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Abstract 
In this article, low-velocity impact analysis of laminated composite plates and shells for small and large 
displacements is investigated using Generalized Differential Quadrature (GDQ) method.  Equation of motion for 
impact system is derived using virtual work principle. First-order shear deformation theory (FOST) is employed 
to consider transverse shear effects and Von-Karman nonlinear strain-displacement relationships are used in large 
displacement analyses. Spatial derivatives are expressed with GDQ method and time integration of dynamic 
equations is performed using Newmark average acceleration method. Several laminated composite impact 
problems from the literature are solved with the proposed method. Very close results are obtained with the 
literature using only limited number of grids, showing the efficiency of the method in contact-impact problems. 

 

Keywords: Generalized differential quadrature, Impact, Laminated composite, Plates and shells 

Tabakalı kompozit levha ve kabukların genelleştirilmiş diferansiyel kuadrature metodu 
ile düşük çarpma hızlarındaki analizleri 

 
Özet 
Bu çalışmada tabakalı kompozit levha ve panellerin düşük çarpma hızlarındaki nonlineer dinamik davranışı 
Genelleştirilmiş Diferansiyel Kuadrature (Generalized Differential Quadrature) yöntemi ile incelenmektedir. 
Sistemin dinamik denklemleri Virtüel iş ilkesi ile elde edilmektedir. Düzleme dik doğrultudaki kalınlık etkisi 1. 
mertebe kayma deformasyon teorisi ile dikkate alınmaktadır. Büyük yer değiştirmeler Von-Karman nonlineer 
birim şekil değişimleri ile dikkate alınmaktadır. Konumsal türevler Genelleştirilmiş Diferansiyel Quadrature 
yöntemi ile zaman integrasyonu da Newmark metodu ile hesaplanmaktadır. Önerilen metotla birçok çarpma 
problemi çözülmüş ve literatürdeki sonuçlarla karşılaştırılmıştır. Önerilen metodun çarpma problemlerinin 
incelenmesinde etkili ve verimli bir yöntem olduğu gösterilmiştir. 

Anahtar Kelimeler: Genelleştirilmiş diferansiyel kuadrature, Çarpma, Tabakalı kompozit, Levha ve kabuk 
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1. Introduction 
Composite materials are increasingly used in aerospace, civil, automotive, marine and other 

industries due to its light-weight feature and high strength-to-weight ratio. Composite structures may 
face to low-velocity impacts such as dropped tools during maintenance. Therefore, understanding the 
dynamic behavior of these structures is very important to enable safe and economical designs as well as 
to prepare an appropriate maintenance program.  

Different analytical and numerical methods were used in determining impact response of 
composite plates and shells. For example, Karas [1] obtained analytical solution for impact response of 
isotropic plates. Chen and Sun  [2] analyzed large deflection impact response of composite plates using 
Finite Element Method (FEM). They used Mindlin plate theory and 9-node isoparametric quadrilateral 
plate element. Sun and Chen  [3] carried out small deflection response of initially stressed composite 
plates using FEM. Wu and Chang  [4] conducted small deflection impact analysis of laminated 
composite plates using 8-node brick element in FEM. Cairns and Lagace [5] investigated the influence 
of different parameters on the impact behavior of composite plates analytically using Rayleigh-Ritz 
method. Liou [6] established contact law for carbon-epoxy laminated composite plates and conducted 
impact analysis using FEM. Chun and Lam  [7] analyzed dynamic behavior of laminated composite 
plates under low velocity impact using mode shapes and transformation of principal. They used Reddy’s 
higher-order shear deformation theory to take transverse strain into account. Vaziri et al. [8] obtained 
transient response of laminated composite plates and cylindrical shells subjected to impact using a super 
finite element method. Karmakar and Sinha  [9] analyzed dynamic behavior of laminated composite 
pre-twisted rotating plates using FEM. Her and Liang  [10] obtained impact response of laminated 
composite cylindrical and spherical shells. They compared FEM results with analytical solution. Choi 
and Lim  [11] performed low-velocity impact analysis of composite plates analytically through 
linearized contact law. Karmakar and Kishimoto  [12] investigated impact behavior of delaminated 
composite rotating shallow shells using FEM by calculating contact force with modified Hertzian 
contact law.  Tiberkak et al. [13] investigated damage prediction in composite plates under low velocity 
impact using FEM. Kumar [14] analyzed large deformation impact response of composite cylindrical 
shells with FEM considering material degradation effect during impact. Khalili et al. [15] investigated 
FEM approach for impact of composite cylindrical tubes. Dey and Karmakar  [16] predicted dynamic 
response of delaminated composite conical shells under oblique impact using FEM. Park [17] 
investigated low-velocity impact behavior of graphite/epoxy composite and steel plates for different 
impactor masses using FEM. Mao et al. [18] predicted dynamic response and damage analysis of 
laminated composite plates under low-velocity oblique impact analytically. Rout and Karmakar  [19] 
analyzed low velocity impact behavior of delaminated composite stiffened shells using FEM.  Analytical 
methods for impact problems of composite plates are included in detail in the related book of [20]. 

