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Abstract
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1. Introduction and Preliminaries

The concept of multiplicative calculus was initiated by Grossman and Katz [3]. Inspired by this new approach to calculus, Özavşar and
Çevikel [5] came up with the idea of the multiplicative metric space. This space differs from the more familiar metric space in that the
operation of addition is replaced by that of multiplication in the defining axioms of the space. The researchers Özavşar and Çevikel [5] also
described various topological properties of this space. They proved that the Banach Contraction Principle is applicable for multiplicative
metric spaces when the term “contraction” is suitably defined.
Researchers have developed fixed point theorems for self-mappings in multiplicative metric spaces. We have those by Abbas et. al [1] and
Hxiaoju et. al [4] as examples. However, research on fixed point theorems for non-self mappings in multiplicative metric spaces is limited.
In this study, we prove a fixed point theorem for non-self mappings in multiplicative metric spaces.
First, we introduce the preliminary concepts which are useful in this study. In this work, R+ and N represent the set of all positive real
numbers and the set of natural numbers respectively. We also use the term MMS as an abbreviation of multiplicative metric space.
The following is the definition of a multiplicative metric space.

Definition 1.1. [1] Let X be a nonempty set. A function d : X×X → R+ is said to be a multiplicative metric on X if for any x,y,z ∈ X , the
following conditions hold:

(m1) d(x,y)≥ 1 and d(x,y) = 1 if and only if x = y;
(m2) d(x,y) = d(y,x);
(m3) d(x,y)≤ d(x,z) ·d(z,y).

The pair (X ,d) is called a multiplicative metric space.

Examples of multiplicative metric spaces are stated here.

Example 1.2. [5] Let d∗ : (R+)
n× (R+)

n→ [1,+∞) be defined as follows

d∗(x,y) =
∣∣∣∣x1

y1

∣∣∣∣∗ ∣∣∣∣x2

y2

∣∣∣∣∗ · · · ∣∣∣∣xn

yn

∣∣∣∣∗ ,
where x = (x1,x2, . . . ,xn), y = (y1,y2, . . . ,yn) ∈ (R+)

n and
∣∣ · ∣∣∗ : R+→ [1,+∞) is defined as

|a|∗ =
{

a, if a≥ 1
1
a , if a < 1.

Then
(
(R+)

n, d∗
)

is a multiplicative metric space.
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The following example is modified from Özavşar and Çevikel [5].

Example 1.3. Let a > 1 be a fixed number. Then da : R×R→ [1,+∞] defined by da(x,y) = a|x−y| holds the multiplicative metric conditions.

Definition 1.4. [5] Let (X ,d) be a multiplicative metric space, x ∈ X and ε > 1. Define the following set: Bε (x) := {y ∈ X : d(x,y)< ε},
which is called the multiplicative open ball of radius ε with center x. Similarly, one can describe the multiplicative closed ball as follows:
B̄ε (x) := {y ∈ X : d(x,y)≤ ε}.

Definition 1.5. [5] Let (X ,d) be a multiplicative metric space, {xn} be a sequence in X and x ∈ X . If for every multiplicative open ball
Bε (x) there exists a natural number N such that if n≥ N⇒ xn ∈ Bε (x), then the sequence {xn} is said to be multiplicative converging to x,
denoted by xn→∗ x(n→ ∞).

Lemma 1.6. [5] Let (X ,d) be a multiplicative metric space, {xn} be a sequence in X and x ∈ X. Then xn→∗ x as n→ ∞ if and only if
d(xn,x)→∗ 1 as n→ ∞.

Lemma 1.7. [5] Let (X ,d) be a multiplicative metric space and {xn} be a sequence in X. If the sequence {xn} is multiplicative convergent,
then the multiplicative limit point is unique.

Definition 1.8. [5] Let (X ,d) be a multiplicative metric space and {xn} be a sequence in X . The sequence {xn} is called a multiplicative
Cauchy sequence if for all ε > 1, there exists N ∈ N such that d(xm,xn)< ε for all m,n≥ N.

Lemma 1.9. [5] Let (X ,d) be a multiplicative metric space and {xn} be a sequence in X. Then {xn} is a multiplicative Cauchy sequence if
and only if d(xn,xm)→∗ 1 as m,n→ ∞.

