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1. INTRODUCTION 

 

Throughout, the Banach space X is taken to be real and reflexive with 
X  as the dual. We let 

RX :||.||  represent the norm function. Let 
 Rhdomhdomdh )int(:

 
represent a bifunctions 

induced by a convex function. Let   )(: uhXuhdom  and )int( hdom represent the domain 

and interior domain of a convex function, ],(: Xh  respectively. The convex function h  is 

G𝑎̂teaux differentiable at u  
if ),(

))()((
lim

0
zuh

s

uhszuh

s




  
exists for any z

 
in X . By this, 

),(),( uhzuh 
 as the gradient of h .  

 

Let the convex function h  be G𝑎̂teaux differentiable at u , then 
 Rhdomhdomdh )int(:  defined 

by  

               ,),(),()()(,  uuhzuhuhzhuzdh                                     (1) 

 

is the Bregman function induce by .h  
 

This function 
 Rhdomhdomdh )int(:  defined by (1) has some nice properties like: 

P1. The function )(.,udh is convex. 
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P2. .0),( uudh  

P3. .0),( uzdh  

P4.     .)(,)(,,,),(  uhvzvhvzuvdvzduzd hhh  

P5.   .)(,)(,,),(  vhvuuhvuuvdvud hh  

P6. .||)()(||||||||)()(||||||),( vhuhvvhuhuvudh   

 

Observe that P4 implies P5 and P6 if .zu   For proof of (P1 – P3), see [1,2]. 

  

Let K  represent a non-void, closed, convex subset of ).int( hdom  Let KKG : represent a map. 

KKG :  is nonexpansive if ;,||,|||||| KzuzuGzGu  KKG : is (quasi)-nonexpansive  

if ||,|||||| 00 zuzGu  and }:{)( 0 uGuKzGFix   
is the collection of fixed point of .: KKG   

An element Ku *
 is asymptotic fixed point of KKG : when }{ nu is contained in K

 
and converging 

weakly to u  so that .0||||  nn Guu  We denote the set by ).(ˆ GxFi   

 

A map ,int: hdomKG 
 
is Bregman relatively nonexpansive (BRNE) [3] if     

 

  )(,),,(),( 000 GFixzKuuzdGuzd hh 
 

 
).()(ˆ GFixGxFi   

 

For a differentiable function
 RXh :  and for all ,Xu  [4,5] gives   

 

 Xuuzduud hh  :),(min),( 0  .,0),(),( 000 Kzuzuhuzuh 
                 

(2) 

 

In addition, if K  ,X  then for ,int hdomu
 

we have a unique Ku 0 such that the mapping 

KhdomPh

K int:  which satisfy 

 

             Kzuzduud hh  :),(min),( 0                            (3) 

 

is the Projection of hdomu int onto the set ,hdomK  where .)( 0uuPh

K   The Bregman Projection 

mapping in view of [4,5] satisfy:  

 

   
      .,,),()(, KzuzduuPduPzd h

h

Kh

h

Kh                           (4) 

 

Given h  a norm square with ,Xu  then we see that ,2)( Juuh  where
*: XXJ  is defined and (1) 

reduce to 
22 ||||,2||||),( uzJuzuz 

 
known as the Lyapunov functional [6]. 

  

The function ],(: Xh is Legendre [7], if the following hold 

 

 (i) hdomint is non-void, h  is differentiable on hdomint
 
with ,int hdomhdom   

 (ii) 
*int hdom is non-void, 

*h is differentiable on 
*int hdom with .int ** hdomhdom   

 

With ],(: Xh
 
a Legendre function, and X

 
reflexive, then h  

is a bijection which satisfies

  ,
1* 

 hh
** int hdomainhdomainhrange  . If ],(: Xh

 
is single-valued and X
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is smooth and strictly convex, then .hJ   
Given ),1(,||||)( 21   tutuh , then we have a Legendre 

function [8-12]. 

 

The modulus of total convexity of h  
at hdomu int   RRhdomuWh int:,.)(  is defined by  

 

   }.||||,:),(inf{),( suzhdomzuzdsuW hh                            (5) 

 

If ),( sxWh is positive, then ],(: Xh
 
becomes totally convex at u for positive values of .s  For 

more information, see [7]. 

