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1. Introduction

Let f : I ⊂ R→ R be a convex function defined on the interval I of real numbers and a,b ∈ I with a < b. The following inequality

f
(

a+b
2

)
≤ 1

b−a

b∫
a

f (x)dx≤ f (a)+ f (b)
2

(1.1)

holds. This double inequality is known in the literature as Hermite-Hadamard integral inequality for convex functions. Note that some of the
classical inequalities for means can be derived from (1.1) for appropriate particular selections of the mapping f . Both inequalities hold in the
reversed direction if f is concave. For some results which generalize, improve and extend the inequalities (1.1) we refer the reader to the
recent papers (see [4, 6, 7, 10, 11, 14, 16, 20, 23, 24, 25]).
For r ∈ R the power mean Mr(a,b) of order r of two positive numbers a and b is defined by

Mr = Mr(a,b) =


(

ar+br

2

)1/r
, r 6= 0

√
ab, r = 0

.

It is well-known that Mr(a,b) is continuous and strictly increasing with respect to r ∈ R for fixed a,b > 0 with a 6= b.

Let L = L(a,b) = (b− a)/(lnb− lna), I = I (a,b) = 1
e
(
aa/bb)1/a−b, A = A(a,b) = (a+b)/2, G = G(a,b) =

√
ab and H = H (a,b) =

2ab/(a+ b) be the logarithmic, identric, arithmetic, geometric, and harmonic means of two positive real numbers a and b with a 6= b,
respectively. Then

min{a,b} < H (a,b) = M−1(a,b)< G(a,b) = M0(a,b)< L(a,b)

< I (a,b)< A(a,b) = M1(a,b)< max{a,b} .

Let M be the family of all mean values of two numbers in R+ = (0,∞) . Given M,N ∈M, we say that a function f : R+→ R+ is (M,N)-
convex if f (M(x,y))≤ N ( f (x), f (y)) for all x,y ∈ R+. The concept of (M,N)-convexity has been studied extensively in the literature from
various points of view (see e.g. [2, 3, 5, 26]),
Let A(a,b; t) = ta+(1− t)b, G(a,b; t) = atb1−t , H (a,b; t) = ab/(ta+(1− t)b) and Mp (a,b; t) = (tap +(1− t)bp)1/p be the weighted
arithmetic, geometric, harmonic , power of order p means of two positive real numbers a and b with a 6= b for t ∈ [0,1] , respectively.
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The most used class of means is quasi-arithmetic mean, which are associated to a continuous and strictly monotonic function ϕ : I→ R by
the formula

Mϕ (x,y) = ϕ
−1
(

ϕ(x)+ϕ(y)
2

)
, for x,y ∈ I.

Weighted quasi-arithmetic mean is given by the formula

Mϕ (x,y; t) = ϕ
−1 (tϕ(x)+(1− t)ϕ(y)) , for x,y ∈ I, t ∈ [0,1] .

Here t ∈ (0,1) and x < y always implies x < Mϕ (x,y; t)< y. The function ϕ is called Kolmogoroff-Naguma function of M. Of special interest
are the power means Mp on R+, defined by

ϕp(x) :=
{

xp, p 6= 0
lnx, p = 0 .

For p = 1, we get the arithmetic mean A = M1, for p = 0, we get the geometric mean G = M0 and for p =−1, we get the harmonic mean
H = M−1.
For any two quasi-arithmetic means M,N ( with Kolmogoroff-Naguma function ϕ,ψ defined on intervals I,J, respectively ), a function
f : I→ J can be called

(
Mϕ ,Mψ

)
-convex if it satisfies

f (Mϕ (x,y; t))≤Mψ ( f (x), f (y); t) (1.2)

for all x,y∈ I and t ∈ [0,1] . Unless (1.2) is inequality, then f is said to be
(
Mϕ ,Mψ

)
-concave. If ψ :R→R, ψ(x)= x, (i.e., Mψ ( f (x), f (y); t)=

A( f (x), f (y); t) ), then we just say that f is Mϕ A-convex.
Let f be a Mϕ A-convex.
i) If we take ϕ : I ⊂ R→ R, ϕ(x) = x, then Mϕ A-convexity deduce usual convexity.
ii) If we take ϕ : I ⊂ (0,∞)→ R, ϕ(x) = lnx, then Mϕ A-convexity deduce GA-convexity. (see [27, 28])
iii) If we take ϕ : I ⊂ (0,∞)→ R, ϕ(x) = x−1, then Mϕ A-convexity deduce Harmonically convexity. (see [13])
iv) If we take ϕ : I ⊂ (0,∞)→ R, ϕ(x) = xp, p ∈ R\{0} , then Mϕ A-convexity deduce p-convexity. (see [18]).
The theory of

(
Mϕ ,Mψ

)
-convex functions can be deduced from the theory of usual convex functions.

Lemma 1.1 (Aczél [1]). If ϕ and ψ are two continuous and strictly monotonic functions (on intervals I and J respectively) and ψ is
increasing then a function f : I→ J is

(
Mϕ ,Mψ

)
-convex if and only if ψ ◦ f ◦ϕ−1 is convex on ϕ(I) in the usual sense.

