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1. INTRODUCTION

Throughout, the Banach space X is taken to be real and reflexive with X ™ as the dual. We let
I |I: X — R represent the norm function. Let d, : domh xint(domh) — R™ represent a bifunctions

induced by a convex function. Let domh ={u e X : h(u) < +o0} and int(domh) represent the domain
and interior domain of a convex function, h: X — (—0,+0] respectively. The convex function h is

Gateaux differentiable at u if lim (h(u +52) = h(u)) =h°(u,z) exists for any z in X . By this,
S

s—0"

h°(u, z) = Vh(u), as the gradient of h.

Let the convex function h be Gateaux differentiable at u, then d, : domh xint(domh) — R™ defined
by
dy(z,u)=h(z) —h(u) = (Vh(u), 2) + (Vh(u), u), (1)

is the Bregman function induce by h.

This function d, : domh xint(domh) — R™ defined by (1) has some nice properties like:
P1. The function d, (., u) is convex.
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P2. d, (u,u)=0.

P3. d, (z,u) >0.

P4. d, (z,u) =d, (z,v)+d, (v,u)+(z -V, Vh(v)) —(z -V, Vh(u)).
P5. d, (u,v) +d, (v,u)=(u—v, Vh(u)) —(u—v, Vh(v)).

P6. d,(u,v) < lullllVh(u) =Vh) || + [Vl Vh(u) - VhV) .

Observe that P4 implies P5 and P6 if u = z. For proof of (P1 - P3), see [1,2].

Let K represent a non-void, closed, convex subset of int(domh). Let G: K — K represent a map.
G:K — K is nonexpansive if ||Gu—Gz ||<||[u—z|, VYu,z € K; G: K — K is (quasi)-nonexpansive
if [Gu—2z°|<lu=2°|, and Fix(G) ={z° € K : Gu = u} is the collection of fixed point of G : K — K.
Anelement u” e K is asymptotic fixed point of G : K — K when {u, }is contained in K and converging
weakly to u so that ||u, —Gu, ||=0. We denote the set by FIX(G).

Amap G: K —intdomh, is Bregman relatively nonexpansive (BRNE) [3] if

d,(z°,Gu)<d, (z° u), Yu e K,vz° € Fix(G)
FiX(G) = Fix(G).

For a differentiable functionh : X — R™ and for all u € X, [4,5] gives
d, (Up,u) = min{d, (z,u) :u e X} = (Vh(u),z —u,) —(Vh(U,),z—U,) <0, VzeK. )

In addition, if K < X, then for ueintdomh, we have a uniqueu, € Ksuch that the mapping
P :intdomh — K which satisfy

d, (U, u) =min{d, (z,u): ze K} 3)

is the Projection of U € intdomh onto the set K < domh, where P/ (u) = u,. The Bregman Projection
mapping in view of [4,5] satisfy:

dh(z, P! (u))+ dh(PKh (u),u)g d,(z,u), zeK. )

Given h anorm square with u € X, then we see that Vh(u) = 2Ju, where J : X — X is defined and (1)
reduce to @(z,u) =|| z ||F —2(Ju, 2)+ || u | known as the Lyapunov functional [6].

The function h: X — (—o0,+00]is Legendre [7], if the following hold

(i) intdomhis non-void, h is differentiable on intdomh with domh = intdomh,
(i) intdomh”is non-void, h”is differentiable on intdomh”with domh” = intdomh”.

With h: X — (—o0,400] a Legendre function, and X reflexive, then Vh is a bijection which satisfies
Vh = (Vh*)’l, rangeVh = domainVh" = intdomainh”. If h: X — (—o0,+00] is single-valued and X
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is smooth and strictly convex, then J = Vh. Given h(u) =t™ ||u |, t € (1, o0), then we have a Legendre
function [8-12].

The modulus of total convexity of h at U eintdomh W, (u,.) : intdomh x R* — R™ is defined by
W, (u,s)=inf{d, (z,u) : ze domh,| z—u|=s}. (5)

If W, (X, S) is positive, then h: X > (—OO,+00] becomes totally convex at U for positive values of S. For
more information, see [7].

