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Abstract

The aim of this research is to establish the analytic solution of time fractional diffusion equations with periodic boundary conditions in one
dimension by implementing well-known separation of variables method. First, the eigenvalues of the obtained Sturm-Liouville problem
are determined by investigating all cases. The corresponding eigenfunctions are obtained in the second step. Utilizing eigenvalues and
eigenfunctions, the Fourier series of the solution is constructed in terms of Mittag-Leffler function and the coefficients are computed by
taking L2 inner product and initial condition into account at the final step.
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1. Introduction

Mathematical modeling plays undeniably powerful role for the quantitative and qualitative analysis of systems which describes the physical
and scientific processes. Moreover mathematical models with fractional differential equations allow us to figure out the features of quantitative
and qualitative behavior of complicated systems with memory and hereditary properties in diverse areas of science and engineering much
more better since fractional derivatives are non-local operators. The suitable type of the fractional derivative in mathematical modelling
is chosen by analyzing the experimental data of the phenomena with memory. Therefore recently modelling with fractional differential
equations gain interest from many scientist in various range of fields such as mathematics, biology, engineering and so on. Because of
advantages of Caputo fractional derivative such that the derivative of constant function is zero unlike the other fractional derivatives and
the initial conditions can be taken in classical sense, it is one of the widely used in various branches of sciences. Consequently fractional
order mathematical models in Caputo sense are one of the most preferable to do research on the behaviour of the processes with memory
and hereditary properties. Since finding the analytic solution of fractional differential equations is not possible for many times, solving
them numerically gains considerable attention. In literature increasing number of studies about theory and diverse applications of fractional
differential equations, can be found supporting this conclusion [1, 2, 3, 4, 5, 6, 7, 8, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22]. The
solutions of fractional PDEs and ordinary differential equations (ODEs) are determined in terms of Mittag-Leffler function.

2. Preliminary Results

In this section, we recall fundamental definitions and well known results about fractional derivative in Caputo sense.

Definition 2.1. The qth order fractional derivative of u(t) in Caputo sense is defined as

Dqu(t) =
1

Γ(n−q)

∫ t

t0
(t− s)n−q−1 u(n)(s)ds, t ∈ [t0, t0 +T ],

where u(n) (t) = dnu
dtn ,n− 1 < q < n. Note that Caputo fractional derivative is equal to integer order derivative when the order of the

derivative is integer.

Definition 2.2. The qth order Caputo fractional derivative for 0 < q < 1 is defined in the following form:

Dqu(t) =
1

Γ(1−q)

∫ t

t0
(t− s)−q u′(s)ds, t ∈ [t0, t0 +T ].
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The Mittag–Leffler function with two-parameters which is taken into account in eigenvalue problem, is given by

Eα,β

(
λ (t− t0)

α
)
=

∞

∑
k=0

(
λ (t− t0)

α
)k

Γ(αk+β )
,α,β > 0,

including constant λ . Especially, for t0 = 0,α = β = q we have

Eq,q (λ tq) =
∞

∑
k=0

(λ tq)k

Γ(qk+q)
,q > 0.

Mittag–Leffler function coincides with exponential function i.e., E1,1 (λ t) = eλ t for q = 1. For details see [9], [10].
The main goal of this study is to establish the analytic solution of following time fractional differential equations with periodic boundary and
initial condition.

Dα
t u(x, t) = γ

2uxx (x, t) , (2.1)

{
u(−l, t) = u(l, t) ,
ux (−l, t) = ux (l, t) ,

(2.2)

u(x,0) = f (x), (2.3)

where 0 < α < 1,−l ≤ x≤ l,0≤ t ≤ T,γ ∈ R.

3. Main Results

By means of separation of variables method, The generalized solution of above problem is constructed in analytical form. Thus a solution of
problem (2.1)-(2.3) have the following form:

u(x, t;α) = X(x) T (t;α), (3.1)

where −l ≤ x≤ l,0≤ t ≤ T .
Plugging (3.1) into (2.1) and arranging it, we have

Dα
t (T (t;α))

T (t;α)
= γ

2 X ′′ (x)
X (x)

=−λ
2. (3.2)

Equation (3.2) produce a fractional equation with respect to time and an ordinary differential equation with respect to space. The first
ordinary differential equation is obtained by taking the equation on the right hand side of Eq. (3.2). Hence with boundary conditions (2.2),
we have the following problem:

X ′′ (x)+λ
2X (x) = 0, (3.3)

{
X (−l) = X (l) ,
X ′ (−l) = X ′ (l) .