As an efficient numerical method, using less grid points with acceptable accuracy, Differential 
Quadrature Method (DQM) was introduced by Bellman et al. in the early 1970s [21, 22] and developed 
by Shu [23]. Nowadays, improved form of DQM is known as Generalized Differential Quadrature 
(GDQ) method. For detailed and complete information about the evolution of GDQ method and its 
application in various forms in the solution of engineering problems, reader is referred to the related 
books and review articles [23-27]. GDQ method was successfully used in dynamic analysis of plates 
and shells with various material properties [28-35].  

From the literature survey, it is seen that GDQ method has not been yet used in predicting impact 
behavior of laminated composite structures. Therefore, in this study GDQ method is applied to 
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efficiently predict the transient response of laminated composite plates and shells under low-velocity 
impacts. In the following sections, dynamic equations for composite shells are derived using virtual 
work principle. Partial derivatives in the equation of motion are expressed with GDQ method and time 
integration is carried out using Newmark average acceleration method. Several impact problems related 
to laminated composite plates and shells are solved with the proposed method and compared with the 
literature to show its efficiency.  

2. Governing equations  

2.1.Constitutive equations 
In this section, constitutive equations for laminated composite cylindrical panels are 

derived. Geometrical parameters of a cylindrical panel in a curvilinear coordinate system is 
shown in Fig. 1. In Fig. 1, 𝑥	and	𝑦	denote the lines of curvature on the middle surface (𝑧 = 0). 

 
Figure 1. Cylindrical panel 

 

Displacements of a general point (x, y, z) at a time t based on FOST theory can be written 
as 
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where u0, v0, w0 correspond to mid-plane displacements. θx and θy correspond to the rotations about y and 
x axes respectively. 

Large displacement strains for cylindrical panel are expressed as following [36]: 
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where R is cylindrical panel radius in x-z plane. In the case of small displacements, nonlinear terms of 
*
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 are dropped in Eq. (2). 

The constitutive equation for laminated composite cylindrical shell panel can be written in terms 
of in-plane force and moment resultants as  

ï
ï
ï
ï
ï
ï
ï
ï
ï
ï

þ

ïï
ï
ï
ï
ï
ï
ï
ï
ï

ý

ü

ï
ï
ï
ï
ï
ï
ï
ï
ï
ï

î

ïï
ï
ï
ï
ï
ï
ï
ï
ï

í

ì

¶

¶
+

¶
¶

¶

¶

¶
¶

¶
¶

¶
¶

+
¶
¶

+
¶
¶

÷÷
ø

ö
çç
è

æ
¶
¶

+
¶
¶

÷
ø

ö
ç
è

æ
¶
¶

++
¶
¶

ú
ú
ú
ú
ú
ú
ú
ú

û

ù

ê
ê
ê
ê
ê
ê
ê
ê

ë

é

=

ï
ï
ï
ï
ï

þ

ï
ï
ï
ï
ï

ý

ü

ï
ï
ï
ï
ï

î

ï
ï
ï
ï
ï

í

ì

xy

y

x

y
w

x
w

x
v

y
u

y
w

y
v

x
w

R
w

x
u

DDDBBB
DDDBBB
DDDBBB
BBBAAA
BBBAAA
BBBAAA

M

M

M

N

N

N

yx

y

x

xy

y

x

xy

y

x

qq

q

q

0000

2
00

2
000

662616662616

262212262212

161211161211

662616662616

262212262212

161211161211
2
1

2
1

 
 (3) 

 



Hasan Kurtaran 

Artıbilim:Adana Alparslan Turkes BTU Fen Bilimleri Dergisi 3(1) 	 	5	
 

Laminate constitutive equation for transverse shear in terms of shear force resultant is written as 
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Aij, Bij, Dij in Eqs. 3-4 correspond to laminate stiffness coefficients for in-plane, bending stretching 
coupling, bending and transverse shear stiffness and are calculated as 
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where ki
2 =5/6 (i=4,5) denote the shear correction factor. 
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indicates the transformed stiffness 
coefficients of k-th layer.  

