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Abstract

In this paper, we establish new best proximity point theorems considering a classical global optimization problem of finding the minimum
distance between pairs of closed sets using the contractive conditions of integral type on a complete metric space. These results can be used
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1. Introduction

Fixed and proximity point problems are very famous since there exist some applications of these problems in various areas such as
engineering, physical theories, computer science etc. Mainly, the proximity point problem is used to find the minimum distance between two
sets with a function. Hence the proximity point problem can be studied on a metric space since a metric (or a distance function) is a function
which defines a distance between each pair of elements of any set.
Fixed point theory has been studied on various metric spaces using some contractive conditions. For example, Mustafa and Sims introduced
the notion of a G-metric space as a new approach to generalized metric spaces in [15]. Thereafter, some authors obtained new fixed-point
results on a G-metric space (see [6], [13] and [14] for more details). Recently, Sedghi et al. defined the concept of an S-metric space and
obtained some fixed-point theorems in [26]. Then using various contractive conditions, new existence and uniqueness fixed-point theorems
have been proved in some papers. For some examples, one can see [16], [17], [18], [26] and [27]. Also some mathematicians investigated
new contractive conditions of integral type to obtain interesting fixed-point results (see [19], [20] and [25] for more details).
There are several studies on the best proximity point problem in the literature. Some authors obtained new best proximity results using
certain types of contractive inequalities and also investigated optimal approximate solutions of some fixed-point equations (see [1], [2], [3],
[7], [8], [9], [10], [11], [12], [21], [22], [23] and [24] for more details).
Now we recall the following concepts:
Let (X ,ρ) be a metric space and E,F ⊂ X .
A pair (u,v) ∈ E×F is called a best proximity pair if

ρ(u,v) = ρ(E,F) = inf{ρ(e, f ) : e ∈ E and f ∈ F} .

If E 6= /0, F 6= /0⊂ X and T : E→ F then

ρ(u,Tu)≥ ρ(E,F),

for all u ∈ E.
A point e ∈ E is called a best proximity point with respect to T if

ρ(e,Te) = ρ(E,F),

that is, the function ρ(e,Te) attains its global minimum at the point e and this value is equal to ρ(E,F). Hence it is a problem of global
minimization.
In the next section, we use the following class of functions given in [4] and [5], respectively, to obtain new proximity point results:
Let S be the class of functions θ : [0,∞)→ [0,1) satisfy the condition θ(tn)→ 1 implies tn→ 0.
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Let Ψ be the class of functions ψ : [0,∞)→ [0,∞) such that ψ is continuous, strictly increasing and ψ(0) = 0.
On the other hand, the existence of optimal approximate solutions which are called best proximity points is investigated by best proximity
point theorems to the fixed-point equation Tu = u when there is no exact solution. As the distance between any element u ∈ E and its image
Tu ∈ F is at least the distance between the sets E and F , a best proximity point theorem gets global minimum of ρ(u,Tu) by stipulating an
approximate solution u of the fixed point equation Tu = u to satisfy the condition

ρ(u,Tu) = ρ(E,F).

The aim of this article is to establish new best proximity point theorems considering a classical global optimization problem of finding
the minimum distance between pairs of closed sets using the contractive conditions of integral type on a complete metric space. Also an
illustrative example is given.

2. Main Results

Now, we prove some proximity point results on a complete metric space. Throughout the whole paper we assume that κ : [0,∞)→ [0,∞) is a
Lebesgue integrable mapping which is summable (i.e. with finite integral) on each compact subset of [0,∞), nonnegative and such that for
each ε > 0,

ε∫
0

κ(t)dt > 0. (2.1)

Let (X ,ρ) be a complete metric space and E 6= /0, F 6= /0 any closed subsets of X in the next theorems, unless otherwise stated.