Definition 1.10. [5] Let (X ,d) be a multiplicative metric space. A subset S⊆ X is called multiplicative closed in (X ,d) if S contains all of
its multiplicative limit points.

Theorem 1.11. [5] Let (X ,d) be a multiplicative metric space and S ⊆ X. Then the set S is multiplicative closed if and only if every
multiplicative convergent sequence in S has a multiplicative limit point that belongs to S.

Theorem 1.12. [5] Let (X ,d) be a multiplicative metric space and S⊆ X. Then (S,d) is complete if and only if S is multiplicative closed.

Using the common topological definition of the boundary of a set, we provide the following definition.

Definition 1.13. Let (X ,d) be a multiplicative metric space and S⊆ X . The boundary of S, denoted by ∂S, is the set of points x ∈ X such
that every open ball Bε (x) contains at least one point of S and at least one point not of S.

Inspired by the definition of a metrically convex metric space by Assad and Kirk [6], we define a multiplicative metrically convex MMS.

Definition 1.14. A complete MMS (X ,d) is said to be multiplicative metrically convex if X has the property that for each x,y ∈ X with
x 6= y there exists z ∈ X ,x 6= z 6= y, such that d(x,y) = d(x,z) ·d(z,y).

If (X ,d) is a multiplicative metrically convex metric space, and x,y ∈ X , we term

seg[x,y] := {z ∈ X : d(x,y) = d(x,z) ·d(z,y)}. (1.1)

We state an example of a multiplicative convex MMS.

Example 1.15. Let d∗ : R+×R+→ [1,+∞) be defined as

d?(x,y) =
∣∣∣∣xy
∣∣∣∣∗ , where |a|∗ =


a, if a≥ 1

1
a
, if a < 1

.

Then (R+,d∗) is a multiplicative convex MMS. Without loss of generality, let x,y ∈R+ be such that x < y. Then for all z such that x < z < y,
we have z ∈ seg[x,y].

Lemma 1.16. Let C be a multiplicative closed subset of the complete and multiplicative metrically convex MMS (X ,d). If x ∈C and y /∈C,
then there exists a point z ∈ ∂C (the boundary of C) such that z ∈ seg[x,y].

Proof. From Definition 1.14, for x,y ∈ X and z ∈ seg[x,y], we have

d(x,z) ·d(z,y) = d(x,y)

⇒ d(x,z)≤ d(x,y), because d(y,z)≥ 1

⇒ d(x,z) = d(x,y)t for some t ∈ (0,1).

We can write z as a function of t as

z(t) = {z ∈ seg[x,y] : d(x,z) = d(x,y)t}.

When t→ 0, we have

d(x,z)→ 1⇒ z→ x, by (m1) of Definition 1.1.

When t→ 1, we have

d(x,z)→ d(x,y)⇒ z→ y.

The power function is a continuous function. Thus z traces a continuous curve from x to y. If x ∈C and y ∈ X\C, the continuous curve traced
by z will intersect the boundary of C on at least one point. This proves the lemma.
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We introduce the following lemma.

Lemma 1.17. Let (X ,d) be a multiplicative metrically convex MMS and let x,y ∈ X. If z ∈ seg[x,y] then

(i) d(x,z)≤ d(x,y) and
(ii) d(y,z)≤ d(x,y).

Proof. From Definition 1.14, for x,y ∈ X and z ∈ seg[x,y], we have

d(x,z) ·d(z,y) = d(x,y)

⇒ d(x,z) =
d(x,y)
d(z,y)

≤ d(x,y) because d(z,y)≥ 1.

Similarly,

d(y,z) =
d(x,y)
d(x,z)

≤ d(x,y) because d(x,z)≥ 1.

In this study, the following lemma from Rugumisa and Kumar [8] is used.

Lemma 1.18. [8] Consider a sequence {wn}n∈N ∈ R+ such that, for all n≥ 2, we have

wn ≤ k max{wn−2,wn−1},k ∈ (0,1), (1.2)

then

wn ≤ kn/2k−1/2 max{w0,w1}. (1.3)

Recently Khan and Imdad [7] proved the following fixed point theorem for self mappings in MMS.