Mass inertias for laminate are written as 
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where ρ(k) is the density of the k-th layer. 
2.2. Virtual work equation 

In this section, equation of motion is derived for a composite panel under mass impact using 
dynamic version of the virtual work principle. Description of contact procedure between a laminated 
plate and a spherical ball made of isotropic material is shown in Fig. 2. 

 
Figure 2. Description of contact-ımpact system 
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 Virtual work principle for cylindrical shell panel in the absence of damping can be expressed 
as [7]. 
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In Eq. (8), Fc indicates the contact force between the impactor mass and the target panel. α is the 
indentation of the target panel. Eq. (8) can be rewritten using force and moment resultants and mass 
inertias as below 
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Equation of motion for cylindrical panel can be shortly written in matrix form as 

)F(FPUM c=+!!  (10) 

where M is mass matrix and F, P,
..
U are external force vector that includes contact force, internal force 

and acceleration vectors respectively. 

Equation of motion for impactor mass is written as 

cii Fwm =
..

 (11) 

where im  and iw
..

 indicate the mass and acceleration of the impactor respectively. Equations of motion 
for cylindrical panel and impactor mass can be combined as following 
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Eq. (12) can be rewritten as a single matrix equation as 
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 (13) 

 

Contact force 𝐹2	can be calculated using a modified nonlinear Hertzian indentation law [2] as 
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Regarding coefficients in Eqs.12-13, k is the contact stiffness, Fm is the maximum impact force 
reached before unloading, αm is the maximum indentation depth, α0 is the permanent indentation depth 
in the target panel. β=0.094 and αcr=1.667x10-4 m values are commonly used in the impact analyses in 
the literature [3]. Contact deformation i.e. indentation is defined as  

pi ww -=a  (16) 

where wi is the displacement of the impactor and wp is the displacement of the panel at the impact 
point. 

The Hertzian contact stiffness k for-panel-impactor system is given as [10, 18] 
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where R, Ep, vp denote radius, elastic modulus and poisson ratio of impacted panel in transverse 
direction. R, Ei, vi denote radius, elastic modulus and poisson ratio of the impactor mass. 

2.3. Geometric mapping 

Integrals in the equation of motion can be calculated easily using numerical methods such as 
Gauss quadrature or Gauss Lobatto quadrature rules. To do that, cartesian domain is often transformed 
into a bi-unit square domain as shown in Fig. 3 using geometric mapping as below: 

 

Figure 3. Geometric mapping from cartesian to natural coordinates 
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In Eq. (16), Sk (ξ, η) correspond to interpolation functions and ξ, η indicate natural coordinates for bi-
unit square domain.

 
Partial derivatives of a function f(x,y) in cartesian domain can be expressed in terms of natural 
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where J indicates the determinant of the Jacobian and it is given as 
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3. Generalized differential quadrature method 
  In this study, GDQ method is employed in the calculation of spatial derivatives at pre-

determined grid points as shown in Fig. 4. In GDQ method, derivative of a function with respect to a 
variable at a given discrete point can be calculated as a weighted linear sum of the function values at all 
discrete points in the mesh line [31].  

 
Figure 4. Grid points in two dimensional natural coordinate system 

In GDQ method, r-th order derivative of a function f(ξ) with n discrete grid points is stated as 
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where ξi denote the discrete points, fj and Cij
(r) correspond to the function values at these points and 

related weighting coefficients, respectively. Accuracy of GDQ method is highly affected by the choice 
of weight coefficients as well as the location and number of grid points. 

In GDQ method, Lagrange polynomial functions are used in determining the weight coefficients 
Cij

(r). Weight coefficients for first-order derivative, i.e. r=1, can be written as  
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Higher-order derivatives can be obtained through recursive relations as below: 
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One dimensional derivatives can be extended to the calculation of partial derivatives in GDQ method. 

