type-IV. They showed that the model undergoes Flip and Neimark-Sacker bifurcation.
Similarly, [1] studied a discrete-time predator-prey system of Leslie type with generalized
Holling type-III functional response αN2 (t) /(aN2 (t) + bN (t) + 1).

Motivated by the above mentioned studies, the aim of this paper is to compare the
continuous time model with the discrete time model and observe some dynamical behaviors
that the continuous time model does not have. Applying the forward Euler method to
continuous predator-prey model (1.2), discrete-time version of model (1.2) is obtained as

Nt+1 = Nt + δNt (r1 − εPt) ,

Pt+1 = Pt + δPt(r2 − θ
Pt

Nt
), (1.3)

where δ > 0 is the step size. Sucu [35] has studied the Flip bifurcation analysis of the model
(1.3) at the fixed point. In this study, we investigate the stability and the Neimark-Sacker
bifurcation analysis of the model (1.3) in R2

+ and apply OGY control method for chaos
control. The rest of this article is organized as follows: In Section 2, the local stability of
the fixed point of the model (1.3) is discussed. In Section 3, choosing δ as the bifurcation
parameter, Neimark-Sacker bifurcation analysis is studied. It is shown that the model (1.3)
undergoes Neimark-Sacker bifurcation by using the bifurcation theory [23,33]. In Section
4, OGY control strategy is applied for chaos control due to occurrence of Neimark-Sacker
bifurcation. Finally in Section 5, all the obtained theoretical conclusions are supported by
some numerical simulations.

2. Stability analysis and fixed points of the system
In this section, we will determine the fixed point of the discrete-time system and examine

the stability conditions of this point. To find the fixed point of the system (1.3), we assume
that

Nt = Nt+1 = N∗, Pt = Pt+1 = P ∗, (2.1)

in the system (1.3)

N∗ = N∗ + δN∗ (r1 − εP ∗) , (2.2)

P ∗ = P ∗ + δP ∗
(

r2 − θ
P ∗

N∗

)
.
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A simple calculation shows that the system (1.3) has one coexistence fixed point E∗ =(
r1θ
r2ε , r1

ε

)
. The Jacobian matrix of the system (1.3) is

J =

 1 + δr1 − εPδ −εδN
θδP 2

N2 1 + δr2 − 2θδP

N

 . (2.3)

It is well-known that the stability of the fixed point is determined by the eigenvalues of
the matrix J. The characteristic equation of the matrix J is

λ2 − trJλ + det J = 0,

where trJ = 2 + δ
(
r1 + r2 − P (ε + 2θ

N )
)

and

det J = 1 + δ(r1 + r2 − εP − 2θP

N
) + δ2[r2(r1 − εPr2) + θP

N
(3εP − 2r1)].

Definition 2.1. A fixed point (x, y) is called
i) sink if |λ1| < 1 and |λ2| < 1, and it is locally asymptotically stable,
ii) source if |λ1| > 1 and |λ2| > 1, and it is locally unstable,
iii) saddle if |λ1| > 1 and |λ2| < 1 or |λ1| < 1 and |λ2| > 1,
iv) non-hyperbolic if either |λ1| = 1 or |λ2| = 1.

Lemma 2.2. [15, 17, 22, 34] Assume F (λ) = λ2 + Bλ + C, where B and C are two real
constants and let F (1) > 0. Suppose λ1and λ2 are two roots of F (λ) = 0. Then, the
following statements hold:

i) |λ1| < 1 and |λ2| < 1 if and only if F (−1) > 0 and C < 1,
ii) |λ1| > 1 and |λ2| > 1 if and only if F (−1) > 0 and C > 1,
iii) |λ1| > 1 and |λ2| < 1 if and only if F (−1) < 0,
iv) λ1 and λ2 are a pair of conjugate complex roots and |λ1| = |λ2| = 1 if and only if

B2 − 4C < 0 and C = 1.