The following concept was introduced by Orlicz in [29]:

Definition 1.2. Let 0 < s≤ 1. A function f : I ⊆ R0→ R where R0 = [0,∞), is said to be s-convex in the first sense if

f (αx+βy)≤ α
s f (x)+β

s f (y)

for all x,y ∈ I and α,β ≥ 0 with αs +β s = 1. We denote this class of real functions by K1
s .

In [9], Hudzik and Maligranda considered the following class of functions:

Definition 1.3. A function f : I ⊆ R0→ R where R0 = [0,∞), is said to be s-convex in the second sense if

f (αx+βy)≤ α
s f (x)+β

s f (y)

for all x,y ∈ I and α,β ≥ 0 with α +β = 1 and s fixed in (0,1]. They denoted this by K2
s .

It can be easily seen that for s = 1, s-convexity reduces to ordinary convexity of functions defined on [0,∞).
In [8], Dragomir and Fitzpatrick proved a variant of Hermite-Hadamard inequality which holds for the s-convex functions.

Theorem 1.4. Suppose that f : R0→R0 is an s-convex function in the second sense, where s∈ (0,1] and let a,b∈ [0,∞), a < b. If f ∈ L [a,b],
then the following inequalities hold

2s−1 f
(

a+b
2

)
≤ 1

b−a

b∫
a

f (x)dx≤ f (a)+ f (b)
s+1

. (1.3)

The constant k = 1
s+1 is the best possible in the second inequality in (1.3).

The main purpose of this paper is to introduce the concepts Mϕ A-s-convex function in the first sense and the second sense and give the
Hermite-Hadamard’s inequality for these classes of functions. Morever, in this paper we establish a new identity and a consequence of the
identity is that we obtain some new general integral inequalities.



Konuralp Journal of Mathematics 167

2. Definitions of MϕA-s-convex functions in the first and second sense

Definition 2.1. Let I be a real interval, ϕ : I→ R be a continuous and strictly monotonic function and s ∈ (0,1].
i) A function f : I→ R is said to be Mϕ A-s-convex in the first sense, if

f
(

ϕ
−1 (tϕ(x)+(1− t)ϕ(y))

)
≤ ts f (x)+(1− ts) f (y) (2.1)

for all x,y ∈ I and t ∈ [0,1]. If the inequality in (2.1) is reversed, then f is said to be Mϕ A-s-concave in the first sense.
ii) A function f : I→ R is said to be Mϕ A-s-convex in the second sense, if

f
(

ϕ
−1 (tϕ(x)+(1− t)ϕ(y))

)
≤ ts f (x)+(1− t)s f (y) (2.2)

for all x,y ∈ I and t ∈ [0,1]. If the inequality in (2.2) is reversed, then f is said to be Mϕ A-s-concave in the second sense.

It can be easily seen that:
i) For ϕ : I→ R, ϕ(x) = mx+n, m ∈ R\{0} ,n ∈ R, Mϕ A-s-convexity (in the first sense or second sense) reduces to ordinary s convexity
on I.
ii) For ϕ : I ⊂ (0,∞)→ R, ϕ(x) = lnx, then Mϕ A-s-convexity deduce GA-s-convexity.
iii) For ϕ : I ⊂ (0,∞)→ R, ϕ(x) = x−1, then Mϕ A-s-convexity deduce Harmonically s-convexity.
iv) For ϕ : I ⊂ (0,∞)→ R, ϕ(x) = xp, p ∈ R\{0} , then Mϕ A-s-convexity deduce (p,s)-convexity.

3. Inequalities for MϕA-s-convex functions in the first and second sense

Let I be a real interval, throughout this section we will take ϕ : I→ R be a continuous and strictly monotonic function and s ∈ (0,1].

Theorem 3.1. Let f : I ⊂ (0,∞)→ R be a Mϕ A-s-convex function in the first sense and a,b ∈ I with a < b. If f ,ϕ ′ ∈ L[a,b] then the
following inequalities hold

f
(

ϕ
−1
(

ϕ(a)+ϕ(b)
2

))
≤ 1

ϕ(b)−ϕ(a)

b∫
a

f (x)ϕ ′(x)dx≤ f (a)+ s f (b)
s+1

. (3.1)

The above inequalities are sharp.

Proof. Since f : I→ R is a Mϕ A-s-convex function in the first sense, we have, for all x,y ∈ I (with t = 1
2 in the inequality (2.1) )

f
(

ϕ
−1
(

ϕ(x)+ϕ(y)
2

))
≤ 1

2s f (x)+
(

1− 1
2s

)
f (y).

Choosing x = ϕ−1 (tϕ(a)+(1− t)ϕ(b)) , y = ϕ−1 (tϕ(b)+(1− t)ϕ(a)), we get

f
(

ϕ
−1
(

ϕ(a)+ϕ(b)
2

))
≤ 1

2s f
(

ϕ
−1 (tϕ(a)+(1− t)ϕ(b))

)
+

(
1− 1

2s

)
f
(

ϕ
−1 (tϕ(b)+(1− t)ϕ(a))

)
.

