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Abstract. In this paper, a new three-parameter lifetime distribution is pro-

posed by mixing modified Weibull and generalized gamma distributions. The

point estimation on the distribution parameters are discussed through several
estimators. The interval estimation is also studied with two methods based on

asymptotic normality and likelihood ratio. A Monte Carlo simulation study

is performed to evaluate the biases and mean square errors behaviors of point
estimates for a different sample of size. A simulation study is also conducted to

investigate the coverage probabilities of confidence intervals. The distribution
modeling analyses are provided based on several real data sets to demonstrate

the fitting ability of the introduced distribution.

1. Introduction

The Lindley (L) distribution is introduced in [18] with cumulative distribution
function (cdf) and probability density function (pdf),

FL (x; θ) = 1− θ + 1 + θx

θ + 1
e−θx,

and

fL (x; θ) =
θ2

1 + θ
(1 + x) e−θx, x > 0
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respectively, and θ > 0 is a parameter.
L distribution can be represented as a mixture of two distributions with pdf

fL (x; θ) = p fE (x; θ) + (1− p) fG (x; θ) , (1)

where fE (x; θ) = θe−θx and fG (x; θ) = θ2xe−θx are the pdfs of exponential and
gamma distributions respectively and p = θ

1+θ is the mixing proportion of distribu-
tions. Since the L distribution is IFR, it is unsuitable for modelling the data that
obeys the non-linear hazard rate structure. [12] introduced the power Lindley (PL)
distribution, which generalizes the Lindley distribution with the following pdf

fPL (x;α, θ) = αθ2

θ+1 (1 + xα)xα−1e−θxα

, x > 0, α, θ > 0,

= p fW (x;α, θ) + (1− p) fGG (x;α, θ) ,

where fW (x;α, θ) = αθxα−1e−θxα

and fGG (x;α, θ) = αθ2x2α−1e−θxα

are the pdfs
of Weibull and generalized gamma (GG) distributions respectively and p = θ

1+θ

is the mixing proportion of distributions. [12] investigated properties of the PL
distribution with an application and outlined that the PL distribution is a better
model than the other L and exponential based distribution.

Moreover, several generalizations have been proposed in the literature in order to
increase the flexibility and usefulness of the L model. Some of them are: generalized
Lindley (GL) [32], exponentiated Lindley (EL) [22], discrete Lindley [11], extended
Lindley [6], beta Lindley [20,21], exponentiated power Lindley (EPL) [31], odd log
logistic power Lindley [1], odd log-logistic Lindley Poisson [24], odd Burr Lindley [3],
binomial discrete Lindley [16], Weibull-Lindley [4] and generalized power Lindley
[15] among others.

This paper aims to introduce a new flexible distribution that generalizes the L
and PL distributions with the same structure of (1). Furthermore, we are also
motivated to propose a new L distribution because introduced model has various
pdf shapes as well as non-monotone hazard rate function (hrf) shapes unlike L and
PL models.

The paper is organized as follows: In Section 2, a new lifetime distribution is
proposed and several distributional properties are discussed. Several point estima-
tion methods are discussed for the distribution parameters in Section 3. In Section
4, the interval estimation is considered with two well-known methods. The Section
5 close the paper with three distribution modeling analyses based on real data.

2. Modified Lindley Distribution and Some Properties

A random variable X has a Modified Lindley (MoL) distribution if its pdf is
given by

fMoL (x;Ξ) = θ2

θ+1

[
(α+ βx) e−θxα(eβx−1)+βx + αxα

]
xα−1e−θxα

, x > 0,
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where α, β, θ > 0 are parameters and Ξ = (α, β, θ). Indeed MoL distribution is a
mixture of two distribution with the following representation:

f (x;Ξ) = p g1 (x;α, β, θ) + (1− p) g2 (x;α, θ) , x > 0, α, β, θ > 0, (2)

where p = θ
θ+1 is the weighting parameter of the distributions, g1 (x;α, β, θ) is the

pdf of Modified Weibull (MW) distribution introduced in [17], with the following
pdf

g1 (x;α, β, θ) = θ (α+ βx)xα−1eβx−θxα exp(βx), x > 0,

and g2 (x;α, θ) is the pdf of a GG distribution introduced in [28], with the following
pdf

g2 (x;α, θ) = αθ2x2α−1e−θxα

, x > 0.