The Jacobian matrix of the system (2) evaluated at the coexistence fixed point E∗ =(
r1θ
r2ε , r1

ε

)
is given by

J(E∗) =

 1 −δθr1
r2

δr2
2

θ
1 − δr2

 . (2.4)

The Jacobian matrix of the system (2) evaluated at the coexistence fixed point E∗ =(
r1θ
r2ε , r1

ε

)
is given by

J(E∗) =

 1 −δθr1
r2

δr2
2

θ
1 − δr2

 . (2.5)

The characteristic equation of the matrix J(E∗) can be written as follows:
F (λ) = λ2 − (2 − δr2)λ + 1 − δr2 + δ2r1r2. (2.6)

From Lemma 2.2, we have

F (1) = δ2r1r2. (2.7)
Since δ > 0, r1 > 0, and r2 > 0, then F (1) > 0. Moreover

F (−1) = δ2r1r2 − 2δr2 + 4. (2.8)
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Let us take ϕ(δ) = δ2r1r2 − 2δr2 + 4. The discriminant of the function ϕ(δ) is ∆ =
4(r2

2 − 4r1r2).

If r2 > 4r1 (case ∆ > 0), the function ϕ(δ) has real two roots:

δ1 = r2−
√

r2
2−4r1r2

r1r2
, δ2 = r2+

√
r2

2−4r1r2

r1r2
. (2.9)

It is easily seen that since r2 > 4r1, we have δ2 > δ1 > 0. If 0 < δ < δ1 and δ > δ2, then

F (−1) > 0.

If r2 = 4r1 (∆ > 0), the function ϕ(δ) has real roots δ
′

1 = δ
′
2 = 1

r1
. Then for any

δ ∈ (−∞, 1
r1

) ∪ ( 1
r1

, ∞), we have F (−1) > 0.

If r2 < 4r1 (∆ < 0), since the function ϕ(δ) does not have real roots, F (−1) > 0 for
any δ > 0. It is clear that if 0 < δ < 1

r1
, then C < 1. Also if δ > 1

r1
, then C > 1.

If r2 > 4r1 and δ1 < δ < δ2, then F (−1) < 0.
In the light of this information we can give the following proposition.

Proposition 2.3. Assume that E∗ be a positive fixed point of the system (1.3). E∗ is
i) sink fixed point if one of the following conditions holds:

a) r2 > 4r1 and 0 < δ <
r2 −

√
r2

2 − 4r1r2

r1r2

b) r2 < 4r1 and 0 < δ <
1
r1

.
ii) source fixed point if one of the following conditions holds:

a) r2 > 4r1 and δ >
r2 +

√
r2

2 − 4r1r2

r1r2

b) r2 < 4r1 and δ >
1
r1

.
iii) saddle fixed point if the following conditions hold:

r2 > 4r1 and
r2 −

√
r2

2 − 4r1r2

r1r2
< δ <

r2 +
√

r2
2 − 4r1r2

r1r2
.

3. Bifurcation analysis
3.1. Neimark-Sacker bifurcation at the fixed point E∗

In this section, we select the parameter δ as a bifurcation parameter to investigate the
Neimark-Sacker bifurcation by using the bifurcation theory and express the conditions
which Neimark-Sacker bifurcation will occur in the model (1.3). Also, we evaluate the
direction of the Neimark-Sacker bifurcation.
From Lemma 2.2 (iv), we can write NSBE∗ as follows:

NSBE∗ =
{

r1, r2, δ, θ, ε ∈ R+ : δ = 1
r1

, r2 <
4
δ

}
. (3.1)

If the parameters lie in NSBE∗ , the eigenvalues of J (E∗) are a pair of complex conjugate
with modulus one. This means that there exist a Neimark-Sacker bifurcation at the fixed
point E∗. The eigenvalues are given by

λ, λ = (2 − δr2) ± i
√

δr2 (4 − δr2)
2

. (3.2)
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Let
δ = 1

r1
. (3.3)

Obviously, we have
|λ| =

∣∣∣λ∣∣∣ = 1. (3.4)

Because of δ ∈ NSBE∗ , we get
d |λ (δ)|

dδ

∣∣∣∣
δ= 1

r1

= r2 ̸= 0. (3.5)