Further, integrating for t ∈ [0,1], we have

f
(

ϕ
−1
(

ϕ(a)+ϕ(b)
2

))
(3.2)

≤ 1
2s

1∫
0

f
(

ϕ
−1 (tϕ(a)+(1− t)ϕ(b))

)
dt

+

(
1− 1

2s

) 1∫
0

f
(

ϕ
−1 (tϕ(b)+(1− t)ϕ(a))

)
dt.

Since each of the integrals is equal to 1
ϕ(b)−ϕ(a)

b∫
a

f (x)ϕ ′(x)dx, we obtain the left-hand side of the inequality (3.1) from (3.2).

Secondly, we observe that for all t ∈ [0,1]

f
(

ϕ
−1 (tϕ(a)+(1− t)ϕ(b))

)
≤ ts f (a)+(1− ts) f (b).

Integrating this inequality with respect to t over [0,1], we obtain the right-hand side of the inequality (3.1).
Now, consider the function f : (0,∞)→ R, f (x) = 1. thus

1 = f
(

ϕ
−1
(

ϕ(a)+ϕ(b)
2

))
= t f (a)+(1− t) f (b) = 1
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for all x,y ∈ I and t ∈ [0,1]. Therefore f is Mϕ A-convex on I. We also have

f
(

ϕ
−1
(

ϕ(a)+ϕ(b)
2

))
= 1,

1
ϕ(b)−ϕ(a)

b∫
a

f (x)ϕ ′(x)dx = 1,

and

f (a)+ s f (b)
s+1

= 1

which shows us the inequalities (3.1) are sharp.

Similarly to Theorem 3.1, we will give the following theorem for Mϕ A-s-convex function in the second sense:

Theorem 3.2. Let f : I ⊂ (0,∞)→ R be a Mϕ A-s-convex function in the second sense and a,b ∈ I with a < b. If f ,ϕ ′ ∈ L[a,b], then the
following inequalities hold

2s−1 f
(

ϕ
−1
(

ϕ(a)+ϕ(b)
2

))
≤ 1

ϕ(b)−ϕ(a)

b∫
a

f (x)ϕ ′(x)dx≤ f (a)+ f (b)
s+1

(3.3)

Proof. As f is Mϕ A-s-convex function in the second sense, we have, for all x,y ∈ I

f
(

ϕ
−1
(

ϕ(x)+ϕ(y)
2

))
≤ f (x)+ f (y)

2s . (3.4)

Now, let x = ϕ−1 (tϕ(a)+(1− t)ϕ(b)) , y = ϕ−1 (tϕ(b)+(1− t)ϕ(a)) with t ∈ [0,1]. Then we get by (3.4) that:

f
(

ϕ
−1
(

ϕ(a)+ϕ(b)
2

))
≤ f (ϕ−1 (tϕ(a)+(1− t)ϕ(b)))+ f (ϕ−1 (tϕ(b)+(1− t)ϕ(a)))

2s

for all t ∈ [0,1]. Integrating this inequality on [0,1], we deduce the first part of (3.3).
Secondly, we observe that for all t ∈ [0,1]

f
(

ϕ
−1
(

ϕ(a)+ϕ(b)
2

))
≤ ts f (a)+(1− t)s f (b).

Integrating this inequality on [0,1], we get

1∫
0

f
(

ϕ
−1 (tϕ(a)+(1− t)ϕ(b))

)
dt =

1
ϕ(b)−ϕ(a)

b∫
a

f (x)ϕ ′(x)dx≤ f (a)+ f (b)
s+1

.

the second inequality in (3.3) is proved.

The following proposition is obvious.

Proposition 3.3. Let f : [a,b]→ R and ϕ : I→ R be a continuous and strictly monotonic incresing (or stricly monotonic decreasing). If
we consider the function g : [ϕ(a),ϕ(b)]→ R,( or if ϕ : I→ R is strictly monotonic decreasing, then g : [ϕ(b),ϕ(a)]→ R,) defined by
g(t) = f

(
ϕ−1(t)

)
, then f is Mϕ A-s-convex in the first sense (or second sense) on [a,b] if and only if g is s-convex in the first sense (or second

sense) on [ϕ(a),ϕ(b)] .