Theorem 2.1. Let the function κ : [0,∞)→ [0,∞) be defined as in (2.1) and T : E ∪F → E ∪F a self-mapping satisfying:

1. T (E)⊆ F and T (F)⊆ E,
2.

ρ(Tu,T v)∫
0

κ(t)dt ≤ θ

(
M1(u,v)∫

0
κ(t)dt

)
M1(u,v)∫

0
κ(t)dt +

(
1−θ

(
M1(u,v)∫

0
κ(t)dt

))
ρ(E,F)∫

0
κ(t)dt, (2.2)

where u ∈ E, v ∈ F, θ ∈S and M1(u,v) = max{ρ(u,v),ρ(u,Tu),ρ(v,T v)} .

Let u0 ∈ E be any element and the sequence {un} defined as un+1 = Tun for all n≥ 0. Then ρ (un,Tun)→ ρ(E,F). If {u2n} has a convergent
subsequence in E, the subsequence converges to a proximity point.

Proof. Using the hypothesis, we have un−1 ∈ E, un ∈ F or un ∈ E, un−1 ∈ F , for all n≥ 1 according to n is odd or even. Using the inequality
(2.2) and the definition of the sequence {un} for all n≥ 1, we obtain

ρ(un,un+1)∫
0

κ(t)dt =
ρ(Tun−1,Tun)∫

0
κ(t)dt ≤ θ

(
M1(un−1,un)∫

0
κ(t)dt

)
M1(un−1,un)∫

0
κ(t)dt +

(
1−θ

(
M1(un−1,un)∫

0
κ(t)dt

))
ρ(E,F)∫

0
κ(t)dt, (2.3)

where

M1(un−1,un) = max{ρ(un−1,un),ρ(un−1,Tun−1),ρ(un,Tun)}
= max{ρ(un−1,un),ρ(un,un+1)} .

Let ρ(un,un+1)> ρ(un−1,un). Then we get

M1(un−1,un) = ρ(un,un+1)

and so

ρ(un,un+1)∫
0

κ(t)dt−
ρ(E,F)∫

0
κ(t)dt ≤ θ

(
ρ(un,un+1)∫

0
κ(t)dt

)(
ρ(un,un+1)∫

0
κ(t)dt−

ρ(E,F)∫
0

κ(t)dt

)
.

Hence we get θ

(
ρ(un,un+1)∫

0
κ(t)dt

)
≥ 1, which is a contradiction since θ ∈S . So we have

ρ(un,un+1)≤ ρ(un−1,un)

and

M1(un−1,un) = ρ(un−1,un). (2.4)

Then there exists p with 0 < ρ(E,F)≤ p such that

lim
n→∞

M1(un−1,un) = lim
n→∞

ρ(un−1,un) = p. (2.5)
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Let ρ(E,F)< p. Using the conditions (2.3) and (2.4), we have

ρ(un,un+1)∫
0

κ(t)dt−
ρ(E,F)∫

0
κ(t)dt

ρ(un−1,un)∫
0

κ(t)dt−
ρ(E,F)∫

0
κ(t)dt

≤ θ

 ρ(un−1,un)∫
0

κ(t)dt

< 1,

for all n≥ 1 since θ ∈S . If we take limit for n→ ∞ then using the equality (2.5), we get

lim
n→∞

θ

 ρ(un−1,un)∫
0

κ(t)dt

= 1.

This implies that

lim
n→∞

ρ(un−1,un)∫
0

κ(t)dt = 0,

which is a contradiction with ρ(E,F)< p. Hence p = ρ(E,F) and

ρ(un,Tun)→ ρ(E,F), (2.6)

as n→ ∞. Let {u2nk} be a subsequence of {u2n} and

lim
k→∞

u2nk = y0. (2.7)