A mapping a: K — X "is monotone if YU,z € K, we have

(au,u—2z)—(az,u—z)=0. (6)
Note that a point z° € K such that

(az’,z) —(az’,z2°) >0 VzeK, ©)
solves a variational inequality problem. The collection of solution of (7) is represented by

VI(K,a) = eK:(az’,2)—(az’,2°) >0 VzeK}

Suppose in addition a:K—- Xis continuous, we have
VI(K,a) = {zo eK:(az’,z)—(az’,z°)>0 vz e K} is closed and convex.

Over the years, smooth convex minimization problem involving generalized nonexpansive and Bregman
nonexpansive operators has attracted the interest of many researchers and authors seeking for existence of
solutions. Itis a fact that most published works on these operators has been the iterative approximation of
(common) solution of operators. Furthermore, most of these results only focused on the strong convergence
of the formulated schemes to the fixed point sets (see [13-15]). However, very few authors have paid
attention to the speed or the rate of convergence of sequence of iterates of Bregman nonexpansive-type
operators to their (common) fixed point sets when they exists. Thus, a two-step iterative method to increase
the rate of convergence was used in the works of [16-18] and which is defined as

Upyy = U, +ﬂn (un - un—1) (8)

for all non-negative integers n, where £, €(0,1). We note here that the inertial is represented by the
component,

ﬁn (un - un—l) :

Using Lyapunov functional, [14] formulated the hybrid method as given below:
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u, e K =K
y" = 3"(b,d(u,) + (L -b,)I GJ, u, )
C,={u ek g, y") < glu"u, )} 9)

Q,={u" eK:{u,-u",Jdu,)—{u, —u",Ju,) >0},
Uy =1I¢ o (Uo)’

where G : K — K is relatively nonexpansive map. J, =(J + rM)™J is a resolvent for maximal map

M : K — X" with r positive. They showed that their method converge strongly to mutual element of
Fix(G) MM (0) nearest U,.

In 2018, [16], formulated and studied the following methods generated by {u, }as follows: u,,Uu, € X and

X
=u,—¢, (U, ;—U,),
y'=3(1-8)J(z,)+pIGCz,) (10)
C.= {u* eK: ¢(u*, 37”) < ¢(u*,zn)},
Uy =1TI¢ (uo)’

K0
Zn

where G : X — X is relatively nonexpansive map expressed as

Gu=1J ’1(2 1, (B, IGx+ (1 - B,)IG,u)). They showed that their method converge strongly to a mutual

i=1

element of Fix(G) =7, Fix(G;).

Both algorithms (9) and (10) were formulated in uniformly convex and smooth Banach spaces. We observe
also that algorithm (9) combined the intersection of two half sets and at each iteration, it is used and taken
as the next Projection which is not easily done in application. Secondly, it has no inertial component that
could speed up the convergence of their algorithm. On the other hand, algorithm (10) has the inertial
component.

Question. Can we formulate iterative scheme following hybrid method with inertial component without
the intersection of two half sets? Can our algorithm converge to common element of our non-void set faster
in reflexive and real Banach space?

Our motivation for study is the results of [14] and [16]. We aim to study an iterative scheme with inertial
component for our operator. The formulated scheme converges faster and finds a common solution for
some nonlinear operators in Banach spaces. The method of our proof and results obtained is well involved
and significant.

2. MAIN RESULTS

Let K be a non-void, closed and convex subset of reflexive Banach space X. Let the function
h: X — (—o0,+0) represent bounded Legendre, uniform Fréchet differentiable, totally convex. Let the

map G:K — K represent a Bregman relatively nonexpansive, a:K — X" represent a continuous
monotone map. We assume F = Fix(G)(VI(K,a) to be non-void. For u element of X, define the
mapping T,* : X — K as follows:



741 Enyinnaya EKUMA-OKEREKE, Felix Moibi OKORO/ GU J Sci, 33(3): 737-749 (2020)

T x ={z° e K :(az’, 2)r, —(az°, 2%, +(Vh(z°) - Vh(u), - 2°) > 0, Vz e K.