From (2), we see that the MoL distribution is a two-component mixture of MW
and GG distributions with weighting parameter p. We denote the MoL distribution
with parameter Ξ by MoL(Ξ).
While β → 0, MoL distribution reduces to the PL distribution. While β → 0 and
α → 1, it is reduced to L distribution.

The cdf and hrf of the MoL distribution are

F (x;Ξ) = 1− 1 + θxα + θe−θxαeβx+θxα

θ + 1
e−θxα

, x > 0 (3)

and

h (x;Ξ) =
θ2xα−1

{
(α+ βx) e−θxα(eβx−1)+βx + αxα

}
1 + θxα + θe−θxαeβx+θxα , x > 0

respectively. The plots of the pdf and hrf are given in Figure 1 to identify their
possible shapes. These figures show that the MoL distribution can be unimodal,
bimodal, decreasing and firstly decreasing then unimodal shaped. On the other
hand, the hrf of MoL can be both monotone and non-monotone structures.

In distribution theory, stochastic ordering is an essential measure for evaluating
the comparative behavior of random variables. It is known that X <lr Y ⇒ X
<hr Y ⇒ X <st Y , see [25]. For more information about stochastic ordering with
different applications, one can see [27]. Likelihood ratio ordering is shortly defined
as follow: X is less than Y in the likelihood ratio order (denoted by X <lr Y ) if
fX (x) / fY (x) increases in x over the union of the supports of X and Y .

Theorem 1. If X ∼MoL(α, β, θ1) and Y ∼MoL(α, β, θ2) and θ1 < θ2, then X
<lr Y .

Proof. See Appendix.

Corollary 1. If X ∼MoL(α, β, θ1) and Y ∼MoL(α, β, θ2) and θ1 < θ2 then X
<hr Y and X <st Y .
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Figure 1. Possible pdf and hrf plots of MoL distribution
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Theorem 2. For r ∈ N+, the raw moments of MoL(Ξ) are given by

µ′
r = E (Xr) =

1

θ + 1

Γ (r/α+ 2) θ−r/α +

∞∑
i1,...,ir=1

Ai1,...,irΓ (sr/α+ 1) θ1−sr/α

 .

(4)

Proof. See Appendix.

Corollary 2. The mean and rth central moment of the MoL(Ξ) are given, respec-
tively, by

µ =
1

θ + 1

[
Γ (1/α+ 2) θ−1/α +

∞∑
i=1

aiΓ (i/α+ 1) θ1−i/α

]
, (5)

and

µr = E(X − µ)r =

r∑
h=0

(−1)h
(
r

h

)
µr µ′

r−h. (6)

Using (6), the skewness and kurtosis coefficients can be obtained by√
β1 =

√
µ2
3

µ3
2

and β2 =
µ4

µ2
2

,

respectively. The mean, variance, skewness and kurtosis are computed for some
choices of parameters and given in Table 1. From Table 1, it is seen that the
coefficient of kurtosis can take negative and positive values. This shows that the
distribution has a flexible structure in data modeling. In addition, it is seen that
the new distribution is flatter than the normal distribution. When θ increases, the
kurtosis coefficient increases and the variance decreases. E(X) decreases when the
parameter β increases.

Table 1. The mean, variance, coefficients of skewness and kurto-
sis for some choices of parameters

θ = 0.9 θ = 1.5
α β E (X) V ar (X) Skewness Kurtosis E (X) V ar (X) Skewness Kurtosis
0.9 0.9 1.5597 3.0668 2.2407 9.9440 0.7844 0.8065 2.5707 12.4062

1.5 1.5104 3.1444 2.2221 9.7165 0.7466 0.8203 2.6166 12.4272
5 1.4181 3.3299 2.1388 9.1238 0.6687 0.7341 2.5844 11.8172

1.5 0.9 1.1363 0.6088 1.1457 4.2521 0.7436 0.2664 1.3223 5.0558
1.5 1.0910 0.6416 1.1738 4.1289 0.7042 0.2750 1.4381 5.1801
5 0.9906 0.7491 1.1068 3.6418 0.6099 0.3188 1.5008 4.8333

