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Abstract. This paper deals with the existence and uniqueness of solutions
for a coupled system of fractional differential equations with coupled nonlo-

cal and integral boundary conditions. The existence results are obtained by

using Leray-Schauder nonlinear alternative and Banach contraction principle.
An illustrative example is presented at the end of the paper to illustrate the

validity of our results.

1. Introduction

In this paper, we are interested in the existence of solutions for the nonlinear
fractional differential equations{

cDαu (t) = f (t, u (t) , v (t)) , t ∈ [0, 1] , 2 < α ≤ 3,
cDβv (t) = g (t, u (t) , v (t)) , t ∈ [0, 1] , 2 < β ≤ 3,

(1.1)

subject to three-point coupled boundary conditions
λu (0) + γu (1) = v (η) , λv (0) + γv (1) = u (η) ,
u (0) =

∫ η
0
v (s) ds, u (0) =

∫ η
0
v (s) ds,

λCDPu (0) + γCDPu (1) = v (η) , 1 < p ≤ 2
λCDP v (0) + γCDP v (1) = u (η) , 1 < p ≤ 2

(1.2)

where γ, λ ∈ R+, f, g ∈ C
(
[0, 1]× R2,R

)
and cDα, cDβ denote the Caputo frac-

tional derivatives of order α and β respectively.

The concept of fractional calculus has played an important role in improving
the work based on integer-order (classical) calculus in several diverse disciplines of
science and engineering and the details of its basic notions, results and methods
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can be found in the texts ([2, 17]) and papers ([1, 21, 23]). The nonlocal na-
ture of a fractional order differential operator, which take into account hereditary
properties of various material and processes, has helped to improve the mathemat-
ical modeling of many natural phenomena and physical processes, see for example
([17, 22]). The increasing interest of fractional differential equations and inclusions
are motivated by their applications in various fields of science such as physics chem-
istry, biology, economics, fluid mechanics, control theory, etc, we refer the reader
to ([3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 19, 20, 27]) and the references therein.

Coupled systems of fractional-order differential equations constitute an inter-
esting and important field of research in view of their applications in many real
world problems such as anomalous diffusion [25], disease models [12], synchroniza-
tion of chaotic systems [24], etc. For some theoretical works on coupled systems
of fractional-order differential equations, we refer the reader to a series of papers
([10, 15, 16, 26, 28, 29]).

The goal of this paper is to establish the existence and uniqueness results for
the nonlocal boundary value problem (1.1)− (1.2) by using some well-known tools
of fixed point theory such as Banach contraction principle and Leray-Schauder
nonlinear alternative. The paper is organized as follows. In Section 2, we recall
some preliminary facts that we need in the sequel, for more details; see [17]. Section
3, deals with main results and we give an example to illustrate our results.

2. Preliminaries

In this section, we introduce some definitions and lemmas, see ([17, 18]).

Definition 2.1. Let α > 0, n − 1 < α < n, n = [α] + 1 and u ∈ C ([0,∞) ,R).
The Caputo derivative of fractional order α for the function u is defined by

cDαu (t) =
1

Γ (n− α)

t∫
0

(t− s)n−α−1
u(n) (s) ds,

where Γ (·) is the Euler Gamma function.

Definition 2.2. The Riemann-Liouville fractional integral of order α > 0 for a
function u : (0,∞)→ R is given by

Iαu (t) =
1

Γ (α)

t∫
0

(t− s)α−1
u (s) ds, t > 0,

where Γ (·) is the Euler Gamma function, provided that the right side is pointwise
defined on (0,∞).

Lemma 2.1. [18]. Let α > 0, n − 1 < α < n and the function g : [0, T ] → R be
continuous for each T > 0. Then, the general solution of the fractional differential
equation cDαg (t) = 0 is given by

g (t) = c0 + c1t+ · · ·+ cn−1t
n−1,

where c0, c1, ..., cn−1 are real constants and n = [α] + 1.
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Also, in [8], authors have been proved that for each T > 0 and u ∈ C ([0, T ]) we
have

IαcDαu (t) = u (t) + c0 + c1t+ · · ·+ cn−1t
n−1,

where c0, c1, ..., cn−1 are real constants and n = [α] + 1.