Considering Fig. 4 where xn  and hn  denote grid numbers in ξ and η directions respectively, partial 
derivatives at a point (ξi ,ηj) can be written as below: 
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where r and s are order of partial derivatives. 

Cartesian derivatives can be expressed in terms of derivatives in natural coordinates as
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In discretization of spatial domain, Gauss-Lobatto points are chosen as grid points in this study. 
These points are also utilized in numerical integration of Eq. (9).  Lobatto rule creates non-uniform grid 
points which increase the accuracy of derivatives in GDQ method. Moreover, Gauss-Lobatto rule can 
locate grid points on the boundaries simplifying the application of boundary conditions.  

4. Solution of equation of motion  
Time integration of equation of motion of impact system can be carried out using implicit 

Newmark constant average acceleration time integration scheme. In Newmark method equation of 
motion for impact system is expressed at (n+1)-th time step, i.e at time (n+1)∆t or tn+1 as 

1n

_

1n

_

1n

.._
FPWM +++ =+

                             
(32)

 

Substituting the following acceleration and velocity expressions at tn+1 in Eq. (32) 
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Following algebraic equation system in terms of unknown displacements are obtained
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where C0=4/∆t2 and C1=4/∆t can be used.  

Eq. (35) is nonlinear since internal force vector 1n
_
P +  and external force vector 1n

_
F +  are nonlinear 

function of unknown displacement vector Wn+1.  In the case of small displacement Eq. (35) is still 
nonlinear due to contact force definition given in Eq. 14.  An iterative approach such as Newton-
Raphson method can be employed for the solution of Eq. (35). In Newton-Raphson solution, Eq. (35) is 
expressed in terms of error function or residual forces Rn+1 as 

1

_

1n

_

0n

..

n

.

1n0

_

1n

_

1n PWMC)CW(CMFR ++++ --+++= nWW
                 

(36) 

Improved solution for 1i
1nW
+
+ at i+1-th iteration can be obtained using Taylor series expansion of 1i

1nR
+
+ in 

terms of known values at i-th iteration and equating it to zero as    
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0)W-(WKRR i
1n

1i
1n

i
1n

i
1n

1i
1n =+» +

+
+++

+
+                         (37) 

where i
1nK + corresponds to tangent stiffness matrix. Eq. (37) can be expressed in incremental form as  

i
1n

i
1n

i
1n RΔWK +++ -=               (38) 

 

where i
1nΔW +  denotes the displacement increment in the current iteration and is given as 

i
1n

1i
1n

i
1n WWΔW +

+
++ -=              (39)   

Improved solution at (i+1)-th iteration is written as  
i
1n

i
1n

1i
1n ΔWWW ++
+
+ +=                    (40) 

Iterations are repeated until the error function 1i
1nR

+
+  is sufficiently close to zero. Initial accelerations 0

..
W  

in the first iteration are obtained by using initial displacements 0W and velocities 0

.
W at time t=0.   

5. Examples 
A Matlab code is written to solve contact impact problems using GDQ method. The code is first 

validated with an isotropic plate impact problem and then used to solve several laminated composite 
plate and shell panel problems from the literature. In the solution of all problems in this study, grid 
numbers in all directions are chosen as odd numbers in order to locate a grid point at the mesh/panel 
center. After solutions, time history for center transverse deflection and velocity as well as contact force 
are compared with those in the literature. Unless otherwise stated, plate and shell structures are impacted 
by the impactor at the center and contact stiffness k is calculated by Eq. (17). 

5.1.Isotropic plate impact problem 

In this validation example, a steel plate is impacted by a rigid ball. Plate is simply supported at 
all edges. Plate dimensions are: a=0.2 m, b=0.2 m and thickness h=0.008 m. Material properties are: 
E=206 GPa, ν=0.3, ρ=7860 kg/m3. Ball is made up of steel and material properties are taken the same 
as with plate. Radius and initial velocity of steel ball is given as Ri=0.01 m and V0=-1 m/s respectively. 
Dynamic equations are solved with GDQ method. In the solution, time step value of ∆t=1 µs is used. 
After solution, contact force, transverse displacements and velocities of the plate and ball are compared 
with those in the literature as shown in Figs. 5-8 [1, 4, 7, 10]. In Figs. 5-8, Karas [1] predicts response 
using series and small-time increment method. Wu and Chang obtain results with FEM where they used 
8-node brick elements with incompatible modes. Wu and Chang do not mention about the mesh size in 
their article. However, in the article of Her and Liang [10], it is mentioned that Karas solution is 
converged using 80x80x2 solid element mesh using commercial FEM code ANSYS/LS-DYNA. Chun 
and Lam calculate the response using mode summation method where they used 49 terms in series 
expansion in each direction. From comparison of results in Figs. 5-8, very good agreement is observed 
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with the literature using only 9x9 grid numbers in x and y directions. This validates the accuracy of the 
developed impact code. 