Since {u2nk−1} is a sequence in F then we obtain

ρ(E,F)∫
0

κ(t)dt ≤
ρ(y0,u2nk−1)∫

0
κ(t)dt ≤

ρ(y0,u2nk )+ρ(u2nk ,u2nk−1)∫
0

κ(t)dt ≤
ρ(y0,u2nk )∫

0
κ(t)dt +

ρ(u2nk ,u2nk−1)∫
0

κ(t)dt

=
ρ(y0,u2nk )∫

0
κ(t)dt +

ρ(u2nk−1,Tu2nk−1)∫
0

κ(t)dt,

for all k > 0. If we take limit for k→ ∞ then using the condition (2.6), we have

lim
k→∞

ρ(y0,u2nk−1)∫
0

κ(t)dt =

ρ(E,F)∫
0

κ(t)dt. (2.8)

Now we get

ρ(y0,Ty0)∫
0

κ(t)dt ≤
ρ(y0,u2nk )+ρ(u2nk ,Ty0)∫

0
κ(t)dt ≤

ρ(y0,u2nk )∫
0

κ(t)dt +
ρ(Tu2nk−1,Ty0)∫

0
κ(t)dt

≤
ρ(y0,u2nk )∫

0
κ(t)dt +θ

(
M1(u2nk−1,y0)∫

0
κ(t)dt

)
M1(u2nk−1,y0)∫

0
κ(t)dt +

(
1−θ

(
M1(u2nk−1,y0)∫

0
κ(t)dt

))
ρ(E,F)∫

0
κ(t)dt

= θ

(
M1(u2nk−1,y0)∫

0
κ(t)dt

)(
M1(u2nk−1,y0)∫

0
κ(t)dt−

ρ(E,F)∫
0

κ(t)dt

)
+

ρ(E,F)∫
0

κ(t)dt +
ρ(y0,u2nk )∫

0
κ(t)dt.

(2.9)

Using the conditions (2.6) and (2.8), we obtain

lim
k→∞

M1(x2nk−1,y0)∫
0

κ(t)dt (2.10)

= lim
k→∞

max{ρ(x2nk−1,y0),ρ(x2nk−1,x2nk ),ρ(y0,Ty0)}∫
0

κ(t)dt =

ρ(y0,Ty0)∫
0

κ(t)dt.

We assume that ρ(y0,Ty0)> ρ(E,F). If we take limit for k→ ∞ then using the conditions (2.9) and (2.10), we have

ρ(y0,Ty0)∫
0

κ(t)dt−
ρ(E,F)∫

0
κ(t)dt ≤ lim

k→∞
θ

(
M1(u2nk−1,y0)∫

0
κ(t)dt

)(
ρ(y0,Ty0)∫

0
κ(t)dt−

ρ(E,F)∫
0

κ(t)dt

)
≤

ρ(y0,Ty0)∫
0

κ(t)dt−
ρ(E,F)∫

0
κ(t)dt

and so

lim
k→∞

θ

 M1(u2nk−1,y0)∫
0

κ(t)dt

= 1.
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Since θ ∈S , we get

lim
k→∞

M1(u2nk−1,y0)∫
0

κ(t)dt = 0,

which implies that

lim
k→∞

M1(u2nk−1,y0) = 0,

that is, y0 = Ty0, which is a contradiction with our assumption. Hence

ρ(y0,Ty0) = ρ(E,F).

Consequently, {u2nk} converges to a proximity point.

Considering κ(t) = 1 in Theorem 2.1 then we get Theorem 2 given in [8] on page 100.

Theorem 2.2. Let the function κ : [0,∞)→ [0,∞) be defined as in (2.1) and T : E ∪F → E ∪F a self-mapping satisfying:

1. T (E)⊆ F and T (F)⊆ E,
2.

ρ(Tu,T v)∫
0

κ(t)dt ≤ θ

(
M2(u,v)∫

0
κ(t)dt

)
M2(u,v)∫

0
κ(t)dt +

(
1−θ

(
M2(u,v)∫

0
κ(t)dt

))
ρ(E,F)∫

0
κ(t)dt,

where u ∈ E, v ∈ F, θ ∈S and

M2(u,v) = max
{

ρ(u,v),ρ(u,Tu),ρ(v,T v), ρ(u,Tu)ρ(v,T v)
1+ρ(u,v) ,

ρ(u,Tu)ρ(v,T v)
1+ρ(Tu,T v)

}
.