Moreover, if
trJ (E∗) = δr2 − 2 ̸= 0, −1 namely r1 ≠ r2,

r2
2

, (3.6)

then
λk (δ) ̸= 1 for k = 1, 2, 3, 4, (3.7)

is satisfied.
Assume that q, p ∈ C2 are two eigenvectors of J

(
δNSBE∗

)
and transposed matrix

JT
(
δNSBE∗

)
corresponding to λ and λ, respectively. We have

q ∼
(

θ

2δr2
2

(
δr2 + i

√
δr2 (4 − δr2)

)
, 1
)T

, (3.8)

and

p ∼
(

− r2
2θ

(
δr2 − i

√
δr2 (4 − δr2)

)
, 1
)T

. (3.9)

The normalized eigenvectors are

q =
(

θ

2δr2
2

(
δr2 + i

√
δr2 (4 − δr2)

)
, 1
)T

,

p =
(

r3
2δ2 − 4r2

2δ

2θ (4 − δr2)
− i

√
δr2 (4 − δr2)
θ (4 − δr2)

(
δr2

2 − 2r2
)

,
1

2 (4 − δr2)
(3 + i

√
δr2 (4 − δr2))

)T

.

(3.10)
Using the transformation

xt = Nt − r1θ

r2ε
, yt = Pt − r1

ε
, (3.11)

the fixed point E∗ is shifted to the point (0, 0) . Using a second order Taylor expansion for
the second equation valid for |xt| < r1θ

r2ε and |yt| < r1
ε , system (2) has the form (3.12):

xt+1 = xt − δθr1
r2

yt + F1 (xt, yt) ,

yt+1 = δr2
2

θ
xt + (1 − δr2) yt + F2 (xt, yt) ,

(3.12)

or (
xt

yt

)
→ J (E∗)

(
xt

yt

)
+
(

F1 (xt, yt)
F2 (xt, yt)

)
, (3.13)

where F1 (xt, yt) = −εδxtyt and F2 (xt, yt) = δεr2
2

r1θ xtyt − δεr2
r1

y2
t .

The system (3.13) can be expressed as(
xn+1
yn+1

)
= J (E∗)

(
xn

yn

)
+ 1

2
B (xn, xn) + 1

6
C (xn, xn, xn) + O

(
x4

n

)
, (3.14)



Controlling chaos and Neimark-Sacker bifurcation 1767

where the multilinear vector functions of x, y, u ∈ R2;

B (x, y) =
(

B1 (x, y)
B2 (x, y)

)
and

C (x, y, u) =
(

C1 (x, y, u)
C2 (x, y, u)

)
are defined by

B1 (x, y) =
2∑

j,k=1

∂2F1
∂ξj∂ξk

∣∣∣
ξ=0

xjyk

= −εδ(x1y2 + x2y1),

B2 (x, y) =
2∑

j,k=1

∂2F2
∂ξj∂ξk

∣∣∣
ξ=0

xjyk

= δεr2
2

r1θ
(x1y2 + x2y1) − 2δεr2

r1
x2y2,

C1 (x, y, u) =
2∑

j,k,l=1

∂3F1
∂ξj∂ξk∂ξl

∣∣∣
ξ=0

xjykul

= 0,

C2 (x, y, u) =
2∑

j,k,l=1

∂3F2
∂ξj∂ξk∂ξl

∣∣∣
ξ=0

xjykul

= 0.

(3.15)

When δ is close to δNS and z ∈ C, the vector x ∈ R2 can be decomposed uniquely as
X = zq + zq.