  

A mapping 
*: XKa  is monotone if ,, Kzu  we have  

 

 .0,,  zuazzuau                              (6) 

 

Note that a point Kz 0
such that  

 

   ,0,, 000 Kzzazzaz                              (7) 

 

solves a variational inequality problem. The collection of solution of (7) is represented by 

 

 .0,,:),( 0000 KzzazzazKzaKVI    

 

Suppose in addition 
*: XKa  is continuous, we have 

 KzzazzazKzaKVI  0,,:),( 0000
 is closed and convex.  

  

Over the years, smooth convex minimization problem involving generalized nonexpansive and Bregman 

nonexpansive operators has attracted the interest of many researchers and authors seeking for existence of 

solutions.  It is a fact that most published works on these operators has been the iterative approximation of 

(common) solution of operators. Furthermore, most of these results only focused on the strong convergence 

of the formulated schemes to the fixed point sets (see [13-15]).  However, very few authors have paid 

attention to the speed or the rate of convergence of sequence of iterates of Bregman nonexpansive-type 

operators to their (common) fixed point sets when they exists. Thus, a two-step iterative method to increase 

the rate of convergence was used in the works of [16-18] and which is defined as  

   

   )( 11   nnnnn uuuu                                 (8) 

 

for all non-negative integers ,n  where ).1,0(n  We note here that the inertial is represented by the 

component,  

)( 1 nnn uu .  

  

Using Lyapunov functional, [14] formulated the hybrid method as given below: 
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 
    

 























 ,

},0,,:{

,,:

,)1()(

01

*

0

**

***

*

10

uu

JuuuJuuuKuQ

uuyuKuC

uGJJbuJbJy

KKu

nn

n

QCn

nnnn

n

n

n

nrnnn

n







                           (9) 

where KKG :  is relatively nonexpansive map. JrMJJ r

1)(   is a resolvent for maximal map 

*: XKM   with r  positive.  They showed that their method converge strongly to mutual element of 

)0()( 1MGFix   nearest 0u . 

  

In 2018, [16], formulated and studied the following methods generated by }{ nu as follows: Xuu 10 , and 

 

  

    
 






























,

,,,:

,)()1(

),(

01

***

1

*

1

0

1
uu

zuyuKuC

GzJzJJy

uuuz

XK

nCn

n

n

n

nn

n

nnnnn










                          (10) 

 

where XXG : is relatively nonexpansive map expressed as  

).))1(((
1

1 




 
i

iiii uJGJGxJGu   They showed that their method converge strongly to a mutual 

element of )()( 1 ii GFixGFix 

  . 

 

Both algorithms (9) and (10) were formulated in uniformly convex and smooth Banach spaces. We observe 

also that algorithm (9) combined the intersection of two half sets and at each iteration, it is used and taken 

as the next Projection which is not easily done in application. Secondly, it has no inertial component that 

could speed up the convergence of their algorithm. On the other hand, algorithm (10) has the inertial 

component.   

  

Question.  Can we formulate iterative scheme following hybrid method with inertial component without 

the intersection of two half sets? Can our algorithm converge to common element of our non-void set faster 

in reflexive and real Banach space? 

  

Our motivation for study is the results of [14] and [16]. We aim to study an iterative scheme with inertial 

component for our operator. The formulated scheme converges faster and finds a common solution for 

some nonlinear operators in Banach spaces. The method of our proof and results obtained is well involved 

and significant. 

 

2. MAIN RESULTS 

 

Let K  be a non-void, closed and convex subset of reflexive Banach space .X  Let the function 

),(: Xh  represent bounded Legendre, uniform Fr𝑒́chet differentiable, totally convex. Let the 

map KKG :  represent a Bregman relatively nonexpansive, 
*: XKa   represent a continuous 

monotone map. We assume ),()( aKVIGFixF   to be non-void. For u  element of ,X  define the 

mapping KXT a

r : as follows: 
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.,0),()(,,:{ 000000 KzzzuhzhrzazrzazKzxT nn

a

r   

 

Set ., 10 Kxx   Then define }{ nx by the manner below:  

 

  

 

    

 





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
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






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









,

,,,:

,

,)()()1(

,)()()(
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1

*

1

*

00

1
xPx

zudwudKuK

yTw

Gzhzhhy

xhxhxhhz

KKx

h

Kn

nhnhnn

n

a

rn

nnn

nnnnn

n

n





              (11) 

 

where ).1,0(),1,0(,),,0(}{  nn Nnr  

 

Lemma 2.1. The scheme (11) is well defined.  