Let u0 ∈ E be any element and the sequence {un} defined as un+1 = Tun for all n≥ 0. Then ρ (un,Tun)→ ρ(E,F). If {u2n} has a convergent
subsequence in E, the subsequence converges to a proximity point.

Proof. The proof is similar to the proof of Theorem 2.1 since

M2(un−1,un) = max{ρ(un−1,un),ρ(un+1,un)} .

In the following theorem, we obtain a new best proximity result using the class Ψ and a function α : X×X → [1,∞).

Theorem 2.3. Let the function κ : [0,∞)→ [0,∞) be defined as in (2.1) and T : E ∪F → E ∪F a self-mapping satisfying:

1. T (E)⊆ F and T (F)⊆ E,
2.

α(u,v)ψ

(
ρ(Tu,T v)∫

0
κ(t)dt

)
≤ θ

(
ψ

(
M1(u,v)∫

0
κ(t)dt

))
ψ

(
M1(u,v)∫

0
κ(t)dt

)
+

(
1−θ

(
ψ

(
M1(u,v)∫

0
κ(t)dt

)))
ρ(E,F)∫

0
κ(t)dt,

(2.11)

where u ∈ E, v ∈ F, θ ∈S , α : X×X → [1,∞) and ψ ∈Ψ.

Let u0 ∈ E be any element and the sequence {un} defined as un+1 = Tun for all n≥ 0. Then ρ (un,Tun)→ ρ(E,F). If {u2n} has a convergent
subsequence in E, the subsequence converges to a proximity point.

Proof. Using the hypothesis, we have

un−1 ∈ E, un ∈ F or un ∈ E, un−1 ∈ F ,

for all n≥ 1 according to n is odd or even. Using the inequality (2.11), for all n≥ 1, we obtain

α (un−1,un)ψ

(
ρ(un,un+1)∫

0
κ(t)dt

)
= α (un−1,un)ψ

(
ρ(Tun−1,Tun)∫

0
κ(t)dt

)

≤ θ

(
ψ

(
M1(un−1,un)∫

0
κ(t)dt

))
ψ

(
M1(un−1,un)∫

0
κ(t)dt

)
+

(
1−θ

(
ψ

(
M1(un−1,un)∫

0
κ(t)dt

)))
ρ(E,F)∫

0
κ(t)dt,

(2.12)

where

M1(un−1,un) = max{ρ(un−1,un),ρ(un,un+1)} .

Let ρ(un,un+1)> ρ(un−1,un). Then we get

M1(un−1,un) = ρ(un,un+1)
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and so

α (un−1,un)ψ

(
ρ(un,un+1)∫

0
κ(t)dt

)
−

ρ(E,F)∫
0

κ(t)dt ≤ θ

(
ψ

(
ρ(un,un+1)∫

0
κ(t)dt

))[
ψ

(
ρ(un,un+1)∫

0
κ(t)dt

)
−

ρ(E,F)∫
0

κ(t)dt

]
.

Hence we get θ

(
ψ

(
ρ(un,un+1)∫

0
κ(t)dt

))
≥ 1. Therefore we have a contradiction with θ ∈S and

M1(un−1,un) = ρ(un−1,un). (2.13)

Then there exists p with 0 < ρ(E,F)≤ p such that

lim
n→∞

M1(un−1,un) = lim
n→∞

ρ(un−1,un) = p. (2.14)

Let ρ(E,F)< p. Using the conditions (2.12) and (2.13), we have

α (u,v)ψ

(
ρ(un,un+1)∫

0
κ(t)dt

)
−

ρ(E,F)∫
0

κ(t)dt

ψ

(
ρ(un−1,un)∫

0
κ(t)dt

)
−

ρ(E,F)∫
0

κ(t)dt

≤ θ

ψ

 ρ(un−1,un)∫
0

κ(t)dt

< 1,

for all n≥ 1 since θ ∈S . If we take limit for n→ ∞ then using the equality (2.14), we get

lim
n→∞

θ

ψ

 ρ(un−1,un)∫
0

κ(t)dt

= 1.