5 0.9 0.9740 0.0536 -0.1046 2.6206 0.8486 0.0419 0.0095 2.7336
1.5 0.9444 0.0614 0.0376 2.3197 0.8166 0.0466 0.2250 2.5554
5 0.8473 0.1046 0.1864 1.5997 0.7086 0.0764 0.5842 1.9761
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3. Point Estimation

In this section, the maximum likelihood, least square, weighted least square,
Anderson-Darling, Cramer-von Mises, and maximum product spacing methods are
discussed to estimate the MoL distribution parameters. It is noticed that these
estimates are also used in [2], [13], [14], [29], [30] among others. Let X1, X2, . . . , Xn

be a random sample from the MoL(Ξ) distribution with realizations x1, x2, . . . , xn.
Furthermore, X(1), X(2), . . . , X(n) be the corresponding ordered statistics with re-
alizations x(1), x(2), . . . , x(n). Then the log likelihood function can be written by

ℓ ( Ξ) = 2n log θ − n log (θ + 1) + (α− 1)

n∑
i=1

log (xi)

−
n∑

i=1

log
[
(α+ βxi) exp

{
−θxα

i

(
eβxi − 1

)
− βxi

}
+ αxα

i

]
. (7)

Hence, the maximum likelihood estimate (MLE) Ξ̂ of Ξ is written by

Ξ̂ = argmax
Ξ

ℓ (Ξ) . (8)

The maximum product spacing estimate (MPSE) was proposed by [9]. The

MPSE Ξ̂MPS of parameter Ξ are achieved by maximizing

MPS(Ξ) =
1

n+ 1

n+1∑
i=1

log
[
F (x(i);Ξ)− F (x(i−1);Ξ)

]
, (9)

where, F is MoL cdf given in (3) and F (x(0);Ξ) = 0 and F (x(n+1);Ξ) = 1. Note
that the MPSE can be written by

Ξ̂MPS = argmax
Ξ

MPS(Ξ). (10)

The least square estimate (LSE) Ξ̂LSE of parameter Ξ are obtained by minimiz-
ing the function

LS(Ξ) =

n∑
i=1

(
F
(
x(i);Ξ

)
− i

n+ 1

)2

, (11)

where F is MoL cdf given in (3). Hence, LSE of Ξ is given by

Ξ̂LSE = argmin
Ξ

LS(Ξ). (12)

The weighted least square estimate (WLSE) Ξ̂WLSE of Ξ are obtained by min-
imizing

WLS(Ξ) =

n∑
i=1

(n+ 2) (n+ 1)
2

i (n− i+ 1)

(
F
(
x(i);Ξ

)
− i

n+ 1

)2

. (13)
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Then the WLSE of Ξ is presented by

Ξ̂WLSE = argmin
Ξ

WLS(Ξ). (14)

The Anderson-Darling (ADE) type estimate Ξ̂AD of parameters Ξ are obtained
by minimizing

ADD (Ξ) = −n−
n∑

i=1

2i−1
n

[
logF

(
x(i);Ξ

)
+ log

{
1− F

(
x(n+1−i);Ξ

)}]
. (15)

The ADE of Ξ is written by

Ξ̂AD = argmin
Ξ

ADD(Ξ). (16)

The Cramer-von Mises (CVME) type estimate, Ξ̂CVM of parameter Ξ are ob-
tained by minimizing

CVM (Ξ) = 1
12n +

n∑
i=1

[
F
(
x(i);Ξ

)
− 2i− 1

2n

]2
. (17)

The CVME of Ξ is given by

Ξ̂CVM = argmin
Ξ

CVM(Ξ). (18)

In order to achieve the values of estimates, the R functions such as constrOptim,
optim or maxLik can be used.

The simulation study is performed for the bias and mean square errors (MSEs)
of estimates and the results are presented by graphically. We consider N = 1000
trials of size n = 20, 25, . . . , 1000 from the MoL distribution with true parameter
Ξ =(5, 5, 2). All estimates are achieved by using constrOptim routine in the R.
The simulation results are presented in Figs. 2-4. Figs. 2-4 show that all estimates
are consistent since the MSEs decrease to zero for large sample size. The CVME
and MPSE have the maximum amount of the biases for all parameters while CVME
and WLSE have the maximum MSEs for all parameters. On the other hand, MPSE
is the best estimator according to MSEs for small sample size. It is noticed that the
MPSE and MLE has almost same MSEs for moderate and large sample size cases.
The ADE and LSE have the lowest bias for all parameters. As a final comment
on the simulation study, we recommend that the MLE or MPSE should be used to
estimate the parameters.