It is clear that z =< p, X > .
The system (3.13) can be transformed for all sufficiently small |δ| into the form

z → λ (δ) z + g (z, z, δ) , (3.16)

where λ (δ) = (1 + φ (δ)) ei arctan(δ) with φ (δNS) = 0 and g (z, z, δ) is smooth complex-
valued function. After Taylor expansion of g with respect to (z, z) , we obtain

g (z, z, δ) =
∑

k+l≥2

1
k!l!

gkl (δ) zkzl, (3.17)

where
g20 (δNS) =< p, B (q, q) >

= − ε

r2
1n

(
(r1 − r2) n + i

√
r2n (r2 + 5r1)

)
,

g11 (δNS) =< p, B (q, q) >

= εr2
r1

√
n

i,

g02 (δNS) =< p, B (q, q) >

= ε

r2
1n

(
(r1 − r2) n − i

√
r2n (3r1 − r2)

)
,

g21 (δNS) =< p, C (q, q, q) >
= 0.

(3.18)

At the above equations, we denote n = 4r1 − r2.
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The direction of the Neimark-Sacker bifurcation is obtained by sign(a (δNS)). The co-
efficient a (δNS) is calculated by

a (δNS) = Re

(
e−i arctan(δNS)

2
g21

)

−Re


(
1 − 2ei arctan(δNS)

)
e−2i arctan(δNS)

2
(
1 − ei arctan(δNS)) g20g11

− 1
2

|g11|2 − 1
4

|g02|2 ,

(3.19)
where ei arctan(δNS) = λ (δNS) .

We state the following theorem on Neimark-Sacker bifurcation.

Theorem 3.1. If (3.6) holds, a (δNS) ̸= 0 and the parameter δ changes its value in small
vicinity of NSBE∗ , then the model (1.3) passes through a Neimark-Sacker bifurcation at
only fixed point E∗. Moreover if a (δNS) > 0 (respectively < 0) , then there exists a unique
repelling (respectivelyattracting) invariant closed curve which bifurcates from E∗.

4. Chaos control
In dynamical systems, it is expected that the system be optimized with respect to some

performance criterion and chaos be avoided. Controlling chaos in discrete-time systems is
a topic of great interest for many researchers in recent time [5–9].

Chaos control can be obtained using various methods in discrete-time systems. To
control the chaos in the system (1.3), we study feedback control strategy. First, we apply
the OGY method to the system (1.3) which was first time proposed by [31]. For this,
corresponding to the system (1.3) we consider the following controlled system:

Nt+1 = Nt + δNt (r1 − εPt) = f (Nt, Pt, r1) ,

Pt+1 = Pt + δPt(r2 − θ
Pt

Nt
) = g (Nt, Pt, r1) ,

(4.1)

where r1 is taken as the controlling parameter. Furthermore, r1 is restricted to line in
some small interval |r1 − r10 | < µ with µ > 0, and r10 denotes the nominal value belonging
to chaotic region. We apply the stabilizing feedback control strategy in order to move the
trajectory towards the desired orbit. Suppose that (N∗, P ∗) be unstable fixed point of the
system (2) in chaotic region produced by the emergence of Neimark-Sacker bifurcation,
then the system (4.1) can be approximated in the neighborhood of the unstable fixed point
(N∗, P ∗) by the following linear map:[

Nt+1 − N∗

Pt+1 − P ∗

]
≈ A

[
Nt − N∗

Pt − P ∗

]
+ B [r1 − r10 ] , (4.2)

where

A =

 ∂f(N∗,P ∗,r10)
∂Nt

∂f(N∗,P ∗,r10)
∂Pt

∂g(N∗,P ∗,r10)
∂Nt

∂g(N∗,P ∗,r10)
∂Pt

 ,

and

B =

 ∂f(N∗,P ∗,r10)
∂r

∂f(N∗,P ∗,r10)
∂r

 =
[

δ2r10
r2ε

0

]
.
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On the other hand the system (4.1) is controllable provided that the following matrix
C = [B : AB]

=

 δ2r10
r2ε

δ2r10
r2ε

0 δθr2r10
ε

 .
(4.3)

Since all parameters are positive, therefore rank of C is 2.