This implies that

lim
n→∞

ψ

 ρ(un−1,un)∫
0

κ(t)dt

= 0

and

lim
n→∞

ρ(un−1,un)∫
0

κ(t)dt = 0,

which is a contradiction with ρ(E,F)< p. Hence p = ρ(E,F) and

ρ(un,Tun)→ ρ(E,F), (2.15)

as n→ ∞. Let {u2nk} be a subsequence of {u2n} and

lim
k→∞

u2nk = y0. (2.16)

Since {u2nk−1} is a sequence in F then we obtain

ρ(E,F)∫
0

κ(t)dt ≤
ρ(y0,u2nk−1)∫

0
κ(t)dt ≤

ρ(y0,u2nk )+ρ(u2nk ,u2nk−1)∫
0

κ(t)dt ≤
ρ(y0,u2nk )∫

0
κ(t)dt +

ρ(u2nk−1,Tu2nk−1)∫
0

κ(t)dt,

for all k > 0. If we take limit for k→ ∞ then using the condition (2.15), we have

lim
k→∞

ρ(y0,u2nk−1)∫
0

κ(t)dt =

ρ(E,F)∫
0

κ(t)dt. (2.17)

Now we get

ψ

(
ρ(y0,Ty0)∫

0
κ(t)dt

)
≤ ψ

(
ρ(y0,u2nk )∫

0
κ(t)dt

)
+ψ

(
ρ(Tu2nk−1,Ty0)∫

0
κ(t)dt

)

≤ ψ

(
ρ(y0,u2nk )∫

0
κ(t)dt

)
+α (u2nk−1,y0)ψ

(
ρ(Tu2nk−1,Ty0)∫

0
κ(t)dt

)

≤ θ

(
ψ

(
M1(u2nk−1,y0)∫

0
κ(t)dt

))
ψ

(
M1(u2nk−1,y0)∫

0
κ(t)dt

)
+

(
1−θ

(
ψ

(
M1(u2nk−1,y0)∫

0
κ(t)dt

)))
ρ(E,F)∫

0
κ(t)dt +ψ

(
ρ(y0,u2nk )∫

0
κ(t)dt

)

= θ

(
ψ

(
M1(u2nk−1,y0)∫

0
κ(t)dt

))(
ψ

(
M1(u2nk−1,y0)∫

0
κ(t)dt

)
−

ρ(E,F)∫
0

κ(t)dt

)
+

ρ(E,F)∫
0

κ(t)dt +ψ

(
ρ(y0,u2nk )∫

0
κ(t)dt

)
.

(2.18)
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Using the conditions (2.15) and (2.18) we obtain

lim
k→∞

M1(u2nk−1,y0)∫
0

κ(t)dt = lim
k→∞

max{ρ(u2nk−1,y0),ρ(u2nk−1,u2nk ),ρ(y0,Ty0)}∫
0

κ(t)dt =
ρ(y0,Ty0)∫

0
κ(t)dt. (2.19)

We assume that ρ(y0,Ty0)> ρ(E,F). If we take limit for k→ ∞ then using the conditions (2.18) and (2.19) we have

ψ

(
ρ(y0,Ty0)∫

0
κ(t)dt

)
−

ρ(E,F)∫
0

κ(t)dt

≤ lim
k→∞

θ

(
ψ

(
M1(u2nk−1,y0)∫

0
κ(t)dt

))(
ψ

(
ρ(y0,Ty0)∫

0
κ(t)dt

)
−

ρ(E,F)∫
0

κ(t)dt

)
≤ ψ

(
ρ(y0,Ty0)∫

0
κ(t)dt

)
−

ρ(E,F)∫
0

κ(t)dt

and so

lim
k→∞

θ

ψ

 M1(u2nk−1,y0)∫
0

κ(t)dt


= 1.