Remark 3.4. According to Proposition 3.3, we can obtain the inequalities (3.1) and (3.3) in a different manner as follow:
For example, If f is a Mϕ A-s-convex in the second sense on [a,b] then we write the Hermite-Hadamard inequality for the s-convex function
in the second sense g(t) = f

(
ϕ−1(t)

)
on the closed interval [ϕ(a),ϕ(b)] (or [ϕ(b),ϕ(a)] ) as follows

2s−1g
(

ϕ(a)+ϕ(b)
2

)
≤ 1

ϕ(b)−ϕ(a)

ϕ(b)∫
ϕ(a)

g(t)dt ≤ g(ϕ(a))+g(ϕ(b))
s+1

that is equivalent to

2s−1 f
(

ϕ
−1
(

ϕ(a)+ϕ(b)
2

))
≤ 1

ϕ(b)−ϕ(a)

ϕ(b)∫
ϕ(a)

f
(

ϕ
−1(t)

)
dt ≤ f (a)+ f (b)

s+1
. (3.5)

Using the change of variable x = ϕ−1(t), then

1
ϕ(b)−ϕ(a)

ϕ(b)∫
ϕ(a)

f
(

ϕ
−1(t)

)
dt =

1
ϕ(b)−ϕ(a)

b∫
a

f (x)ϕ ′(x)dx

and by (3.5) we get the inequality (3.3).
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For finding some new inequalities of Hermite-Hadamard type for functions whose derivatives are Mϕ A-s-convex, we need a simple lemma as
follows.

Lemma 3.5. Let f : I→ R be a differentiable function on I◦ and a,b ∈ I with a < b and ϕ : I→ R be a continuous and strictly monotonic
function such that ϕ−1 : ϕ(I◦)→ I◦ is continuously differentiable. If f ′ ∈ L[a,b] then

f (a)+ f (b)
2

− 1
ϕ(b)−ϕ(a)

b∫
a

f (x)ϕ ′(x)dx =
ϕ(b)−ϕ(a)

2
(3.6)

1∫
0

(1−2t) .
(

ϕ
−1
)′
(tϕ(a)+(1− t)ϕ(b)) f ′

(
ϕ
−1 (tϕ(a)+(1− t)ϕ(b))

)
dt.

Proof. Let

J =
ϕ(b)−ϕ(a)

2

1∫
0

(1−2t) .
(

ϕ
−1
)′
(tϕ(a)+(1− t)ϕ(b)) f ′

(
ϕ
−1 (tϕ(a)+(1− t)ϕ(b))

)
dt.

By integrating by part, we have

J =
(2t−1)

2
f
(

ϕ
−1 (tϕ(a)+(1− t)ϕ(b))

)∣∣∣∣1
0
−

1∫
0

f
(

ϕ
−1 (tϕ(a)+(1− t)ϕ(b))

)
dt.

Setting x = ϕ−1 (tϕ(a)+(1− t)ϕ(b)) , dt = −ϕ ′(x)
ϕ(b)−ϕ(a)dx, we obtain

J =
f (a)+ f (b)

2
− 1

ϕ(b)−ϕ(a)

b∫
a

f (x)ϕ ′(x)dx

which gives the desired representation (3.6).

Remark 3.6. In Lemma 3.5

(i) If we take ϕ(x) = mx+n, then we have the equality in [8, Lemma A].

(ii) If we take ϕ(x) = lnx, then we have the equality in [12, Lemma 1] as follow:

f (a)+ f (b)
2

− 1
b−a

1∫
0

f (x)dx (3.7)

=
lnb− lna

2

1∫
0

(1−2t)atb1−t f ′(atb1−t)dt

=
lnb− lna

2

a
1∫

0

t
(

b
a

)t
f ′
(

a1−tbt
)

dt−b
1∫

0

t
(a

b

)t
f ′
(

b1−tat
)

dt

 .
(iii) If we take ϕ(x) = 1

x , then we have the equality in [13, 2.5. Lemma].

(iv) If we take ϕ(x) = xp, p ∈ R\{0}, then we have the equality [19, Lemma 3].

Theorem 3.7. Let f : I ⊆ R+→ R be differentiable on I◦, and a,b ∈ I◦ with a < b, ϕ : I → R be a continuous and strictly monotonic
function such that ϕ−1 : ϕ(I◦)→ I◦ is continuously differentiable and f ′ ∈ L [a,b] .
a) If | f ′| is Mϕ A-s-convex function in the second sense on [a,b] and s ∈ (0,1] , then∣∣∣∣∣∣ f (a)+ f (b)

2
− 1

ϕ(b)−ϕ(a)

b∫
a

f (x)ϕ ′(x)dx

∣∣∣∣∣∣ (3.8)

≤ |ϕ(b)−ϕ(a)|
2

{
Aϕ (a,b)

∣∣ f ′(a)∣∣+Bϕ (a,b)
∣∣ f ′(b)∣∣} ,

where

Aϕ (a,b) =
1∫

0

|1−2t| ts
∣∣∣∣(ϕ

−1
)′
(tϕ(a)+(1− t)ϕ(b))

∣∣∣∣dt

and

Bϕ (a,b) =
1∫

0

|1−2t|(1− t)s
∣∣∣∣(ϕ

−1
)′
(tϕ(a)+(1− t)ϕ(b))

∣∣∣∣dt.
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b) If | f ′| is Mϕ A-s-convex function in the first sense on [a,b] and s ∈ (0,1] , then∣∣∣∣∣∣ f (a)+ f (b)
2

− 1
ϕ(b)−ϕ(a)

b∫
a

f (x)ϕ ′(x)dx

∣∣∣∣∣∣ (3.9)

≤ |ϕ(b)−ϕ(a)|
2

{
Aϕ (a,b)

∣∣ f ′(a)∣∣+Cϕ (a,b)
∣∣ f ′(b)∣∣}

where

Cϕ (a,b) =
1∫

0

|1−2t|(1− ts)

∣∣∣∣(ϕ
−1
)′
(tϕ(a)+(1− t)ϕ(b))

∣∣∣∣dt.