Set X,, X, € K. Then define {x,}by the manner below:
X, €Ky =K

z, = Vh'(Vh(x,) + &, (Vh(x,) = Vh(x, ,))),

Y, = Vh"(L-n)Vh(z,) + 7 Vh(Gz,)),

w, :Trfyn,

K,,={uekK, :d,(uw,)<d,(uz),

Xn+1 = I:)Khm (XO )’

(11)

where {r,.} < (0,), ne N, «, €(01), < (0,).
Lemma 2.1. The scheme (11) is well defined.

Proof.

First, we demonstrate that F = FiX(G) VI (K,a) is closed, convex. Note in [2], Fix(G)is closed,
convex. Also note in [13], VI (@, K) is closed, convex. So F = Fix(T)NVI(K,a) is closed, convex.
Secondly, we demonstrate that K, is closed, convex for each non-negative integer.

To realize this, from our setting in (11), K, is closed. Moreover, since d, (u,w, ) < d, (U, , )is equivalent
of (Vh(z,)—Vh(w,),u)+(Vh(z,) - Vh(w,),w, —z,) <h(w,)—h(z,),

it follows that K, is a half space and hence convex for each nonnegative integer.

In addition, we demonstrate that F < K for each nonnegative integer. Clearly, from our setting,
FcK, =K. If FcK, forsome t>0,thenwith q e F, and using P1 together with [13], we obtain

dy(q,w)=d,(q,T,7y,)
< dh(q1 yt) (12)

Furthermore,

d,(a,y,) = d, (@, Vh" (@ -7)Vh(z,) + 7 Vh(GZ,)))
< (1_77)dh(Q1 Zt)+ndh(q’GZt)
< (1—77)dh(q, Zt)+77dh(q1 Zt)

= dh(q1 Z, )
Thus,

d,(a,y,) <d,(a,z) (13)

Using (13) in (12) gives
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di (P, W) <dy (P, 2,).
So qeK,,and K., = K,. Thisimplies F < K. Thus, (11) become well defined

Lemma2.2. Let K be anon-void, closed and convex subset of reflexive Banach space X. Let the function
h: X — (—o0,+0) represent bounded Legendre, uniform Fréchet differentiable, totally convex. Let the

map G:K — K represent a Bregman relatively nonexpansive, a:K — X represent a continuous

monotone map. We assume F = Fix(G) VI (K,a) to be non-void. Let{X, }be produced by (11). Then
the following holds

@0 limlix,, =, [1=0,
@) limlx, -z, =0,
(i) limfx,,, —w, [|=0,
(v)  lim[z, —w, [=0,
V) limw, -y, =0,
i) limlix, -y, =0,

(viiy  lim|jz, =Tz, ||=0.

Proof.

Seeing that x, = P (x,) with x,., =P (x,) e K,,; = K, ,gives

dh(Xn,XO) < dh(xn+1' Xo) _dh(xn+l’ Xn)
dh(xn+l’xo)2dh(xn’xo)' (14)

This shows that {dh (X, XO)} is monotone nondecreasing sequence. Besides, from (4),

dy (X, %o) =y (P (%), %o) < diy (0, %) =0y (A, P, (%)) <dj(4,%) vneNw{0}, geF.
= 0y (X, %) <d; (G, %)- (15)

This demonstrates boundedness of {dh(xn , XO)}. From [4], boundedness of {Xn} hold. But (14) combined
with (15), shows that limd, (X, X,) exist. Now wlog, let
n—o0

!imdh(xn,xo) =1. (16)

In addition to (16) and (4), we get

dh(XnJr,u’ Xn) = dh(xn+p' PKhn (XO))
<d, (Xp, 0 %) —di (X, %) > 0 as N — co.

N+u?

So that
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limd, (x,,,,X,)=0, #>0.
In particular,
limd, (x,.,, X,) =0. (17)
n—oo

Therefore, we get from [7]
!]Lnol” Xn+l - Xn ”: O (18)
This establishes (i).