 

Proof. 

 

First, we demonstrate that ),()( aKVIGFixF 
 
is closed, convex. Note in [2], )(GFix is closed, 

convex. Also note in [13], ),( KaVI  is closed, convex.  So ),()( aKVITFixF   is closed, convex.  

Secondly, we demonstrate that nK  is closed, convex for each non-negative integer.   

To realize this, from our setting in (11), nK
 
is closed. Moreover, since    nhnh zudwud ,,  is equivalent 

of ),()(),()(),()( nnnnnnnn zhwhzwwhzhuwhzh   

it follows that nK  is a half space and hence convex for each nonnegative integer. 

 

In addition, we demonstrate that nKF   for each nonnegative integer. Clearly, from our setting, 

.0 KKF   If tKF   for some ,0t then with ,Fq  and using P1 together with [13], we obtain 

 

 ),(),( t

a

rhth yTqdwqd
n

      

                 ).,( th yqd                  (12)

  

Furthermore, 

 

   )()()1(,),( *

tthth Gzhzhhqdyqd    

               thth Gzqdzqd ,,)1(    

            thth zqdzqd ,,)1(    

          ., th zqd          

Thus,  

 

  .,),( thth zqdyqd                   (13) 

 

Using (13) in (12) gives 
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 ).,(),( hhhh zpdwpd   

 

So 1 tKq and .1 tt KK   This implies nKF  . Thus, (11) become well defined  

 

Lemma 2.2. Let K  be a non-void, closed and convex subset of reflexive Banach space .X  Let the function 

),(: Xh  represent bounded Legendre, uniform Fr𝑒́chet differentiable, totally convex. Let the 

map KKG :  represent a Bregman relatively nonexpansive, 
*: XKa   represent a continuous 

monotone map. We assume ),()( aKVIGFixF   to be non-void.  Let }{ nx be produced by (11). Then 

the following holds  

 

(i) ,0||||lim 1 


nn
n

xx  

(ii) ,0||||lim 


nn
n

zx  

(iii) ,0||||lim 1 


nn
n

wx  

(iv) ,0||||lim 


nn
n

wz  

(v) ,0||||lim 


nn
n

yw  

(vi) ,0||||lim 


nn
n

yx  

(vii) .0||||lim 


nn
n

Tzz  

 

Proof. 

 

Seeing that )( 0xPx h

Kn n
  with ,)( 101 1 nn

h

Kn KKxPx
n

  
gives 

 

 ),(),(),( 1010 nnhnhnh xxdxxdxxd    

 ).,(),( 001 xxdxxd nhnh                              (14) 

 

This shows that  ),( 0xxd nh  is monotone nondecreasing sequence. Besides, from (4),  

 

.},0{),())(,(),()),((),( 000000 FqNnxqdxPqdxqdxxPdxxd h

h

Khh

h

Khnh nn
       

  ).,(),( 00 xqdxxd hnh                                            (15) 

 

This demonstrates boundedness of  ),( 0xxd nh . From [4], boundedness of  nx
 
hold. But (14) combined 

with (15), shows that ),(lim 0xxd nh
n 

 exist. Now wlog, let 

  

.),(lim 0 lxxd nh
n




                             (16) 

 

In addition to (16) and (4), we get  

  

))(,(),( 0xPxdxxd h

Knhnnh n    

                 0),(),( 00   xxdxxd nhnh   as .n  

So that 
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 .0,0),(lim 


 nnh
n

xxd  

 

In particular,  

  

.0),(lim 1 


nnh
n

xxd                                              (17) 

 

Therefore, we get from [7] 

  

.0||||lim 1 


nn
n

xx                                           (18)  

 

This establishes (i). 

  

Now, since h  is uniformly continuous, we get  

  

.0||)()(||lim 1  


nn
n

xhxh                             (19) 

 

Furthermore, from the definition of ,nz and together with (19), we obtain  

 

 ||)()()(||||)()(|| 1 nnnnnnn xxhxhxhzhxh   

                   ||)(|| 1 nnn xxh    

                    0||)(|| 1   nn xxh  when n .  