Proof. a) Since | f ′| is Mϕ A-s-convex function in the second sense on [a,b], from Lemma (3.5), we have∣∣∣∣∣∣ f (a)+ f (b)
2

− 1
ϕ(b)−ϕ(a)

b∫
a

f (x)ϕ ′(x)dx

∣∣∣∣∣∣
≤ |ϕ(b)−ϕ(a)|

2

1∫
0

|1−2t|
∣∣∣∣(ϕ

−1
)′
(tϕ(a)+(1− t)ϕ(b))

∣∣∣∣ ∣∣∣ f ′(ϕ
−1 (tϕ(a)+(1− t)ϕ(b))

)∣∣∣dt

≤ |ϕ(b)−ϕ(a)|
2

1∫
0

|1−2t|
∣∣∣∣(ϕ

−1
)′
(tϕ(a)+(1− t)ϕ(b))

∣∣∣∣[ts ∣∣ f ′(a)∣∣+(1− t)s ∣∣ f ′(b)∣∣]dt

=
|ϕ(b)−ϕ(a)|

2


| f ′(a)|

1∫
0
|1−2t| ts

∣∣∣(ϕ−1)′ (tϕ(a)+(1− t)ϕ(b))
∣∣∣dt

+ | f ′(b)|
1∫
0
|1−2t|(1− t)s

∣∣∣(ϕ−1)′ (tϕ(a)+(1− t)ϕ(b))
∣∣∣dt


=

|ϕ(b)−ϕ(a)|
2

{
Aϕ (a,b)

∣∣ f ′(a)∣∣+Bϕ (a,b)
∣∣ f ′(b)∣∣} .

b) Similarly to a), since | f ′| is Mϕ A-s-convex function in the first sense on [a,b], we get∣∣∣∣∣∣ f (a)+ f (b)
2

− 1
ϕ(b)−ϕ(a)

b∫
a

f (x)ϕ ′(x)dx

∣∣∣∣∣∣
≤ |ϕ(b)−ϕ(a)|

2
{

Aϕ (a,b)
∣∣ f ′(a)∣∣+Cϕ (a,b)

∣∣ f ′(b)∣∣} .
Remark 3.8.

(i) If we take ϕ(x) = mx+n in [T heorem(3.7),a)], then we have the inequality in [22, Theorem 1,q=1].

(ii) If we take ϕ(x) = lnx in [T heorem(3.7),a)], then we have the follows inequality∣∣∣∣∣∣ f (a)+ f (b)
2

− 1
lnb− lna

b∫
a

f (x)
x

dx

∣∣∣∣∣∣≤ lnb− lna
2

{
A(lnx)(a,b)

∣∣ f ′(a)∣∣+B(lnx)(a,b)
∣∣ f ′(b)∣∣}

(iii)If we take ϕ(x) = lnx in [T heorem(3.7),b)], then we have the follows inequality∣∣∣∣∣∣ f (a)+ f (b)
2

− 1
lnb− lna

b∫
a

f (x)
x

dx

∣∣∣∣∣∣≤ lnb− lna
2

{
A(lnx)(a,b)

∣∣ f ′(a)∣∣+C(lnx)(a,b)
∣∣ f ′(b)∣∣}

(iv) If we take ϕ(x) = 1
x in [T heorem(3.7),a)], then we have the inequality in [17, Corollary 2.4 (3),q=1].

(v) If we take ϕ(x) = xp, p ∈ R\{0} in [T heorem(3.7),a,s = 1], then we have the inequality [19, Theorem 7,q=1].

Theorem 3.9. Let f : I ⊆ R+→ R be differentiable on I◦, and a,b ∈ I◦ with a < b, ϕ : I → R be a continuous and strictly monotonic
function such that ϕ−1 : ϕ(I◦)→ I◦ is continuously differentiable, f ′ ∈ L [a,b] and q > 1, 1

p +
1
q = 1. a) If | f ′|q is Mϕ A-s-convex function in

the second sense on [a,b] and s ∈ (0,1] , then ∣∣∣∣∣∣ f (a)+ f (b)
2

− 1
ϕ(b)−ϕ(a)

b∫
a

f (x)ϕ ′(x)dx

∣∣∣∣∣∣ (3.10)

≤ |ϕ(b)−ϕ(a)|
2

D1/p
ϕ (a,b; p)

(
| f ′(a)|q + | f ′(b)|q

s+1

)1/q
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where

Dϕ (a,b; p) =
1∫

0

|1−2t|p
∣∣∣∣(ϕ

−1
)′
(tϕ(a)+(1− t)ϕ(b))

∣∣∣∣p dt.

b) If | f ′|q is Mϕ A-s-convex function in the first sense on [a,b] and s ∈ (0,1] , then∣∣∣∣∣∣ f (a)+ f (b)
2

− 1
ϕ(b)−ϕ(a)

b∫
a

f (x)ϕ ′(x)dx

∣∣∣∣∣∣ (3.11)

≤ |ϕ(b)−ϕ(a)|
2

D1/p
ϕ (a,b; p)

(
| f ′(a)|q + s | f ′(b)|q

s+1

)1/q

.