4. Interval Estimation of MoL Distribution Parameters

In this section, the confidence intervals (CIs) are discussed for the parameters
a, β and θ. In general, CIs are constructed by using MLE based on pivotal quanti-
ties through the asymptotic normality(AN) property of MLE. These CIs are most
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Figure 2. The empirical means, biases and MSEs of the param-
eter α
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Figure 3. The empirical means, biases and MSEs of the param-
eter β

popular in many fields and they are commonly used in statistical software. The
AN of MLE can be written by

Ξ̂
d→ N3

(
Ξ, I−1 (Ξ)

)
,

where Ξ̂ is MLE of Ξ given in (8) and I (Ξ) is Fisher Information matrix. Using
this fact, the 100 × (1− γ)% AN CIs of parameters α, β and θ are constructed,
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Figure 4. The empirical means, biases and MSEs of the param-
eter θ

respectively, by

α̂± z1− γ
2
× se (α̂) ,

β̂ ± z1− γ
2
× se

(
β̂
)
,

θ̂ ± z1− γ
2
× se

(
θ̂
)
,

where za, is the ath quantile of the standard normal distribution, se (α̂), se
(
β̂
)

and se
(
θ̂
)
are the roots of the diagonal member of I−1

(
Ξ̂
)
which is a consistent

estimate of I−1 (Ξ) and the se (·) stands for standard error.
There is another method called uncorrected likelihood ratio (ULR). It is noticed

that AN and ULR CIs are asymptotically equivalent [10].
Under usual regularity assumptions on the likelihood function, if the α is true

parameter, then −2 log
(
ℓ
(
α, λ̃

)
− ℓ

(
Ξ̂
))

distributed as χ2
(1), where λ = (β, θ)

are the nuisance parameters, ℓ is the log-likelihood function as in (7), Ξ̂ is the joint

MLE of (α, β, θ) given in (8), λ̃ =
(
β̃, θ̃

)
is the restricted MLE of λ given a fixed

value of α. Using this fact, 100 × (1− γ)% ULR CI limits αL and αU that satisfy

ℓ
(
α, λ̃

)
= ℓ

(
Ξ̂
)
− 1

2
χ2
(1) (1− α)︸ ︷︷ ︸

LR Bound

(19)
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with αL < α and αU > α, where χ2
(1) (a) is the ath quantile of the χ2 distribution

with 1 degrees of freedom. The 100 × (1− γ)% ULR CIs can be produced in the
same manner for the other parameters β and θ.

In the simulation study, 5000 trials are used to predict the coverage probabilities
(CPs) of the AN and ULR CIs. The nominal level is fixed at 0.95. In order to get
CPs of ULR CIs, there is no need to obtain the CIs limits. It is possible that the
CPs of ULR CIs can be simulated by a likelihood ratio test on the true parameter.
The simulated CPs of these intervals are given in Table 2. Let us discuss the
true parameter cases Ξ = (1, 1, 0.5) , (1, 1, 2.5) , (5, 5, 2), (1, 2, 3) , (3, 0.5, 1.5) and
(2, 1, 0.25) . From Table 2, it is observed that the CPs of ULR reach to the desired
level when the all sample of size discussed here (say n ≥ 50) for all parameters.
However, the CPs of AN can not reach the desired level for small sample of size
case especially for parameter β. The CPs reach the nominal level when the sample
of size increases (say n ≥ 250 or n ≥ 500 according to selected true parameters).
Under discussion given here, it is indicated that ULR CIs powerful tool to construct
the CIs for the MoL parameters.

5. Real-life Data Analysis

In this section, we provide three applications to the real data sets to demonstrate
empirically the potentiality of the proposed model. All data sets, we compare the
MoL model with MW, PL, GL, EPL, EL and L models. In order to reveal the best

model, the estimated log-likelihood values ℓ(Ξ̂), Akaike information criteria (AIC),
consistent Akaike information criteria (CAIC), Kolmogorov-Smirnov (KS), Cramer
von Mises (W ∗) and Anderson-Darling (A∗) goodness of-fit statistics are computed
for all models.