3. Existence results

Let X = {u (t) : u (t) ∈ C ([0, 1] ,R)} endowed with the norm ‖u‖ = sup
t∈[0,1]

|u (t)|

such that ‖u‖ < ∞. Then (X, ‖.‖) is a Banach space and the product space
(X ×X, ‖(u, v)‖) is also a Banach space equipped with the norm ‖(u, v)‖ = ‖u‖+
‖v‖.

Throughout the paper, we let

M =
Γ (3− p)
|γ − η2−p|

6= 0, |λ+ γ − 1| 6= 0,
∣∣γ − η2

∣∣ 6= 0, Q =
∣∣2 (1− η) (γ − η) + η2 |λ+ γ − 1|

∣∣ 6= 0,

A (t) = |Λ1 (t)| = |λ+ γ − 1|
(
η2 + 2 (1− η) t

)
,

B (t) = |Λ2 (t)| =
(
η3 |λ+ γ − 1|+ 3

∣∣γ − η2
∣∣ (1− η)

) (
η2 + 2 (1− η) t

)
−Q

(
η3 + 3 (1− η) t2

)
,

and

Q = 2 (1− η) (γ − η) + η2 (λ+ γ − 1) 6= 0.

Lemma 3.1. Let y ∈ C ([0, 1] ,R). Then the solution of the linear differential
system

cDαu (t) = y (t) , cDβv (t) = h (t) , t ∈ [0, 1] , 2 < α, β ≤ 3

λu (0) + γu (1) = v (η) , λv (0) + γv (1) = u (η) ,

u (0) =
∫ η

0
v (s) ds, v (0) =

∫ η
0
u (s) ds,

λcDpu (0) + γcDpu (1) =c Dpv (η) , 1 < p ≤ 2,

λcDpv (0) + γcDpv (1) =c Dpu (η) , 1 < p ≤ 2,

(3.1)
is equivalent to the system of integral equations

u (t) =

t∫
0

(t− s)α−1

Γ (α)
y (s) ds+

1

1− η

η∫
0

 s∫
0

(s− τ)
β−1

Γ (β)
h (τ) dτ

 ds

− Λ1 (t)

Q (1− η)

η∫
0

 s∫
0

(s− τ)
β−1

Γ (β)
h (τ) dτ

 ds

− Λ2 (t)M

6 (1− η)Q

 η∫
0

(η − s)β−p−1

Γ (β − p)
h (s) ds− γ

1∫
0

(1− s)α−p−1

Γ (α− p)
y (s) ds


+

Λ1 (t)

Q (λ+ γ − 1)

 η∫
0

(η − s)β−1

Γ (β)
h (s) ds− γ

1∫
0

(1− s)α−1

Γ (α)
y (s) ds

 (3.2)
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and

v (t) =

t∫
0

(t− s)β−1

Γ (β)
y (s) ds+

1

1− η

η∫
0

 s∫
0

(s− τ)
α−1

Γ (α)
h (τ) dτ

 ds

− Λ1 (t)

Q (1− η)

η∫
0

 s∫
0

(s− τ)
α−1

Γ (α)
h (τ) dτ

 ds

− Λ2 (t)M

6 (1− η)Q

 η∫
0

(η − s)α−p−1

Γ (α− p)
h (s) ds− γ

1∫
0

(1− s)β−p−1

Γ (α− p)
y (s) ds


+

Λ1 (t)

Q (λ+ γ − 1)

 η∫
0

(η − s)α−1

Γ (α)
h (s) ds− γ

1∫
0

(1− s)β−1

Γ (α)
y (s) ds

 ,
(3.3)

where

Λ1 (t) = (λ+ γ − 1)
(
η2 + 2 (1− η) t

)
,

and

Λ2 (t) =
(
η3 (λ+ γ − 1) + 3

(
γ − η2

)
(1− η)

) (
η2 + 2 (1− η) t

)
−Q

(
η3 + 3 (1− η) t2

)
.