Proof. a) Since | f ′| is Mϕ A-s-convex function in the second sense on [a,b], from Lemma 3.5 and Hölder inequality, we have∣∣∣∣∣∣ f (a)+ f (b)
2

− 1
ϕ(b)−ϕ(a)

b∫
a

f (x)ϕ ′(x)dx

∣∣∣∣∣∣
≤ |ϕ(b)−ϕ(a)|

2

1∫
0

|1−2t|
∣∣∣∣(ϕ

−1
)′
(tϕ(a)+(1− t)ϕ(b))

∣∣∣∣ ∣∣∣ f ′(ϕ
−1 (tϕ(a)+(1− t)ϕ(b))

)∣∣∣dt

≤ |ϕ(b)−ϕ(a)|
2

 1∫
0

|1−2t|p
∣∣∣∣(ϕ

−1
)′
(tϕ(a)+(1− t)ϕ(b))

∣∣∣∣p dt

1/p

×

 1∫
0

∣∣∣ f ′(ϕ
−1 (tϕ(a)+(1− t)ϕ(b))

)∣∣∣q dt

1/q

≤ |ϕ(b)−ϕ(a)|
2

 1∫
0

|1−2t|p
∣∣∣∣(ϕ

−1
)′
(tϕ(a)+(1− t)ϕ(b))

∣∣∣∣p dt

1/p(
| f ′(a)|q + | f ′(b)|q

s+1

)1/q

=
|ϕ(b)−ϕ(a)|

2
D1/p

ϕ (a,b; p)
(
| f ′(a)|q + | f ′(b)|q

s+1

)1/q

.

b) Similarly to the proof of a), we can get easily the inequality (3.11).

Theorem 3.10. Let f : I ⊆ R+→ R be differentiable on I◦, and a,b ∈ I◦ with a < b, ϕ : I→ R be a continuous and strictly monotonic
increasing function f ′ ∈ L [a,b] and q > 1, 1

p + 1
q = 1. a) If | f ′|q is Mϕ A-s-convex function in the second sense on [a,b], s ∈ (0,1] and(

ϕ−1)′ ∈ Lp [ϕ(a),ϕ(b)] then ∣∣∣∣∣∣ f (a)+ f (b)
2

− 1
ϕ(b)−ϕ(a)

b∫
a

f (x)ϕ ′(x)dx

∣∣∣∣∣∣ (3.12)

≤ [ϕ(b)−ϕ(a)]1/q

2

∥∥∥∥(ϕ
−1
)′∥∥∥∥

p

(∣∣ f ′(a)∣∣q E(q,s)+
∣∣ f ′(b)∣∣q F(q,s)dt

)1/q

where
∥∥∥∥(ϕ

−1
)′∥∥∥∥

p
=

 ϕ(b)∫
ϕ(a)

∣∣∣∣(ϕ
−1
)′
(x)
∣∣∣∣p dx


1/p

E(q,s) =
1∫

0

|1−2t|q tsdt

and

F(q,s) =
1∫

0

|1−2t|q (1− t)sdt.

b) If | f ′|q is Mϕ A-s-convex function in the first sense on [a,b] and s ∈ (0,1] , then∣∣∣∣∣∣ f (a)+ f (b)
2

− 1
ϕ(b)−ϕ(a)

b∫
a

f (x)ϕ ′(x)dx

∣∣∣∣∣∣ (3.13)

≤ [ϕ(b)−ϕ(a)]1/q

2

∥∥∥∥(ϕ
−1
)′∥∥∥∥

p

(∣∣ f ′(a)∣∣q E(q,s)+
∣∣ f ′(b)∣∣q G(q,s)dt

)1/q
,
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where

G(q,s) =
1∫

0

|1−2t|q (1− ts)dt.