Theorem 1.19. [7] Let A,B, I and J be self-mappings of a multiplicative metric space (X ,d) satisfying A(X)⊂ J(X), B(X)⊂ I(X) and

d(Ax,By)≤
[

max{d(Ix,Jy),d(Ix,Ax),d(By,Jy),d(Ax,Jy),d(Ix,By)}
]λ
,λ ∈ (0,

1
2
) for all x,y ∈ X .

If one of A(X),B(X), I(X),J(X) is a complete subspace of X, then the following conclusions hold
(i) (A,I) has coincidence point,
(ii) (B,J) has coincidence point.
Further, if the pairs (A, I) and (B,J) are coincidently commuting, then A,B, I and J have a unique common fixed point.

Theorem 1.19 is proved for self mappings. In this study, we modify Theorem 1.19 so that it applies to non-self mappings.

2. Main Result.

We prove the following theorem.

Theorem 2.1. Let (X,d) be a multiplicative metric space which is complete and multiplicative metrically convex. Let the mapping T : C→ X,
where C is a multiplicative closed subset of X with a non-empty boundary ∂C, obey the following conditions:

(i) d(T x,Ty)≤ [max{d(x,y),d(x,T x),d(y,Ty),d(x,Ty),(d(y,T x)}]λ , where λ ∈
(

0,
1
3

)
,

(ii) ∂C ⊂ TC,
(iii) x ∈ ∂C implies T x ∈C, and
(iv) TC is multiplicative closed.

Then T has a unique fixed point.

Proof. We construct a sequence {xn}n∈N in the following way. We commence at arbitrary point x0 ∈ ∂C. By (ii), we find x1 = T x0 ∈C. We
then find T x1. We proceed inductively as follows:
If T xn ∈ C, then xn+1 = T xn. If however T xn /∈ C then we choose xn+1 ∈ ∂C such that xn+1 ∈ seg[xn,T xn]. We partition the sequence
{xn}n∈N into two sets P and Q where P = {xn : xn = T xn−1, i≥ 1} and Q = {xn : xn 6= T xn−1}. From the construction of sequence, we note
that when xn ∈ Q, then xn ∈ seg[xn−1,T xn−1] and xn ∈ ∂C. We consider the following cases.
Case 1. Consider (xn,xn+1) ∈ P×P, n≥ 1. This implies xn = T xn−1 and xn+1 = T xn. From (i) in the assumption, we have

d(xn,xn+1) = d(T xn−1,T xn)

≤ [max{d(xn−1,xn),d(xn−1,T xn−1),d(xn,T xn),d(xn−1,T xn),d(xn,T xn−1)}]λ

= [max{d(xn−1,xn),d(xn−1,xn),d(xn,xn+1),d(xn−1,xn+1),d(xn,xn)}]λ

= [max{d(xn−1,xn),d(xn,xn+1),d(xn−1,xn+1)}]λ ,using (m1) of Definition 1.1,

≤ [max{d(xn−1,xn),d(xn−1,xn) ·d(xn,xn+1)}]λ , by (m3),

= [d(xn−1,xn) ·d(xn,xn+1)]
λ , by (m1).
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The expression above implies

d(xn,xn+1)≤ d(xn−1,xn)
λ

1−λ = d(xn−1,xn)
k, where k =

λ

1−λ
. (2.1)

Case 2. Consider (xn,xn+1) ∈ P×Q, n≥ 1. From the construction of sequence, this means xn = T xn−1 and xn+1 ∈ seg[T xn−1,T xn]. From
(i), we have

d(xn,T xn) = d(T xn−1,T xn)

≤ [max{d(xn−1,xn),d(xn−1,T xn−1),d(xn,T xn),d(xn−1,T xn),d(xn,T xn−1)}]λ

= [max{d(xn−1,xn),d(xn−1,xn),d(xn,T xn),d(xn−1,T xn),d(xn,xn)}]λ

= [max{d(xn−1,xn),d(xn−1,T xn)}]λ

≤ [max{d(xn−1,xn),d(xn−1,xn) ·d(xn,T xn)}]λ , by (m3)

= [d(xn−1,xn) ·d(xn,T xn)]
λ , by (m1).

The above expression implies d(xn,T xn)≤ [d(xn−1,xn)]
λ

1−λ . Because xn+1 ∈ seg[xn,T xn)], by Lemma 1.17, we have

d(xn,xn+1)≤ d(xn,T xn)≤ [d(xn−1,xn)]
k, where k =

λ

1−λ
. (2.2)

Case 3. Consider (xn,xn+1) ∈ Q×P. In this scenario, we have xn+1 = T xn. We also have xn ∈ seg[xn−1,T xn−1].