Now, since Vh is uniformly continuous, we get

lim[| VA(x,..) - Vh(x,) [|=0. (19)

Furthermore, from the definition of Z_,and together with (19), we obtain

I'Vh(x,) = Vh(z,) | = [ Vh(x,) = Vh(X,) — &, Vh(X, = X, ) |
= e, Vh(x, s —x,) |l
<|Vh(x,; —x,) >0  whenn— oo.
= LLT” Vh(x,)-Vh(z,) ||=0. (20)

Invoking [4], we obtain
Ilm” Xp = Z, ”:O (21)
N—o0

This establishes (ii).
Moreso, since { Zn} is bounded and using P6, (21) we obtain

limd,(x,,z,)=0. (22)

In addition, since X,,; € K,,; = K, from the definition of the half space, we obtain

n+l

dh(Xn+l’Wn) < dh(XrHl’ Zn)' (23)

Moreover, using P4, (17), (20), and (2), we get

limd, (x..,,2,)=0. (24)

This implies that

rl]imdh(XnJrl’Wn) :O' (25)

Thus, [7] suggest that
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—Z, ”=O

n+l

lim|| x

n—oo
and

lim|| x,., —w, ||=0. (26)

nN—oo

n+1

This establishes (iii).
Combining (18) and (26), we get

| x, —w, || > 0asn— oo.
Also, from (26) we get

Ilm” X, — W, ”:O (27)
n—o

and
lim||z, —w, ||=0. (28)

This establishes (iv).
Next, using [13], this implies

dh(yn'Wn) :dh(yn’Tr:yn) < dh(u’Wn)_dh(u’ yn)
<d,(u,y,)—d,(u,y,) >0asn— .
= limd,(y,,w,)=0.

Using [7] gives
lim{|w, -y, [|=0. (29)
n—oo

This establishes (v).
Now, from the uniform continuity of Vh, (29) becomes

| Vh(w,) —Vh(y,) || >0 as n — . (30)

Thus using (29) with (27) gives
lim| x, =y, I=0. (31)
This establishes (vi).
Using (26) with (29) gives
rI1I—>r2” Xoa — Yn ”: 0.
With this and P6 we get

d,(X,..,Y,) >0asn—oo.
Thus combining (29) and (28) we get

lim|| z, - y, = 0. (32)
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Since Vh is uniformly continuous, we obtain

| Vh(z,)-Vh(y,)|[>0asn— o (33)
Since, y, = Vh"((L—7)Vh(z,) + 7Vh(Gz,)), we obtain
IVh(z,) - Vh(y,) [ = I Vh(z,) - Vh(z,) + n(Vh(Gz,) - Vh(z,)) =7 Vh(Gz,) - Vh(z,) ||-
Using (33) gives

| Vh(Gz,)-Vh(z,)|> 0 as n — .
So that

|z, -Gz, > 0asn— oo (34)

This establishes (vii).

Theorem 2.3. Let K be a non-void, closed and convex subset of reflexive Banach space X. Let the
functionh : X — (—o0,+00) represent bounded Legendre, uniform Fréchet differentiable, totally convex.

Let the map G:K — K represent a Bregman relatively nonexpansive, a:K — X" represent a
continuous monotone map. We assume F = Fix(G) (VI (K,a) to be non-void. Let{x}be produced by
(11). Then {x.}converge strong to a point of F = Fix(G)VI(K,a).

Proof.

From Lemma 2.2, {X,} is bounded. Since X is reflexive, there exist {x,, } of {Xn } such that x,, converges

~

weakly to G as i — oo, We now show that G = P (x,). Setting § = P (x,), then from (4), we get
d,(4,x,) <d,(u,x,) YueFand d,(g,%,) <d,(,x,) YueF, (35)

in addition to (35), we get

dh(o’(j) Sdh(01XO)_dh(q’X0)
< dh(u1 Xo) _dh(u’ Xo)
=0. (36)
This implies
d, (4, p) <0.
By the uniqueness of PM(X,), U=p. So, we have shown that G =P (x,). Next, we show that
X, — =P (x,)as N — co. To do this, recall from Lemma 2.1, that the half space K is closed and
convex and F < K, implying that K is weakly closed and U € K, ¥n>0. Recall from definition
that X, = PKfni (X,), so that d, (X, s %) < dy,(U,%,). Using the weakly lower semi-continuity of h on

the convex set, we get
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d, (0, %,) =h(a) — h(X,) — (Vh(X,), 0 — X,)
S!Lrginf{h(xni)—h(xo)—<Vh(x0),xn -x0>}
= !Lrginf d; (X, 1 %)
< !ngsupdh(xni,xo)
<d. (0,%,).