The first data set represents the times between successive failures (in thousands
of hours) in events of secondary reactor pumps studied by [5], [19] and [26]. The
data are: 2.160, 0.746, 0.402, 0.954, 0.491, 6.560, 4.992, 0.347, 0.150, 0.358, 0.101,
1.359, 3.465, 1.060, 0.614, 1.921, 4.082, 0.199, 0.605, 0.273, 0.070, 0.062, 5.320.

The second data for breaking stress of carbon fibers of 50 mm length (GPa) was
studied in [23].The data are: 0.39, 0.85, 1.08, 1.25, 1.47, 1.57, 1.61, 1.61, 1.69, 1.80,
1.84, 1.87, 1.89, 2.03, 2.03, 2.05, 2.12, 2.35, 2.41, 2.43, 2.48, 2.50, 2.53, 2.55, 2.55,
2.56, 2.59, 2.67, 2.73, 2.74, 2.79, 2.81, 2.82, 2.85, 2.87, 2.88, 2.93, 2.95, 2.96, 2.97,
3.09, 3.11, 3.11, 3.15, 3.15, 3.19, 3.22, 3.22, 3.27, 3.28, 3.31, 3.31, 3.33, 3.39, 3.39,
3.56, 3.60, 3.65, 3.68, 3.70, 3.75, 4.20, 4.38, 4.42, 4.70, 4.90.

The third data reported in [7] which corresponds to the survival times (in years)
of a group of patients given chemotherapy treatment alone. The data consisting
of survival times (in years) for 45 patients are: 0.047, 0.115, 0.121, 0.132, 0.164,
0.197, 0.203, 0.260, 0.282, 0.296, 0.334, 0.395, 0.458, 0.466, 0.501, 0.507, 0.529,
0.534, 0.540, 0.641, 0.644, 0.696, 0.841, 0.863, 1.099, 1.219, 1.271, 1.326, 1.447,
1.485, 1.553, 1.581, 1.589, 2.178, 2.343, 2.416, 2.444, 2.825, 2.830, 3.578, 3.658,
3.743, 3.978, 4.003, 4.033.
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Table 2. The CPs of AN and ULR CIs

True parameter AN ULR
α β θ n α β θ α β θ
1 1 0.5 50 0.9480 0.8698 0.9390 0.9472 0.9412 0.9480

100 0.9462 0.8848 0.9354 0.9474 0.9366 0.9444
250 0.9488 0.9294 0.9472 0.9494 0.9430 0.9508
500 0.9476 0.9394 0.9500 0.9468 0.9438 0.9494
1000 0.9502 0.9484 0.9520 0.9500 0.9510 0.9526

1 1 2.5 50 0.9514 0.8840 0.9688 0.9374 0.9544 0.9556
100 0.9524 0.9174 0.9618 0.9464 0.9534 0.9468
250 0.9484 0.9386 0.9514 0.9466 0.9492 0.9422
500 0.9470 0.9470 0.9494 0.9480 0.9520 0.9450
1000 0.9488 0.9470 0.9486 0.9488 0.9498 0.9464

5 5 2 50 0.9480 0.9428 0.9472 0.9420 0.9392 0.9456
100 0.9464 0.9444 0.9500 0.9444 0.9430 0.9458
250 0.9464 0.9498 0.9482 0.9452 0.9498 0.9472
500 0.9548 0.9506 0.9522 0.9534 0.9502 0.9510
1000 0.9554 0.9544 0.9518 0.9554 0.9544 0.9502

1 2 3 50 0.9474 0.8976 0.9712 0.9396 0.9368 0.9422
100 0.9468 0.9310 0.9602 0.9414 0.9496 0.9454
250 0.9496 0.9380 0.9566 0.9464 0.9428 0.9488
500 0.9428 0.9462 0.9472 0.9430 0.9474 0.9442
1000 0.9544 0.9482 0.9506 0.9554 0.9478 0.9508

3 0.5 1.5 50 0.9276 0.8896 0.9426 0.9326 0.9426 0.9698
100 0.9324 0.9120 0.9360 0.9422 0.9516 0.9674
250 0.9444 0.9490 0.9502 0.9548 0.9680 0.9688
500 0.9422 0.9514 0.9592 0.9526 0.9608 0.9582
1000 0.9492 0.9638 0.9580 0.9542 0.9558 0.9486