 
Figure 5. Comparison of contact force 

 
Figure 6. Comparison of the transverse displacement of the plate at the contact point 
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Figure 7. Comparison of displacement of the ımpactor at the contact point 

 
Figure 8. Comparison of ımpactor velocity 

5.2.Composite plate impact problem 

5.2.1 Small displacement example 

In this example, a laminated composite plate is impacted by a steel sphere. Plate is clamped at 
all edges. Composite plate dimensions are: a=0.14 m, b=0.14 m and thickness h=0.00381 m. Two 
different stacking schemes are considered: cross ply of [0o/90o/0o] and angle ply of [30o/-30o/30o] layer 
orientations. All layers have equal thicknesses. Composite material properties are: E1=142.73 GPa, 
E2=13.79 GPa, G12=4.64 GPa, ρ=1610 kg/m3, ν12=0.30. Material properties of steel ball are: E=206 GPa, 
G=79.85 GPa, ν=0.28, ρ=7833 kg/m3. Mass and initial velocity of steel ball is given as mi=0.014175 g 
and V0=-22.6 m/s respectively. Contact stiffness is taken as k=1x108 N/m1.5. 

Dynamic equations are solved with GDQ method using time step value of ∆t=1 µs.  Contact 
force, transverse displacements and velocities of the plate and ball are compared with those in the 
literature as shown in Figs. 9-14 [7]. In Figs. 9-14 Chun and Lam employ mode shapes and 
transformation of principal in obtaining solution. They use 49 terms in each direction in series expansion 
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to converge the solution. From Figs. 9-14, it is seen that composite plate impact results obtained with 
9x9 GDQ mesh grid for cross ply and angle ply lamination schemes match to the literature very well 
both in character and value. 

 
Figure 9. Contact force history for [00/900/00] layer angles 

 
Figure 10. Contact force history for [300/-300/300] layer angles 

 
Figure 11. Impactor velocity history for [00/900/00] layer angles 
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Figure 12. Impactor velocity history for [300/-300/300] layer angles 

 
Figure 13. Impactor and plate displacement history for [00/900/00] layer angles 

 
Figure 14. Impactor and plate displacement history for [300/-300/300] layer angles 
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5.2.2. Large displacement example 

In this example, large displacement behavior of a laminated composite plate impacted by a steel 
ball is analyzed. Plate is simply supported at all edges. Composite plate dimensions are: a=152.4 mm, 
b=101.6 mm and thickness h=2.69 mm. Stacking schemes considered is: [0/45/0/-45/0]2s. All layers 
have equal thicknesses. Composite material properties are: E1=120 GPa, E2=7.9 GPa, G12=5.5 GPa, 
ρ=1580 kg/m3, ν12=0.30. Material properties of steel ball are: E=206 GPa, G=79.85 GPa, ν12=0.28, 
ρ=7833 kg/m3. Mass and initial velocity of steel ball is given as mi=8.54 g, V0=-30 m/s respectively. 
Contact stiffness is taken as k=1.413x109 N/m1.5. 

Solution of impact problem is carried out with GDQ method using the time step value of ∆t=0.25 
µs.  Contact force, transverse displacements and velocities of plate and impactor ball are compared with 
the literature for large displacement case in Figs. 15-17. In Figs. 15-17, Chen and Sun [2] use 9-node 
isoparametric quadrilateral shell elements and they use a mesh of 8x8 shell elements.  

 
Figure 15. Contact force history for large displacement analysis 

 
Figure 16. Transverse displacement history of the plate at ımpact point for large displacement analysis 
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Figure 17. Displacement history of ımpactor 

Figs. 15-17 show that a mesh of 11x11 grids in GDQ method can yield displacement results sufficiently 
close to the literature for large displacement case.  