(3.4)

The solution of eigenvalue problem (3.3)-(3.4) is accomplished by making use of the exponential function of the following form:

X (x) = erx.

Hence the characteristic equation is computed in the following form:

r2 +λ
2 = 0. (3.5)

Case 1. If λ = 0, the characteristic equation have two coincident roots r1 = r2, leading to the general solution of the eigenvalue problem
(3.3)-(3.4) having the following form:

X (x) = k1x+ k2,

X ′ (x) = k1.

The first boundary condition yields

X (−l) =−k1l + k2 = k1l + k2 = X(l)⇒ k1 = 0,

which leads to the following solution

X (x) = k2.
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Similarly second boundary condition leads to

X ′ (−l) = 0 = X ′(l).

The representation of the solution is established as

X0 (x) = k2.

Case 2. If λ > 0, the Eq. (3.5) have two distinct real roots r1, ,r2 yielding the general solution of the problem (3.3)-(3.4) in the following
form:

X (x) = c1er1x + c1er2x.

By making use of the first boundary condition, we have

X (−l) = c1er1(−l)+ c2er2(−l) = c1er1l + c2er2l = X(l).

c1

(
er1(−l)− c1er1l

)
+ c2

(
er2(−l)− er2l

)
= 0. (3.6)

Since
(

er1(−l)− c1er1l
)

and
(

er2(−l)− er2l
)

are linearly independent the equation (3.6) is satisfied if and only if c1 = 0 = c2 which implies

that X(x) = 0 which implies that there is not any solution for λ > 0.
Case 3. If λ < 0, the characteristic equation have two complex roots yielding the general solution of the problem (3.3)-(3.4) in the following
form:

X (x) = c1 cos(λx)+ c2 sin(λx).

By making use of the first boundary condition we have

X (−l) = c1 cos(λ l)− c2 sin(λ l) = c1 cos(λ l)+ c2 sin(λ l) = X(l),

which implies that

2c2 sin(λ l) = 0⇒ c2 = 0.

Hence the solution becomes

X (x) = c1 cos(λx),

X ′ (x) =−c1λ sin(λx).

Similarly last boundary condition leads to

X ′ (−l) = c1λ sin(λ l) =−c1λ sin(λ l) = X ′(l),

⇒ 2c1λ sin(λ l) = 0,

which implies that

sin(λ l) = 0,

which yields the following eigenvalues

λn =
wn

l
,λ1 < λ2 < λ3 < .. . ,

where wn = nπ satisfy the equation sin(wn) = 0. As a result the solution is obtained as follows:

Xn (x) = c1 cos
(

wn

(x
l

))
,n = 1,2,3, . . .

The second equation in (3.2) for eigenvalue λn yields the ordinary differential equation below:

Dα
t (T (t;α))

T (t;α)
=−γ

2
λ

2
n ,

which yields the following solution

Tn (t;α) = Eα,1

(
−γ

2
λ

2
n tα
)
= Eα,1

(
−γ

2 w2
n

l2 tα

)
,n = 0,1,2,3, . . .

The solution for every eigenvalue λn is constructed as

un (x, t;α) = Xn (x)Tn (t;α) = Eα,1

(
−γ

2 w2
n

l2 tα

)
cos
(

wn

(x
l

))
,n = 0,1,2,3, . . . ,
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which leads to the following general solution

u(x, t;α) = A0 +
∞

∑
n=1

An cos
(

wn

(x
l

))
Eα,1

(
−γ

2 w2
n

l2 tα

)
.

Note that it satisfies boundary condition and fractional differential equation.
The coefficients of general solution are established by taking the following initial condition into account:

u(x,0) = f (x) = A0 +
∞

∑
n=1

An cos
(

wn

(x
l

))
.