Proof. a) Since | f ′| is Mϕ A-s-convex function in the second sense on [a,b], from Lemma (3.5) and Hölder inequality, we have∣∣∣∣∣∣ f (a)+ f (b)
2

− 1
ϕ(b)−ϕ(a)

b∫
a

f (x)ϕ ′(x)dx

∣∣∣∣∣∣
≤ ϕ(b)−ϕ(a)

2

1∫
0

|1−2t|
∣∣∣∣(ϕ

−1
)′
(tϕ(a)+(1− t)ϕ(b))

∣∣∣∣ ∣∣∣ f ′(ϕ
−1 (tϕ(a)+(1− t)ϕ(b))

)∣∣∣dt

≤ ϕ(b)−ϕ(a)
2

 1∫
0

∣∣∣∣(ϕ
−1
)′
(tϕ(a)+(1− t)ϕ(b))

∣∣∣∣p dt

1/p

×

 1∫
0

|1−2t|q
∣∣∣ f ′(ϕ

−1 (tϕ(a)+(1− t)ϕ(b))
)∣∣∣q dt

1/q

≤ ϕ(b)−ϕ(a)
2

 1
ϕ(b)−ϕ(a)

ϕ(b)∫
ϕ(a)

∣∣∣∣(ϕ
−1
)′
(x)
∣∣∣∣p dx


1/p

×

∣∣ f ′(a)∣∣q 1∫
0

|1−2t|q tsdt +
∣∣ f ′(b)∣∣q 1∫

0

|1−2t|q (1− t)sdt

1/q

=
[ϕ(b)−ϕ(a)]1/q

2

∥∥∥∥(ϕ
−1
)′∥∥∥∥

p

∣∣ f ′(a)∣∣q 1∫
0

|1−2t|q tsdt +
∣∣ f ′(b)∣∣q 1∫

0

|1−2t|q (1− t)sdt

1/q

=
[ϕ(b)−ϕ(a)]1/q

2

∥∥∥∥(ϕ
−1
)′∥∥∥∥

p

(∣∣ f ′(a)∣∣q E(q,s)+
∣∣ f ′(b)∣∣q F(q,s)dt

)1/q

b) Similarly to the proof of a), we can get easily the inequality (3.13).

Theorem 3.11. Let f : I ⊆ R+→ R be differentiable on I◦, and a,b ∈ I◦ with a < b, ϕ : I→ R be a continuous and strictly monotonic
function such that ϕ−1 : ϕ(I◦)→ I◦ is continuously differentiable, f ′ ∈ L [a,b] and q≥ 1.

a) If | f ′|q is Mϕ A-s-convex function in the second sense on [a,b] and s ∈ (0,1] , then∣∣∣∣∣∣ f (a)+ f (b)
2

− 1
ϕ(b)−ϕ(a)

1∫
0

f (x)ϕ ′(x)dx

∣∣∣∣∣∣ (3.14)

≤ |ϕ(b)−ϕ(a)|

23− 1
q

[(
M1,ϕ (t;a,b)

∣∣ f ′(a)∣∣q +M2,ϕ (t;a,b)
∣∣ f ′(b)∣∣q) 1

q

+
(
M3,ϕ (t;a,b)

∣∣ f ′(a)∣∣q +M4,ϕ (t;a,b)
∣∣ f ′(b)∣∣q) 1

q

]
where

(
M1,ϕ

)
(t;a,b) =

1/2∫
0

(1−2t)ts
∣∣∣∣(ϕ

−1
)′
(tϕ(a)+(1− t)ϕ(b))

∣∣∣∣q dt

(
M2,ϕ

)
(t;a,b) =

1/2∫
0

(1−2t)(1− t)s
∣∣∣∣(ϕ

−1
)′
(tϕ(a)+(1− t)ϕ(b))

∣∣∣∣q dt

(
M3,ϕ

)
(t;a,b) =

1∫
1/2

(2t−1)ts
∣∣∣∣(ϕ

−1
)′
(tϕ(a)+(1− t)ϕ(b))

∣∣∣∣q dt

(
M4,ϕ

)
(t;a,b) =

1∫
1/2

(2t−1)(1− t)s
∣∣∣∣(ϕ

−1
)′
(tϕ(a)+(1− t)ϕ(b))

∣∣∣∣q dt
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b)If | f ′|q is Mϕ A-s-convex function in the first sense on [a,b] and s ∈ (0,1] , then∣∣∣∣∣∣ f (a)+ f (b)
2

− 1
ϕ(b)−ϕ(a)

1∫
0

f (x)ϕ ′(x)dx

∣∣∣∣∣∣ (3.15)

|ϕ(b)−ϕ(a)|

23− 2
q

[(
N1,ϕ (t;a,b)

∣∣ f ′(a)∣∣q +N2,ϕ (t;a,b)
∣∣ f ′(b)∣∣q) 1

q

+
(
N3,ϕ (t;a,b)

∣∣ f ′(a)∣∣q +N4,ϕ (t;a,b)
∣∣ f ′(b)∣∣q) 1

q

]
where

(
N1,ϕ

)
(t;a,b) =

1/2∫
0

(1−2t)ts
∣∣∣∣(ϕ

−1
)′
(tϕ(a)+(1− t)ϕ(b))

∣∣∣∣q dt

(
N2,ϕ

)
(t;a,b) =

1/2∫
0

(1−2t)(1− ts)

∣∣∣∣(ϕ
−1
)′
(tϕ(a)+(1− t)ϕ(b))