5.3.Composite cylindrical shell impact problem 

5.3.1 Small displacement example  

In this example, a cantilever laminated composite cylindrical panel is impacted by a steel sphere. 
Cylindrical panel is clamped at x=0 edge. Composite plate dimensions are: a=0.5 m, b=0.3 m, thickness 
h=0.005 m, R=2 m. A symmetric stacking scheme of [0o/90o/0o/90o/0o]s layer angles is considered. All 
layers have equal thicknesses. Composite material properties are: E1=120 GPa, E2=7.9 GPa, G12=5.5 
GPa, ρ=1580 kg/m3, ν12=0.30. Material properties of steel ball are: E=206 GPa, G=79.85 GPa, ν=0.28, 
ρ=7833 kg/m3. Diameter and initial velocity of impactor steel ball are given as Di=1.27 cm, V0=-3 m/s 
respectively. Contact stiffness is taken as k=0.811x109 N/m1.5. 

Dynamic equations are solved with GDQ method using time step value of ∆t=1 µs.  Contact 
force, transverse displacements and velocities of cylindrical panel and impactor ball obtained are 
compared with the literature as shown in Figs. 18-21 [19].  In Figs. 18-21, Rout and Karmakar use 8-
noded isoparametric shell elements in obtaining solutions. They use a mesh of 8x8 8-noded 
isoparametric shell elements in predicting responses. 
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Figure 18. Contact force history 

 
Figure 19. Transverse displacement history of cylindrical panel at ımpact point 

 
Figure 20. Displacement history of ımpactor 
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Figure 21. Velocity history of ımpactor 

From Fig. 18, it is seen that the character of contact force history is quite similar with the 
literature. Also, the time where peak contact force occurs is in very good agreement with Rout el al. 
However, there is a difference in peak contact force value. From Figs 19-21, it is observed that 
displacement and velocity results obtained with 13X13 GDQ mesh grid for cylindrical panel and 
impactor ball are sufficiently close to the literature both in character and value. 

5.3.2. Large displacement example 

In this example, large displacement behavior of a glass/epoxy laminated composite cylindrical 
panel impacted by a blunt-ended steel cylinder of nose radius 5 mm is analyzed. Shell is clamped at all 
edges. Cylindrical panel dimensions are: a=b=300 mm, ply thickness h=0.14224 mm and with curvature 
R=10a. Stacking schemes considered is: [904/08/904]. All layers have equal thicknesses. Composite 
material properties are: E1=156 GPa, E2= E3=9.09 GPa, G12= G13=6.96 GPa, G23=3.24 GPa,  ρ=1540 
kg/m3, ν12= ν13=0.228, ν23=0.4. Impactor has a mass of 300 g.  Material properties of impactor are: E=206 
GPa, G=79.85 GPa, ν=0.28, ρ=7960 kg/m3. Impactor has a mass of mi=300 g and initial velocity of 
V0=-7 m/s. 

Dynamic equations are solved with GDQ method using time step value of ∆t=1 µs.  
Displacement results of cylindrical panel and impactor ball obtained are compared with the literature as 
shown in Figs. 22-23 [14]. In Figs. 22-23, Kumar uses FEM in obtaining responses. From Figs. 22-23, 
it is seen that displacement results obtained with 9x9 GDQ mesh grid for impactor and cylindrical panel 
are sufficiently close to the literature both in character and value. 
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Figure 22. Displacement history of ımpactor 

 
Figure 23. Central deflection history of cylindrical panel with [904/08/904] layer angles 

6. Conclusions 
Contact-impact problems in mechanics are usually considered difficult to solve. In this study, 

GDQ method was applied to the efficient solution of low-velocity contact-impact problems of laminated 
composite plates and shells. Laminated composite plate and shell examples from the literature were 
solved using GDQ method for different boundary conditions and results were compared. Good 
agreement with the literature was observed for contact force, displacement and velocity results using 
only limited number of grids in axis directions. Slight differences in results can be attributed to the 
differences in the theory of solution methods as well as in plate and shell theories. Findings of this study 
indicate that GDQ method is an efficient tool in solving low-velocity contact-impact problems. 
Therefore, it can be further applied to the efficient solution of other impact problems with different shell 
geometries. 
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