2 1 0.25 50 0.9580 0.8750 0.9472 0.9580 0.9500 0.9584
100 0.9572 0.8886 0.9510 0.9614 0.9480 0.9586
250 0.9444 0.9164 0.9428 0.9458 0.9376 0.9452
500 0.9444 0.9390 0.9464 0.9446 0.9504 0.9466
1000 0.9538 0.9478 0.9510 0.9540 0.9494 0.9510
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We give the summary statistics of the data sets in Table 3. The first and third
data sets have right skewness as well as the second data set has the left skewness.

Table 3. Some summary statistics of the data sets

Data set Mean Median Standard Deviation Skewness Kurtosis

I 1.5780 0.6140 1.9306 1.3643 3.5445
II 2.7600 2.8350 0.8914 -0.1314 3.2230
III 1.3410 0.8410 1.2466 0.9721 2.6638

Tables 4-6 list the MLEs, standard errors, ℓ(Ξ̂) and goodness-of-fits statistics
from the fitted models. Tables 4-6 show that the MoL model can be chosen as
the best model based on all criteria. In addition, we give the parameter estima-
tion results and goodness-of-fit statistics of the MoL distribution based on other
estimation methods in Table 7. Figures 5-7 show the fitted densities, cdfs and
probability-probability (P-P) plots of the MoL model. We also sketch the P-P
plots of others models in Figures 8-10. From Figures 8-10, we clearly show that the
MoL model fits this data set better than the other models.

Table 4. MLEs, standard erros of the estimates (in parentheses),

ℓ̂, goodness-of-fits statistics and related p-values [in parentheses]
for the first data set

Model α̂ β̂ θ̂ −ℓ̂ AIC CAIC KS A∗ W ∗

MoL 0.8148 1.7119 0.9419 31.3782 68.7565 70.0196 0.0785 0.1881 0.0204
(0.1582) (2.0132) (0.2169) [0.9967] [0.9934] [0.9972]

MW 0.7922 0.0093 0.7517 32.5082 71.0165 72.2796 0.1198 0.4141 0.0639
(0.1925) (0.0850) (0.2199) [0.8575] [0.8330] [0.7939]

PL 0.7253 1.1948 32.7476 69.4952 70.0952 0.1189 0.4279 0.0643
(0.1129) (0.2119) [0.8628] [0.8190] [0.7918]

GL 0.7457 0.00016 0.4728 32.7592 71.5184 72.7815 0.1379 0.5236 0.0889
(0.1885) (0.0116) (0.1659) [0.7293] [0.7209] [0.6462]

EL 0.6130 0.7251 33.4889 70.9779 71.5779 0.1558 0.7059 0.1246
(0.1647) (0.1782) [0.5784] [0.5521] [0.4799]

EPL 0.2770 11.5880 3.7238 31.8359 69.6718 70.9349 0.0963 0.2264 0.0253
(0.2404) (32.7190) (2.9916) [0.9691] [0.9814] [0.9903]

L 0.9575 35.3054 72.6107 72.8013 0.2439 2.2967 0.3821
(0.1504) [0.1085] [0.0640] [0.0798]

In Table 8, 95% AN and ULR confidence limits of the parameters are presented
for the all data sets. In general the limits of AN and ULR intervals are close to
each other. Figure 11 demonstrate the ULR intervals for the third real data.
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Table 5. MLEs, standard erros of the estimates (in parentheses),

ℓ̂, goodness-of-fits statistics and related p-values [in parentheses]
for the second data set

Model α̂ β̂ θ̂ −ℓ̂ AIC CAIC KS A∗ W ∗

MoL 2.7039 0.7905 0.0967 85.6419 177.2838 177.6709 0.0741 0.3956 0.0620
(0.2170) (0.4304) (0.0257) [0.8607] [0.8526] [0.8025]

MW 2.1535 0.4302 0.0228 85.9866 177.9732 178.3603 0.0905 0.5266 0.0838
(1.0622) (0.3581) (0.0092) [0.6519] [0.7192] [0.6719]