      .0||)()(||lim 


nn
n

zhxh                          (20) 

 

Invoking [4], we obtain 

 .0||||lim 


nn
n

zx                              (21) 

 

This establishes (ii). 

 

Moreso, since  nz  is bounded and using P6, (21) we obtain  

  

.0),(lim 


nnh
n

zxd                                           (22) 

In addition, since ,11 nnn KKx    from the definition of the half space, we obtain 

 

 ).,(),( 11 nnhnnh zxdwxd                               (23) 

 

Moreover, using P4, (17), (20), and (2), we get 

 

 .0),(lim 1 


nnh
n

zxd                              (24) 

 

This implies that  

 

 .0),(lim 1 


nnh
n

wxd                              (25) 

 

Thus, [7] suggest that 
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 0||||lim 1 


nn
n

zx   

and 

 .0||||lim 1 


nn
n

wx                              (26) 

 

This establishes (iii). 

 Combining (18) and (26), we get 

 

 0||||  nn wx as n .  

 

Also, from (26) we get  

 

 .0||||lim 


nn
n

wx                              (27) 

 

and  

 .0||||lim 


nn
n

wz                              (28) 

 

This establishes (iv). 

 Next, using [13], this implies 

 

 ),(),(),(),( nhnhn

a

rnhnnh yudwudyTydwyd
n

  

               0),(),(  nhnh yudyud as n .  

  0),(lim 


nnh
n

wyd .  

 Using [7] gives 

 .0||||lim 


nn
n

yw                              (29) 

 

This establishes (v). 

 Now, from the uniform continuity of ,h  (29) becomes 

 

 .0||)()(||  nasyhwh nn                            (30) 

 

Thus using (29) with (27) gives 

 .0||||lim 


nn
n

yx                                        (31) 

 

This establishes (vi). 

 

Using (26) with (29) gives 

 

 .0||||lim 1 


nn
n

yx         `  

With this and P6 we get 

 .0),( 1  nasyxd nnh    

Thus combining (29) and (28) we get 

 

 .0||||lim 


nn
n

yz                              (32) 
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Since h  is uniformly continuous, we obtain 

 

 .0||)()(||  nasyhzh nn                            (33) 

 

Since,  )()()1(*

nnn Gzhzhhy   , we obtain  

 

.||)()(||||))()(()()(||||)()(|| nnnnnnnn zhGzhzhGzhzhzhyhzh    

 

Using (33) gives 

 

 .0||)()(||  naszhGzh nn   

 

So that  

 

 .0||||  nasGzz nn                             (34) 

 

This establishes (vii). 

 

Theorem 2.3. Let K  be a non-void, closed and convex subset of reflexive Banach space .X  Let the 

function ),(: Xh  represent bounded Legendre, uniform Fr𝑒́chet differentiable, totally convex. 

Let the map KKG :  represent a Bregman relatively nonexpansive, 
*: XKa   represent a 

continuous monotone map. We assume ),()( aKVIGFixF   to be non-void. Let }{ nx be produced by 

(11). Then }{ nx converge strong to a point of ),()( aKVIGFixF  .  

 

Proof.  

 

From Lemma 2.2, }{ nx  is bounded. Since X  is reflexive, there exist }{
inx

 
of  nx  such that 

inx converges 

weakly to û  as .i  We now show that ).(ˆ
0xPu h

F  Setting ),(ˆ
0xPq h

F  then from (4), we get 

 

 Fuxudxud hh  ),(),ˆ( 00 and ,),(),ˆ( 00 Fuxudxqd hh                         (35) 

 

in addition to (35), we get 

 

 ),ˆ(),ˆ()ˆ,ˆ( 00 xqdxudqud hhh   

           ),(),( 00 xudxud hh   

          .0                                          (36) 

 

This implies  

 .0)ˆ,ˆ( pudh  

By the uniqueness of )( 0xPh

F , .ˆˆ pu  So, we have shown that ).(ˆ
0xPu h

F  Next, we show that 

)(ˆ
0xPux h

Fn  as .n  To do this, recall from Lemma 2.1, that the half space nK
 
is closed and 

convex and ,nKF   implying that nK
 
is weakly closed and ,ˆ

nKu  .0n  Recall from definition 

that ),( 0xPx f

Kn
ini

  so that .),ˆ(),( 00 xudxxd hnh i
  Using the weakly lower semi-continuity of h  on 

the convex set, we get 

 