Now, we suppose that [r1 − r10 ] = −K

[
Nt − N∗

Pt − P ∗

]
, where K = [ρ1 ρ2] , then the

system (4.2) can be written as follows:[
Nt+1 − N∗

Pt+1 − P ∗

]
≈ [A − BK]

[
Nt − N∗

Pt − P ∗

]
. (4.4)

The corresponding controller can be written as,
Nt+1 = Nt + δNt ((r10 − ρ1 (Nt − N∗) − ρ2 (Pt − P ∗)) − εPt) ,

Pt+1 = Pt + δPt(r2 − θ
Pt

Nt
). (4.5)

Furthermore, the fixed point (N∗, P ∗) of (4.5) is locally asymptotically stable if and only
if both eigenvalues of the matrix A − BK lie in an open unit disk. The Jacobian matrix
A − BK of the controlled system (4.5) can be written as follows:

A − BK =

 1 − δ2ρ1r10

r2ε
−δ2r10

r2

(
1 + ρ2

ε

)
θr2

2
ε 1 + r2 (δ − 2θ)

 .

The characteristic equation of the Jacobian matrix A − BK is given by

P (λ) = λ2 −
(

2 + r2 (δ − 2θ) − δ2ρ1r10

r2ε

)
λ + 1 + r2 (δ − 2θ)

−δ2r2r10

ε

(
ρ1
r2

2
(1 + r2 (δ − 2θ)) + θ

(
1 + ρ2

ε

))
.

(4.6)

Let λ1 and λ2 be the eigenvalues of characteristic equation (4.6) , then

λ1 + λ2 = 2 + r2 (δ − 2θ) − δ2ρ1r10

r2ε
, (4.7)

λ1λ2 = 1 + r2 (δ − 2θ) − δ2r2r10

ε

(
ρ1
r2

2
(1 + r2 (δ − 2θ)) + θ

(
1 + ρ2

ε

))
(4.8)

are valid.
In order to obtain the lines of marginal stability we must solve the equations λ1 = ±1

and λ1λ2 = 1. These restrictions make sure that λ1 and λ2 have absolute value less than
1. Assume that λ1λ2 = 1, then Eq. (4.8) implies

L1 := −δ2ρ1r10

r2ε
(r2 (δ − 2θ) + 1) + δθr2ρ2r10

ε
+ r2 (δ − θ (δr1 − 2)) = 0. (4.9)

Moreover, we suppose that λ1 = 1, then (4.7) and (4.8) yield,

L2 := −δ2ρ1r10

ε
(δ − 2θ) + δθr2ρ2r10

ε
+ δθr2r10 = 0. (4.10)

Finally, taking λ1 = −1 and using the equations (4.7) and (4.8) we get

L3 := −δ2ρ1r10

r2ε
(r2 (δ − 2θ) + 2) + δθr2ρ2r10

ε
+ r2 (2 (δ − 2θ) + δθr10) + 4 = 0. (4.11)

Then, stable eigenvalues lie within the triangular region in ρ1ρ2 plane bounded by the
straight lines L1, L2, L3 for particular parametric values.
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5. Numerical simulations
Example 5.1. For the parameter values r1 = 4, r2 = 14, δ = 0.2, θ = 50, ε = 0.4, and the
initial condition (N0, P0) = (34, 9.6), the positive fixed point of the system (2) is obtained
as (N∗, P ∗) = (35.71428571, 10). From Proposition 2.3 (i.b), the fixed point (N∗, P ∗) of
the system (1.3) is locally asymptotically stable (See Figure 1).

Figure 1. A stable fixed point for the system (1.3) for r1 = 4, r2 = 14, δ =
0.2, θ = 50, ε = 0.4, and the initial condition (N0, P0) = (34, 9.6).

Example 5.2. In this example, we give the bifurcation diagrams and phase portraits for
the system (1.3) around the fixed point (N∗, P ∗) to confirm the above analytic results and
show some interesting complex dynamical behaviors in system (1.3) . We will choose δ as
bifurcation parameter. We obtain the Neimark-Sacker bifurcation point as δNS = 0.25.
For the parameter values r1 = 4, r2 = 14, θ = 50, ε = 0.4, δNS = 0.25, the positive fixed
point (N∗, P ∗) of the model (1.3) is evaluated as (N∗, P ∗) = (35.71428571, 10) . Because
of computing the coefficients of normal form, fixed point (N∗, P ∗) can be transformed into
origin by change of variables as follows:

x = N − 35.71428571,

y = P − 10.