PL 2.5099 0.1241 85.8055 175.6111 175.8015 0.0790 0.4651 0.0819
(0.2088) (0.0311) [0.8051] [0.7820] [0.6824]

GL 6.9574 8.0712 2.7905 90.9276 187.8552 188.2423 0.1318 1.2861 0.2420
(1.4779 (21.2598) (0.4860) [0.2014] [0.2368] [0.1991]

EL 7.0411 1.2461 93.7970 191.5939 191.7844 0.1470 1.8375 0.3284
(1.6730) (0.1090) [0.1154] [0.1132] [0.1124]

EPL 3.1439 0.6238 0.0458 85.4258 176.8516 177.2387 0.0772 0.4094 0.0683
(0.8257) (0.3149) (0.0585) [0.8258] [0.8388] [0.7638]

L 0.5903 122.3841 246.7681 246.8306 0.2977 10.6922 2.0914
(0.0532) [0.0000] [0.0000] [0.0000]

Table 6. MLEs, standard erros of the estimates (in parentheses),

ℓ̂, goodness-of-fits statistics and related p-values [in parentheses]
for the third data set

Model α̂ β̂ θ̂ −ℓ̂ AIC CAIC KS A∗ W ∗

MoL 1.1610 2.5389 0.8263 55.8323 117.6647 118.250 0.0661 0.3437 0.0393
(0.1378) (0.7903) (0.1309) [0.9819] [0.9015] [0.9388]

MW 0.9677 0.0620 0.6529 57.9942 121.9885 122.5738 0.1116 0.5700 0.0864
(0.2047) (0.1235) (0.1702) [0.5958] [0.6758] [0.6577]

PL 0.9465 1.1351 58.4028 120.8056 121.0913 0.1104 0.5656 0.0845
(0.1076) (0.1465) [0.6033] [0.6801] [0.6683]

GL 1.0931 0.8896 0.0991 58.0862 122.1725 122.7578 0.1110 0.5482 0.0842
(0.2256) (0.4456) (0.7380) [0.5967] [0.6973] [0.6702]

EL 0.9412 1.0656 58.4784 120.9568 121.2425 0.1196 0.6498 0.1015
(0.1919) (0.1693) [0.5026] [0.6013] [0.5794]

EPL 0.6579 2.0911 1.8562 58.1167 122.2333 122.8187 0.0972 0.4736 0.0702
(0.3390) (2.2867) (1.1306) [0.7521] [0.7729] [0.7530]

L 1.1004 58.5231 119.0461 119.1391 0.1304 0.7721 0.1253
(0.1249) [0.3964] [0.5007] [0.4758]

Table 7. The different estimations results of the MoL model pa-
rameters for the data sets

Data set-I Data set-II Data set-III

Method α̂ β̂ θ̂ A∗ W ∗ KS α̂ β̂ θ̂ A∗ W ∗ KS α̂ β̂ θ̂ A∗ W ∗ KS
LSE 0.6773 1.5845 0.9559 0.1593 0.0132 0.0677 2.9451 1.9433 0.0748 0.4434 0.0668 0.0701 1.0068 2.0508 0.8411 0.2629 0.0301 0.0626

WLSE 0.7205 1.8431 0.9376 0.1554 0.0131 0.0689 2.5905 0.0144 0.1124 0.5642 0.1054 0.0898 1.0586 2.1764 0.8467 0.2873 0.0369 0.0658
AD 0.7659 1.9442 0.9314 0.1417 0.0131 0.0595 2.8612 1.4052 0.0815 0.3394 0.0408 0.0661 1.0537 2.1279 0.8455 0.2619 0.0292 0.0642
CVM 0.7315 1.6954 0.9514 0.1481 0.0124 0.0666 2.9952 1.6715 0.0712 0.3852 0.0354 0.0585 1.0479 2.1197 0.8354 0.2673 0.0283 0.0683
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Table 8. Confidence limits for parameters α, β and θ based on
AN and ULR for the data sets