Since θ ∈S , we get

lim
k→∞

ψ

 M1(u2nk−1,y0)∫
0

κ(t)dt

= 0

and

lim
k→∞

M1(u2nk−1,y0)∫
0

κ(t)dt = 0,

which implies that

lim
k→∞

M1(u2nk−1,y0) = 0,

that is, y0 = Ty0, which is a contradiction with our assumption. Therefore we get

ρ(y0,Ty0) = ρ(E,F).

Consequently, {u2nk} converges to a proximity point.

Theorem 2.4. Let the function κ : [0,∞)→ [0,∞) be defined as in (2.1) and T : E ∪F → E ∪F a self-mapping satisfying:

1. T (E)⊆ F and T (F)⊆ E,
2.

α(u,v)ψ

(
ρ(Tu,T v)∫

0
κ(t)dt

)
≤ θ

(
ψ

(
M2(u,v)∫

0
κ(t)dt

))
ψ

(
M2(u,v)∫

0
κ(t)dt

)
+

(
1−θ

(
ψ

(
M2(u,v)∫

0
κ(t)dt

)))
ρ(E,F)∫

0
κ(t)dt,

where u ∈ E, v ∈ F, θ ∈S , α : X×X → [1,∞) and ψ ∈Ψ.

Let u0 ∈ E be any element and the sequence {un} defined as un+1 = Tun for all n≥ 0. Then ρ (un,Tun)→ ρ(E,F). If {u2n} has a convergent
subsequence in E, the subsequence converges to a proximity point.

Proof. The proof is similar to the proof of Theorem 2.3 since

M2(un−1,un) = max{ρ(un−1,un),ρ(un+1,un)} .

In the following theorem, we obtain another best proximity result using the class Ψ and two functions α,β : X×X → [1,∞).

Theorem 2.5. Let the function κ : [0,∞)→ [0,∞) be defined as in (2.1) and T : E ∪F → E ∪F a self-mapping satisfying:

1. T (E)⊆ F and T (F)⊆ E,
2.

α(u,Tu)β (v,T v)ψ

(
ρ(Tu,T v)∫

0
κ(t)dt

)
≤ θ

(
ψ

(
M1(u,v)∫

0
κ(t)dt

))
ψ

(
M1(u,v)∫

0
κ(t)dt

)
+

(
1−θ

(
ψ

(
M1(u,v)∫

0
κ(t)dt

)))
ρ(E,F)∫

0
κ(t)dt,

where u ∈ E, v ∈ F, θ ∈S , α,β : X×X → [1,∞) and ψ ∈Ψ.

Let u0 ∈ E be any element and the sequence {un} defined as un+1 = Tun for all n≥ 0. Then ρ (un,Tun)→ ρ(E,F). If {u2n} has a convergent
subsequence in E, the subsequence converges to a proximity point.
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Proof. The proof is obtained by the similar arguments used in the proof of Theorem 2.3.

If we consider the function M2 instead of the function M1 in Theorem 2.5 then we get the following theorem.

Theorem 2.6. Let the function κ : [0,∞)→ [0,∞) be defined as in (2.1) and T : E ∪F → E ∪F a self-mapping satisfying:

1. T (E)⊆ F and T (F)⊆ E,
2.

α(u,Tu)β (v,T v)ψ

(
ρ(Tu,T v)∫

0
κ(t)dt

)
≤ θ

(
ψ

(
M2(u,v)∫

0
κ(t)dt

))
ψ

(
M2(u,v)∫

0
κ(t)dt

)
+

(
1−θ

(
ψ

(
M2(u,v)∫

0
κ(t)dt

)))
ρ(E,F)∫

0
κ(t)dt,

where u ∈ E, v ∈ F, θ ∈S , α,β : X×X → [1,∞) and ψ ∈Ψ.