So, the system (1.3) converts to
xn+1 = xn + 35.71428571 − 0.1 (xn + 35.71428571) yn, (5.1)

yn+1 = yn + 10 +
(yn + 10)

(
14 − 50 (yn + 10)

xn + 35.71428571

)
4

.

Using the above parameters, we get

J (N∗, P ∗) =
[

1 −3.571428571
0.9800000002 −2.5

]
.

The eigenvalues are obtained as
λ1 = −0.7500000000 + 0.6614378280i,

λ2 = −0.7500000000 − 0.6614378280i.

Let q, p ∈ C2 be complex eigenvectors corresponding to λ1, λ2, respectively,
q ∼ (−0.6749365589 + 1.785714285i, i)T ,
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and

p ∼ (−0.7408103671 − 3.108773710.10ˆ(−10)i, 1.322875655 + 0.5000000004i)T .

To obtain the normalization ⟨p, q⟩ = 1, we can take normalized vectors as

q = (−0.6749365589 + 1.785714285i, i)T

and

p = (−0.7408103671 − 0.310877371010−9i, −1.322875655 + 0.5000000004i)T .

By using the formula (3.18) the coefficients of the normal of the system (4.1) can be
computed as follows:

g20(δ) = 0.2753741158 − 0.1000000000i,

g11(δ) = −0.05000000002 − 0.1376870578i,

g02(δ) = 0.1403868039 − 0.2571428570i,

g21(δ) = 0.

From (3.19), the critical part is obtained as a(δNS) = 0.01023799478 > 0. Therefore, a
subcritical Neimark-Sacker bifurcation occurs at δNS = 0.25 and it shows correctness of
Theorem 3.1. The bifurcation diagram and the phase portrait of the system (1.3) are
shown in Figure 2 and Figure 3 where the initial point is (N0, P0) = (34, 9.5).

(a) (b)

Figure 2. Bifurcation diagram and MLE for the system (1.3) for values of
r1 = 4, r2 = 14, δ = (0.23, 0.26.), θ = 50, ε = 0.4, and the initial condition

(N0, P0) = (34, 9.5).

From Figure 2, we observe that the fixed point (N∗, P ∗) = (35.71428571, 10) of the
system (1.3) is stable for δ < 0.25 and loses its stability at δ = 0.25, and invariant close
curves appear from the positive fixed point when the parameter δ exceeds 0.25. The phase
portraits of the bifurcation diagrams in Figure 2 for different values of δ are displayed
in Figure 3, which clearly depicts the process of how a smooth invariant circle bifurcates
from the stable fixed point (N∗, P ∗) = (35.71428571, 10). When δ exceeds 0.25, then the
fixed point (N∗, P ∗) = (35.71428571, 10) is unstable and meanwhile a repelling invariant
closed curve bifurcates from the positive fixed point.



1772 F. Kangalgil, S.Isik

Figure 3.Phase portraits of the system (1.3) for different values of δ .

Example 5.3. Let r1 = 3.7037037037, r2 = 12, δ = 0.27, θ = 50, ε = 0.4, r1 ∈ [3.6, 4.5],
and (N0, P0) = (34, 8.1), then the system (1.3) undergoes Neimark-Sacker bifurcation.
For these parametric values, bifurcation diagram, and corresponding maximum Lyapunov
exponents are plotted in Figure 4. The system (1.3) has a unique positive equilibrium
point (N∗, P ∗) = (38.58024692, 9.259259260) at these parametric values and characteristic
values of the Jacobian matrix evaluated at this fixed point are given by

|λ1,2| = |−0.62 ± 0.7846018095I| = 1.