746 Enyinnaya EKUMA-OKEREKE, Felix Moibi OKORO/ GU J Sci, 33(3): 737-749 (2020) 

 

 
0000

ˆ),()()ˆ(),ˆ( xuxhxhuhxudh   

        000 ),()()(inflim xxxhxhxh nn
i i




 

        ),(inflim 0xxd
inh

i 
  

        ),(suplim 0xxd
inh

i 
  

         ).,ˆ( 0xudh  

 

This implies  

 ).,ˆ(),(lim 00 xudxxd hnh
i i




                            (37) 

 

This implies that ).ˆ()(lim uhxh
in

i



 Since h  

is uniformly continuous, we get 

 .ˆlim ux
in

i



 

Since  nx  is convergent, invoking Lemma 2.2 gives 

 

 .ˆ  nasuxn                              (38) 

 

Now from Lemma 2.2,  nz  is bounded implying there exists a subsequence  
inz

 
such that 

inz converges 

weakly to û  as .i  Applying condition (ix) in Lemma 2.2, we obtain .0||||lim 
 ii nn

i
Gzz  Since our 

map is Bregman relatively nonexpansive, we have ).(ˆ GFu
 
Next, we show that ).,(ˆ aKVIu  From 

the definition of ,nw we get 

 

,,0),()(,, Kzwzzhwhrwawrzaw nnnnnnnn   

 

using (39), the fact that nw  converges to û as ,n and the continuity of ,a we have 

 

 .0ˆ,ˆ,ˆ Kzuuazua     

 

Thus ).,(ˆ aKVIu  Therefore, ).,()(ˆ aKVIGFixFu    ∎           

 

Remark 2.4. Our result in particular, extends the mappings and results of [14] to a more general mapping 

corresponding to Bregman distance function in reflexive Banach space. Our scheme has the inertial term 

known to speed up convergence of sequences. Our scheme is applicable in Hilbert spaces when we consider 

Ih  , the identity mapping and .HX   

 

3. Numerical Example 

 

A direct application of Theorem 2.3 is in this section given to demonstrate convergence of sequences 

generated by it. 

Let ,RX   ],4,0[K  .,2)(,)( 2 xxhxxh   ,)(
4

1
)}(,sup{)( 2**** uxhxuuh   

.
2

1
)( *** uuh   ., 2zzyzyaz   

 

Let ),0[]4,0[: G be defined by 
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








.42

40
)(

xif

xif
xG  

 

It is clear that }0{)( GFix  since for .0)(,4 xxxGx   Thus, for any .0,4  xx  Again, 

for .2)(,4 xxxGx   Thus for ,42,4 x  which is not possible. So }0{)( GFix . Next, 

we observe that nx converges weakly to ,0  hence 0 nn Gxx  and }0{)()(ˆ  GFixGxFi [15].  

From the definition of Bregman relatively nonexpansive mapping, one can easily demonstrate that  

 

   
),0(),0( xdGxd hh                              (39) 

 

Infact 

 

 GxGxhGxhhGxdh 0),()()0(),0(  

      20,040   

                4                                          (40) 

 

xxhxhhxdh  0),()()0(),0(  

              xxx  0,20 2  

              
22 2xx   

              
2x .                                                                                                                                            (41) 

 

Thus, using (40) and (41) we have 

 

  
].4,0[),,0(),0(  xallforxdGxd hh  

Furthermore, setting 1,
2

1
10  xx , ,1,

2

1
,

4

1



 r

n

n
n   we get 

 










  )()(

4

1
)( 1

*

nnnn xhxh
n

n
xhhz  

  ,
2

1
)()()1(*

nnnn zGzhzhhy    

.
3

1
nn

a

rn zyTw
n

  

    








 nnnhnhnn zuKuzudwudKuK
24

13
:,,:1 . 

Therefore, we have our scheme (11) now simplified thus: 
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 

 
























































.1,

,
24

13
:

,
3

1

,
2

1

,)()(
4

1
)(

,],4,0[

01

1

1

*

0

1
nuxPx

zuKuK

zw

zy

xhxh
n

n
xhhz

yarbitrarilChosenx

h

Kn

nnn

nn

nn

nnnn

n
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