This implies
!imdh(Xni,Xo):dh(U,Xo). (37)

This implies that limh(x, ) = h(G). Since h is uniformly continuous, we get
1—0© !
limx, =0.
1—00 !

Since {Xn} is convergent, invoking Lemma 2.2 gives

X, —>Uasn—owo (38)
Now from Lemma 2.2, {zn} is bounded implying there exists a subsequence {zni } such that z,, converges
weakly to G as i — oo, Applying condition (ix) in Lemma 2.2, we obtain lim||z, —Gz, |=0. Since our

1—00 ! !

map is Bregman relatively nonexpansive, we have U € F(G). Next, we show that U €VI(K,a). From
the definition of w,, we get
(aw,, z)r, —(aw,, w,)r, +(Vh(w,) - Vh(z,),z—-w,) >0, Vz e K,
using (39), the fact that W, converges to UG as N — oo, and the continuity of a, we have

(al,z)—(ad,0)>0 vzeK.

Thus U eVI(K,a). Therefore, U e F = Fix(G)VI(K,a). =

Remark 2.4. Our result in particular, extends the mappings and results of [14] to a more general mapping
corresponding to Bregman distance function in reflexive Banach space. Our scheme has the inertial term
known to speed up convergence of sequences. Our scheme is applicable in Hilbert spaces when we consider
Vh =1, the identity mapping and X = H.

3. Numerical Example

A direct application of Theorem 2.3 is in this section given to demonstrate convergence of sequences
generated by it.

Let X =R, K =[0,4], h(x) =%, Vh(X) = 2x., h"(U") = supf(u”, x) — h(x)} = %(u*)a

Vh™(u") = %u*. (az,y -7y =1zy—17°.

Let G:[0,4] — [0, ) be defined by
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It is clear that Fix(G) ={0} since for X # 4, G(X) = x = 0= X. Thus, forany X #4, X =0. Again,
for X =4, G(X) =X =2 =X. Thus for X =4, 2=4, which is not possible. So Fix(G) ={0}. Next,
we observe that X, converges weakly to 0, hence X, —Gx, — 0 and FiX(G) = Fix(G) ={0} [15].
From the definition of Bregman relatively nonexpansive mapping, one can easily demonstrate that

d, (0,6x)<d, (0, x) (39)
Infact

d, (0,Gx) = h(0) —h(Gx) —(Vh(Gx),0— GX)
=0-4-(0,0-2)
=—4 (40)
d, (0,x) = h(0) — h(x) — (Vh(x),0 - X)
=0-x*—(2x,0-X)
= X% +2x*
=x°. (41)
Thus, using (40) and (41) we have

d, (0,Gx)<d,(0,x), forallxel0,4].
n+1

Furthermore, setting X, = % X =1, a, = I n :%, r=1 we get

n+1

z, = Vh*(Vh(xn) +—
4n

(Vh(x,) —Vh(xnl))j
Yo = VI (- )Vh(z,) + 7 V(G2,)) =2 7,

Wn :Tr:‘yn :%Zn'

K., ={uekK, :d,(uw,)<d,(uz)= {u ek, :u s—;—jzn}.

Therefore, we have our scheme (11) now simplified thus:
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X, €[0,4], Chosen arbitraril,
7 = Vh*(Vh(xn) + ”4—” (Vh(x,) - Vh(xn_l))j,
n
Y, =22
n 2 n?
1
W, ==12,,
3
Kn+1:{U€Kn :u£—1—32n},
24
Xpn =Pd (X)=u, vnxL1
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