In order to discuss the OGY feedback control method for the system (1.3), we take r10 =
3.725.Then corresponding controlled system is given by

Nt+1 = Nt + 0.27Nt ((3.725 − ρ1(N − 38.80208332) − ρ2(P − 9.3125)) − εPt) ,

Pt+1 = Pt + 0.27Pt (12 − 50 Pt

Nt
), ], (5.2)

when K = [ρ1 ρ2] and (N∗, P ∗) = (38.58024692, 9.259259260) is unstable fixed point of
the system (1.3). We have

A =
[

1 −4.190625
0.7776 −2.24

]
,

B =
[

10.47656250
0

]
,
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and

C = [B : AB]

=
[

10.47656250 10.47656250
0 8.146575000

]
.

Then it is easy to check that the rank of C matrix is 2. Therefore the system (5.2) is
controllable. Then, the Jacobian matrix A − BK of the controlled system (5.2) is given
by

A − BK =
[

1 − 10.47656250ρ1 −4.190625 − 10.47656250ρ2
0.7776 −2.24

]
.

Moreover, the lines L1, L2, and L3 for marginal stability are given by

L1 = 0.01863 + 23.4675ρ1 + 8.146575ρ1 = 0,

L2 = 3.25863 + 33.94406250ρ1 + 8.146575ρ2 = 0,

and
L3 = 0.77863 + 12.99093750ρ1 + 8.146575ρ2 = 0.

Then, the stable triangular region bounded by marginal lines L1, L2, and L3 for the
controlled system (5.2) is shown in Figure 5.

(a) (b) (c)

Figure 4. Bifurcation diagrams and MLE for the system (1.3) for values of r2 = 12
δ = 0.27, θ = 50, ε = 0.4, r1 = (3.6, 4.5), and the initial condition (N0, P0) = (34, 8.1).

(a) Bifurcation diagram for Pt (b) Bifurcation diagram for Nt (c) Maximum Lyapunov
exponents.
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Figure 5.Triangular stability region bounded by L1, L2 and L3 for the controlled system
(5.2) .

6. Discussions

Previous studies have showed that discrete-time population models play an impor-
tant role in mathematical biology [4, 12–14, 24, 34, 36]. So, we investigate the dynamical
behaviors of a discrete predator-prey model. We obtain the stability conditions of the co-
existence fixed point. By using bifurcation theory [12,24,36] we show that the model (1.3)
undergoes Neimark-Sacker bifurcation. Further, we present some numerical simulations
by using MATLAB program to verify the theoretical results. We display that when the
bifurcation parameter δ passes a crucial bifurcation value, the stability of the coexistence
fixed point of the model (1.3) changes from stable to unstable and Neimark-Sacker bi-
furcation occurs at this critical value. Moreover, the model (1.3) displays the complex
dynamics for different parameter values in certain regions. Therefore, we can assert that
the parameter δ has a powerful effect on the stability of the model (1.3).

Model (1.2) and model (1.3), which is the discrete version of model (1.2), have both
same and different dynamic properties. For example, the fixed point of model (1.2) and
model (1.3) is the same. In addition, in study [2], the periodic solution occurs as a result
of Hopf bifurcation that is continuous case of Neimark-Sacker bifurcation in model (1.2)
at the delay parameter. However, in model (1.3) is occurred both the Neimark Sacker
bifurcation and the Flip bifurcation [35]. Under the influence of the Neimark-Sacker
bifurcation dynamically unstable invariant closed curves are produced. The positive sign
of the maximum Lyapunov exponents in Figure 2(b) confirms the existences of the chaos
and period window as parameter δ varying. In the context of biology, model (1.3) can
be viewed as a predator–prey system interaction. In terms of the latter, the existence
of a Neimark–Sacker bifurcation in model (1.3) implies that both the prey and predator
populations can oscillate around some mean values, and these oscillations will continue
indefinitely under suitable conditions.These results show far richer dynamics of the discrete
model compared to the continuous model.

On the other hand, the Neimark-Sacker bifurcation is successfully controlled with OGY
control method. From our numerical research, it is clear that OGY method based on
feedback control strategy can restore the stability. This controlling strategy is effective
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in order to improve or entirely disappear the chaos due to occurrence of Neimark-Sacker
bifurcation.
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