Remark 1. We claim that xn ∈ Q implies xn−1 ∈ P. We prove this claim by contradiction. Suppose xn−1 ∈ Q. This implies that xn−1 ∈ ∂C.
From (iii) in the assumption, this means xn = T xn−1 ∈C. This implies xn ∈ P which is a contradiction. Hence xn ∈ Q implies xn−1 ∈ P.
As xn−1 ∈ P, we have xn−1 = T xn−2.
Applying (m3) of Definition 1.1, we have

d(xn,xn+1) = d(xn,T xn)≤ d(xn,T xn−1) ·d(T xn−1,T xn). (2.3)

Subcase 3.1. Suppose d(xn,T xn−1)≤ d(T xn−1,T xn). Then (2.3) leads to

d(xn,xn+1)≤ d(T xn−1,T xn) ·d(T xn−1,T xn) = [d(T xn−1,T xn)]
2. (2.4)

Let us consider d(T xn−1,T xn). Using an argument similar to that in Case 2, we get

d(T xn−1,T xn)≤ [d(xn−1,xn)]
k, where k =

λ

1−λ
. (2.5)

Applying (2.5) to (2.4), we get

d(xn,xn+1)≤ [d(xn−1,xn)]
2k. (2.6)

Subcase 3.2. Suppose d(xn,T xn−1)> d(T xn−1,T xn). Then (2.3) leads to

d(xn,xn+1)≤ d(xn,T xn−1) ·d(xn,T xn−1) = [d(xn,T xn−1)]
2. (2.7)

By Lemma 1.17, we have that d(xn,T xn−1)≤ d(xn−1,T xn−1). Also, by Remark 1, we have xn−1 = T xn−2. Hence (2.7) becomes

d(xn,xn+1)≤ [d(T xn−2,T xn−1)]
2. (2.8)

Using (i) in the assumption, we get

d(T xn−2,T xn−1)≤ [max{d(xn−2,xn−1),d(xn−2,T xn−2),d(xn−1,T xn−1),d(xn−2,T xn−1),d(xn−1,T xn−2)}]λ

= [max{d(xn−2,T xn−2),d(xn−2,T xn−2),d(T xn−2,T xn−1),d(xn−2,T xn−1),d(T xn−2,T xn−2)}]λ

= [max{d(xn−2,T xn−2),d(xn−2,T xn−1)}]λ . (2.9)

We apply (m3) of Definition 1.1 to (2.9), and get

d(T xn−2,T xn−1)≤ [max{d(xn−2,T xn−2),d(xn−2,T xn−2) ·d(T xn−2,T xn−1)}]λ

= [d(xn−2,T xn−2) ·d(T xn−2,T xn−1)]
λ , by (m1)

≤ [d(xn−2,T xn−2)]
k, where k =

λ

1−λ

⇒ d(T xn−2,T xn−1)≤ [d(xn−2,xn−1)]
k. (2.10)

Applying (2.10) to (2.8), we get

d(xn,xn+1)≤ [d(xn−2,xn−1)]
2k. (2.11)

From (2.6) and (2.11), we conclude that, for (xn,xn+1) ∈ P×Q, we have

d(xn,xn+1)≤ [max{d(xn−2,xn−1),d(xn−1,xn)}]2k, where k =
λ

1−λ
. (2.12)
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As is evident from Remark 1, the case where (xn,xn+1) ∈ Q×Q is not possible. Hence, for all possible cases, the equations (2.1), (2.2) and
(2.12) imply

d(xn,xn+1)≤ [max{d(xn−2,xn−1),d(xn−1,xn)}]2k, n≥ 2. (2.13)

Because the logarithm function is an increasing function, (2.13) leads to

log
(
d(xn,xn+1)

)
≤ 2k[max{log

(
d(xn−2,xn−1)

)
, log

(
d(xn−1,xn)

)
}]. (2.14)

From the assumption, we have λ ∈ (0,1/3). Because k =
λ

1−λ
, this means 2k ∈ (0,1). We apply Lemma 1.18 with wn = log

(
d(xn,xn+1)