Data AN ULR
α β θ α β θ

Data set-I (0.5051, 1.1247) (−2.2231, 5.6466) (0.5167, 1.3669) (0.5628, 1.1177) (0, 4.6380) (0.5967, 1.3985)
Data set-II (2.2759, 3.1253) (−0.0451, 1.6400) (0.0465, 0.1470) (2.1268, 3.1366) (0, 3.2554) (0.0565, 0.1991)
Data set-III (0.8909, 1.4311) (0.9898, 4.0880) (0.5695, 1.0830) (0.9069, 1.4431) (1.1613, 3.9695) (0.5983, 1.1126)
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Figure 5. The fitted plots for the first data set
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Figure 6. The fitted plots for the second data set
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Figure 7. The fitted plots for the third data set
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Appendix

Proof of Theorem 1.
The pdf of the X is

f (x) =
θ

θ + 1
g1 (x;α, β, θ) +

1

θ + 1
g2 (x;α, β, θ)

Get the W (x) density ratio of MoL distribution in two parts as W1 (x) and W2 (x).
If W1 (x) and W2 (x) density ratios are increasing functions in x, the W (x) density
ratio is also an increasing function of x. The W1 (x) and W2 (x) ratios are given by

W1 (x) =
g1 (x;α, β, θ1)

g1 (x;α, β, θ2)

and

W2 (x) =
g2 (x;α, β, θ1)

g2 (x;α, β, θ2)

where g1 (x;α, β, θ) and g2 (x;α, β, θ) are the pdfs of MW and GG distributions
respectively. Firstly, the MW density ratio is given by

W1 (x) =
g1 (x;α, β, θ1)

g1 (x;α, β, θ2)
=

θ1 exp (βx− θ1x
α exp (βx))

θ2 exp (βx− θ2xα exp (βx))
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Figure 8. The PP plots for the first data set

Taking the derivative with respect to x,

W ′
1 (x) = −

>0︷ ︸︸ ︷
θ1x

α exp (βx) (α+ βx) exp (βx− θ1x
α exp (βx)) (θ1 − θ2)

xθ2 exp (βx− θ2x
α exp (βx))︸ ︷︷ ︸

>0

for θ1 < θ2, − ((θ1 − θ2)) is greater than zero. So W ′
1 (x) > 0 when θ1 < θ2 is

taken. W1 (x) is an increasing function in x. Secondly, the same steps are applied



268 C. KUŞ, M. Ç. KORKMAZ, İ. KINACI, K. KARAKAYA, Y. AKDOĞAN
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Figure 9. The PP plots for the second data set

for GG density ratio. The GG density ratio is given by

W2 (x) =
g2 (x;α, β, θ1)

g2 (x;α, β, θ2)
=

θ21 exp (−θ1x
α)

θ22 exp (−θ2xα)

Taking the derivative with respect to x,

W ′
2 (x) = −

>0︷ ︸︸ ︷
θ21 exp (−θ1x

α)xαα (θ1 − θ2)

xθ22 exp (−θ2x
α)︸ ︷︷ ︸

>0
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Figure 10. The PP plots for the third data set

for θ1 < θ2, − ((θ1 − θ2)) is greater than zero. So W ′
2 (x) > 0 when θ1 < θ2. W2 (x)

is an increasing function in x. Since both W1 (x) and W2 (x) are increasing func-
tions in x, W (x) = W1 (x) +W2 (x) is also an increasing function in x. The proof
is completed.

Proof of Theorem 2
Using the fact that mixed representation MoL pdf given in (2), the rth moment,
µ′
r = E (Xr), of the MoL distribution can be written by
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Figure 11. ULR confidence limits for parameters α, β and θ for
the real data III

µ′
r =

θ

θ + 1
E (Xr

MW ) +
1

θ + 1
E (Xr

GG) , (20)

where

E (Xr
GG) = Γ (r/α+ 2) θ−r/α (21)

is the rth moment of GG distribution and

E (Xr
MW ) =

∞∑
i1,...,ir=1

Ai1,...,irΓ (sr/α+ 1) θ−sr/α, (22)

is the rth moment of the MW distribution [8] with

Ai1,...,ir = ai1 , . . . , air , sr = i1 + · · ·+ ir

and

ai = (−1)
i+1

ii−2βi−1
[
αi−1 (i− 1)!

]−1
.

The proof is completed by using (21) and (22) in (20),

µ′
r =

1

θ + 1

Γ (r/α+ 2) θ−r/α +

∞∑
i1,...,ir=1

Ai1,...,irΓ (sr/α+ 1) θ1−sr/α

 .
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