∣∣∣∣q dt

(
N3,ϕ

)
(t;a,b) =

1∫
1/2

(2t−1)ts
∣∣∣∣(ϕ

−1
)′
(tϕ(a)+(1− t)ϕ(b))

∣∣∣∣q dt

(
N4,ϕ

)
(t;a,b) =

1∫
1/2

(2t−1)(1− ts)

∣∣∣∣(ϕ
−1
)′
(tϕ(a)+(1− t)ϕ(b))

∣∣∣∣q dt

Proof.

a) Since | f ′|q, q≥ 1 is Mϕ A-s-convex function in the second sense on [a,b], from Lemma (3.5) and Hölder inequality, we have∣∣∣∣∣∣ f (a)+ f (b)
2

− 1
ϕ(b)−ϕ(a)

1∫
0

f (x)ϕ ′(x)dx

∣∣∣∣∣∣ (3.16)

≤ |ϕ(b)−ϕ(a)|
2

1∫
0

|1−2t|
∣∣∣(ϕ−1)′ (tϕ(a)+(1− t)ϕ(b))

∣∣∣∣∣ f ′ (ϕ−1 (tϕ(a)+(1− t)ϕ(b))
)∣∣ dt

≤ |ϕ(b)−ϕ(a)|
2

 1/2∫
0

(1−2t)
∣∣∣(ϕ−1)′ (tϕ(a)+(1− t)ϕ(b))

∣∣∣∣∣ f ′ (ϕ−1 (tϕ(a)+(1− t)ϕ(b))
)∣∣dt

+

1∫
1/2

(2t−1)
∣∣∣(ϕ−1)′ (tϕ(a)+(1− t)ϕ(b))

∣∣∣∣∣ f ′ (ϕ−1 (tϕ(a)+(1− t)ϕ(b))
)∣∣dt



≤ |ϕ(b)−ϕ(a)|
2


(

1/2∫
0
(1−2t)dt

)1− 1
q

(
1/2∫
0

(1−2t)
∣∣∣(ϕ−1)′ (tϕ(a)+(1− t)ϕ(b))

∣∣∣q∣∣ f ′ (ϕ−1 (tϕ(a)+(1− t)ϕ(b))
)∣∣q dt

) 1
q

+

(
1∫

1/2
(2t−1)dt

)1− 1
q

(
1∫

1/2

(2t−1)
∣∣∣(ϕ−1)′ (tϕ(a)+(1− t)ϕ(b))

∣∣∣q∣∣ f ′ (ϕ−1 (tϕ(a)+(1− t)ϕ(b))
)∣∣q dt

) 1
q



≤ |ϕ(b)−ϕ(a)|

23− 2
q


 1/2∫

0

(1−2t)
∣∣∣(ϕ−1)′ (tϕ(a)+(1− t)ϕ(b))

∣∣∣q(
ts | f ′ (a)|q +(1− t)s | f ′ (b)|q

)
dt


1
q

+

 1∫
1/2

(2t−1)
∣∣∣(ϕ−1)′ (tϕ(a)+(1− t)ϕ(b))

∣∣∣q(
ts | f ′ (a)|q +(1− t)1−s | f ′ (b)|q

)
dt


1
q

 .
This proof is completed.
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b) Similarly to the proof of a), we can get easily the inequality (3.15)

Remark 3.12.

(i) If we take ϕ(x) = mx+n in [(T heorem(3.11),a),q = 1], then we have the inequality in [22, Theorem 1,q=1].

(ii) If we take ϕ(x) = lnx in [T heorem(3.11),a], then we have the follows inequality∣∣∣∣∣∣ f (a)+ f (b)
2

− 1
lnb− lna

b∫
a

f (x)
x

dx

∣∣∣∣∣∣≤ lnb− lna

23− 1
q

[(
M1,lnt(t;a,b)

∣∣ f ′(a)∣∣q +M2,lnt(t;a,b)
∣∣ f ′(b)∣∣q) 1

q

+
(
M3,lnt(t;a,b)

∣∣ f ′(a)∣∣q +M4,lnt(t;a,b)
∣∣ f ′(b)∣∣q) 1

q

]
(iii)If we take ϕ(x) = lnx in [T heorem(3.11),b], then we have the follows inequality∣∣∣∣∣∣ f (a)+ f (b)

2
− 1

lnb− lna

b∫
a

f (x)
x

dx

∣∣∣∣∣∣≤ lnb− lna

23− 1
q

[(
N1,lnt(t;a,b)

∣∣ f ′(a)∣∣q +N2,lnt(t;a,b)
∣∣ f ′(b)∣∣q) 1

q

+
(
N3,lnt(t;a,b)

∣∣ f ′(a)∣∣q +N4,lnt(t;a,b)
∣∣ f ′(b)∣∣q) 1

q

]
(iv) If we take ϕ(x) = 1

x in [T heorem(3.11),a], then we have the inequality in [17, Corollary 2.4 (3)].
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[16] İ. İşcan , Hermite-Hadamard-Fejer type inequalities for convex functions via fractional integrals, Studia Universitatis Babeş-Bolyai Mathematica,
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