Let u0 ∈ E be any element and the sequence {un} defined as un+1 = Tun for all n≥ 0. Then ρ (un,Tun)→ ρ(E,F). If {u2n} has a convergent
subsequence in E, the subsequence converges to a proximity point.

Proof. The proof follows easily by the similar arguments used in the proof of Theorem 2.3.

Finally, we give an example of our best proximity results.

Example 2.7. Let X = [0,1]× [0,1] be a metric space with the metric

ρ(u,v) =
n

∑
i=1
|ui− vi| ,

where u = (u1,u2), v = (v1,v2). Let E = {(0,0),(0,1)} and F = {(1,1),(1,0)}. Then we can see that E and F are closed subsets of X and
ρ(E,F) = 1. Let θ : [0,∞)→ [0,1) be defined as

θ(t) =
{ 2

2+t ; if t > 0
k ; if t = 0

,

where k < 1. Let us define the self-mapping T : E ∪F → E ∪F as:

T ((0,0)) = T ((0,1)) = (1,0),

T ((1,1)) = T ((1,0)) = (0,0).

Let κ : [0,∞)→ [0,∞) be defined as

κ(t) = 2t,

for all t ∈ [0,∞). Then all the conditions of Theorem 2.1 are satisfied. Indeed, we have T (E)⊆ F and T (F)⊆ E by the definition of T . Now,
we show that the inequality (2.2) is satisfied for each u ∈ E, v ∈ F in the following cases:
Case 1 : Let u = (0,0) and v = (1,1). Then we get

ρ(Tu,T v) = ρ((1,0),(0,0)) = 1,

M1(u,v) = 2

and

1∫
0

2tdt = 1≤ θ

 2∫
0

2tdt

 2∫
0

2tdt +

1−θ

 2∫
0

2tdt

 1∫
0

2tdt = 4θ(4)+1−θ(4) = 2.

Case 2 : Let u = (0,0) and v = (1,0). Then we get

ρ(Tu,T v) = ρ((1,0),(0,0)) = 1,

M1(u,v) = 2

and

1∫
0

2tdt = 1≤ θ

 1∫
0

2tdt

 1∫
0

2tdt +

1−θ

 1∫
0

2tdt

 1∫
0

2tdt = θ(1)+1−θ(1) = 1.

Case 3 : Let u = (0,1) and v = (1,1). Then we get

ρ(Tu,T v) = ρ((1,0),(0,0)) = 1,

M1(u,v) = 2

and

1∫
0

2tdt = 1≤ 2.
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Case 4 : Let u = (0,1) and v = (1,0). Then we get

ρ(Tu,T v) = ρ((1,0),(0,0)) = 1,

M1(u,v) = 2

and

1∫
0

2tdt = 1≤ 2.

Consequently, (0,0) is a best proximity point of the self-mapping T .

In Example 2.7, we note that if we take the functions α : X×X → [1,∞) and ψ : [0,∞)→ [0,∞) as

α(u,v) = 1 for all (u,v) ∈ X×X

and

ψ(t) = t for all t ∈ [0,∞) ,

respectively, then all the conditions of Theorem 2.3 are satisfied. Similarly, if we take the functions α,β : X×X → [1,∞) and ψ : [0,∞)→
[0,∞) as

α(u,v) = β (u,v) = 1 for all (u,v) ∈ X×X

and

ψ(t) = t for all t ∈ [0,∞) ,

respectively, then all the conditions of Theorem 2.5 are satisfied.
If we consider M2(u,v) instead of M1(u,v) in Example 2.7, then all the conditions of Theorem 2.2 (resp. Theorem 2.4 and Theorem 2.6) are
satisfied. Consequently, (0,0) is a best proximity point of the self-mapping T defined in Example 2.7.
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