The coefficients An for n = 0,1,2,3, . . . determined by the help of inner product defined on L2[−l, l]:

A0 =
1
2l

∫ l

−l
f (x)dx, (3.7)

An =
1
l

∫ l

−l
f (x)cos

(
wn

(x
l

))
. (3.8)

4. Illustrative Example

In this section, we first consider the following initial periodic boundary value problem:

ut(x, t) = uxx(x, t),{
u(−1, t) = u(1, t) ,
ux (−1t, t) = ux (1, t) ,

u(x,0) = cos(πx)

which has the solution in the following form:

u(x, t) = cos(πx)e−π2t , (4.1)

where −1≤ x≤ 1,0≤ t ≤ T . Now let the following problem called fractional heat-like problem be taken into consideration:

Dα
t u(x, t) = uxx (x, t) , (4.2)

{
u(−1, t) = u(1, t) ,
ux (−1t, t) = ux (1, t) ,

(4.3)

u(x,0) = cos(πx), (4.4)

where 0 < α < 1,−1≤ x≤ 1, 0≤ t ≤ T .
The separation of the variables method yields the following equations:

Dα
t (T (t;α))

T (t;α)
=

X ′′ (x)
X (x)

=−λ
2. (4.5)

Equation (4.5) produce a fractional equation with respect to time and an ordinary differential equation with respect to space. The first
ordinary differential equation is obtained by taking the equation on the right hand side of Eq. (4.5). Hence with boundary conditions (4.3),
we have the following problem:

X ′′ (x)+λ
2X (x) = 0, (4.6)

{
X (−l) = X (l) ,
X ′ (−l) = X ′ (l) .

(4.7)

The representation of the solution for the eigenvalue problem (4.6)-(4.7) is obtained as

Xn (x) = cos(wnx),n = 1,2,3, . . .

The second eqution in (4.5) for every eigenvalue λn yields the following equation:

Dα
t (T (t;α))

T (t;α)
=−λ

2,
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which has the following solution

Tn (t;α) = Eα,1

(
−w2

ntα
)
,n = 0,1,2,3, . . .

For each eigenvalue λn, we obtain the following solution:

un (x, t;α) = Eα,1

(
−w2

ntα
)

cos(wnx),n = 0,1,2,3, . . .

and hence we have the following sum:

u(x, t;α) = A0 +
∞

∑
n=1

An cos(wnx) Eα,1

(
−w2

ntα
)
. (4.8)

Note that the general solution (4.8) satisfy both boundary conditions (4.3) and the fractional equation (4.2). By making use of the inner
product defined on L2[−l, l], we determine the coefficients An in such a way that the general solution (4.8) satisfies the initial condition (4.4).
Plugging t = 0 in to the general solution (4.8) and making equal to the initial condition (4.4) we have

u(x,0) = A0 +
∞

∑
n=1

An cos(wnx) .

The coefficients An for n = 0,1,2,3, . . . are determined by the help of the inner product as follows:

A0 =
1
2

∫ 1

−1
cos(πx)dx =

(
1

2π
sin(πx)

)x=1

x=−1
= 0,

An =
∫ 1

−1
cos(πx)cos(nπx)dx.

For n 6= 1,An = 0. n = 1 we get

A1 =
∫ 1

−1
cos2 (πx)dx =

∫ 1

−1

(
1
2
+

cos(2πx)
2

)
dx =

(
x
2
+

sin(2πx)
4π

)∣∣∣∣x=1

x=−1
= 1.

Thus

u(x, t;α) = cos(πx)Eα,1

(
−w2

1tα
)
. (4.9)

It is important to note that plugging α = 1 in to the solution (4.9) gives the solution (4.1) which confirm the accuracy of the method we apply.

5. Conclusion

In this research, the analytic solution of time fractional differential equation with periodic boundary conditions in one dimension is
constructed. By making use of separation of variables the solution is formed in the form of a Fourier series with respect to the eigenfunctions
of a corresponding Sturm-Liouville eigenvalue problem including fractional derivative in Caputo sense. In the future work, construction of
solutions for space-time fractional differential equations with various boundary conditions will be investigated by the method implemented
in this research and modifications of this method.
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