)
and get

log
(
d(xn,xn+1)

)
≤ (2k)n/2

δ , where δ = (2k)−1/2 max{log
(
d(x0,x1)

)
, log

(
d(x1,x2)

)
}. (2.15)

The exponential function is an increasing function. When we use the exponential function on both sides of equation (2.15), we get

d(xn,xn+1)≤ exp
(
(2k)n/2

δ
)
. (2.16)

Let m,n ∈ N with m < n. Using (m3) of Definition 1.1 inductively, we get

d(xm,xn)≤
n−1

∏
i=m

d(xi,xi+1)

≤
+∞

∏
i=m

d(xi,xi+1)

≤
+∞

∏
i=m

exp
(
(2k)i/2

δ
)
, by (2.16)

= exp

(
δ

+∞

∑
i=m

(2k)i/2

)

= exp
(

δ (2k)m/2 1
1− (2k)1/2

)
, sum of G.P.

We take the limits m,n→+∞. In doing so, we use the continuity of the exponential function. We also recall that 2k ∈ (0,1). We get

lim
m,n→+∞

d(xm,xn) = 1.

By Lemma 1.9, this shows that the sequence {xn} ∈C is a multiplicative Cauchy sequence. By Theorem 1.12, because C is a multiplicative
closed subset of X , it is also complete. This means there is z ∈C such that xn→∗ z as n→+∞.
Consider the subsequence {xnk} of {xn} for which xnk ∈ P for all k ∈ N. For nk ≥ 1, we have

T xnk−1 = xnk

⇒ lim
k→+∞

T xnk−1 = lim
k→+∞

xnk = z. (2.17)

Because z ∈C, there is u ∈ TC such that u = T z. Using (i) in the assumption, we have

d(u,T xnk−1) = d(T z,T xnk−1)

≤ [max{d(z,xnk−1),d(z,T z),d(xnk−1,T xnk−1),d(z,T xnk−1),d(xnk−1,T z)}]λ

= [max{d(z,xnk−1),d(z,u),d(xnk−1,T xnk−1),d(z,T xnk−1),d(xnk−1,u)}]λ .

Taking limits k→+∞, we get

d(u,z)≤ [maxd(z,z),d(z,u),d(z,z),d(z,z),d(z,u)]λ

= [d(z,u)]λ

= [d(u,z)]λ

⇒ d(u,z) = 1, because λ ∈ (0,1/3)

⇒ u = z, by (m1) of Definition 1.1.

Thus z = T z, making z a fixed point of mapping T .
We show that z is unique. Suppose z′ is also a fixed point of T . From the assumption, we have

d(z,z′) = d(T z,T z′)

≤ [max{d(z,z′),d(z,T z),d(z′,T z′),d(z,T z′),d(z′,T z)}]λ

= [max{d(z,z′),d(z,z),d(z′,z′),d(z,z′),d(z′,z)}]λ

= [d(z,z′)]λ

⇒ d(z,z′) = 1, because λ ∈ (0,1/3)

⇒ z = z′, by (m1) of Definition 1.1.

Hence the fixed point z is unique.
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We now show an example on the use of this theorem.

Example 2.2. Consider the multiplicative space metric space (R)+,d), with d = da defined as in Example 1.3 with a = 2. The space (X ,d)
is complete and multiplicative metrically convex.

Let C = [0,6]∪ [10,40]. Define the mapping T : C→ R+ as T x =
1
4

x. From the given information, TC = [0,1.5]∪ [2.5,10] is closed. For

x ∈ ∂C = {0,6,10,40}, we have T x = {0,1/5,2.5,10} ⊂C. We note that for some values c ∈C, (such as c = 32), we have T c /∈C, making
T a non-self mapping. Without loss of generality let x,y ∈C, x≥ y. Thus

d(T x,Ty) = d
(1

4
x,

1
4

y
)

= 2
1
4 |x−y|

≤ 20.3|x−y|

=
[
2|x−y|]0.3

= [d(x,y)]0.3

≤
[

max{d(x,y),d(x,T x),d(y,Ty),d(x,Ty),d(y,T x)})
]λ
,

where λ = 0.3 ∈
(

0,
1
3

)
.

The conditions for the assumption have been met, and z = 0 is the unique fixed point of T because T (0) = 0.
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