Proof. It is well known that the solution of equations cDαu (t) = y (t), cDβv (t) =
h (t) can be written as

u (t) = Iαy (t) + c0 + c1t+ c2t
2, (3.4)

v (t) = Iβh (t) + d0 + d1t+ d2t
2, (3.5)

where c0, c1,c2 ∈ R and d0, d1,d2 ∈ R are arbitrary constants.
Then, from (3.4) we have

u′ (t) = Iα−1y (t) + c1 + 2c2t,

and

cDpu (t) = Iα−py (t) + c2
2t2−p

Γ (3− p)
, 1 < p ≤ 2.

By using the three-point boundary conditions, we obtain

c2 =
M

2

(
Iβ−py (η)− γIα−py (1)

)
,

c0 = −2η2 (λ+ γ − 1)

2 (1− η)Q

η∫
0

 s∫
0

(s− τ)
β−1

Γ (β)
h (τ) dτ

 ds+
1

1− η

η∫
0

 s∫
0

(s− τ)
β−1

Γ (β)
h (τ) dτ

 ds

−
(
η2
[
η3 (λ+ γ − 1) + 3

(
γ − η2

)
(1− η)

]
− η3Q

)
M

2 (1− η)Q

 η∫
0

(η − s)β−p−1

Γ (β − p)
h (s) ds− γ

1∫
0

(1− s)α−p−1

Γ (α− p)
y (s) ds


+
η2

Q

 η∫
0

(η − s)β−1

Γ (β)
h (s) ds− γ

1∫
0

(1− s)α−1

Γ (α)
y (s) ds

 ,
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and

c1 =
−2 (λ+ γ − 1)

Q

η∫
0

 s∫
0

(s− τ)
β−1

Γ (β)
h (τ) dτ

 ds

−
(
η3 (λ+ γ − 1) + 3

(
γ − η2

)
(1− η)

)
M

3Q

 η∫
0

(η − s)β−p−1

Γ (β − p)
h (s) ds− γ

1∫
0

(1− s)α−p−1

Γ (α− p)
y (s) ds


+

2 (1− η)

Q

 η∫
0

(η − s)β−1

Γ (β)
y (s) ds− γ

1∫
0

(1− s)α−1

Γ (α)
y (s) ds

 .
Substituting the values of constants c0, c1 and c2 in (3.4), we get solution (3.2).
Similarly, we obtain solution (3.3). The proof is complete. �

The following relations hold:

|A (t)| ≤ |β + γ − 1|
(
η2 + 2 (1− η)

)
= A1,

and

|B (t)| ≤
∣∣(η3 |β + γ − 1|+ 3

∣∣γ − η2
∣∣ (1− η)

) (
η2 + 2 (1− η)

)
−Q

(
η3 + 3 (1− η)

)∣∣ = B1,

For the sake of brevity, we set

∆1 = ηβ+1

(1−η)Γ(β+2) + A1η
β+1

Q(1−η)Γ(β+2) + MB1η
β−p

(1−η)QΓ(λ−p+1) + A1η
β

Q|β+γ−1|Γ(β+1) ,

∆2 = MB1γ
6(1−η)QΓ(α−p+1) + A1γ

Q|λ+γ−1|Γ(α+1) + 1
Γ(α+1) ,

∆3 = ηα+1

(1−η)Γ(α+2) + A1η
α+1

Q(1−η)Γ(α+2) + MB1η
α−p

(1−η)QΓ(α−p+1) + A1η
α

Q|λ+γ−1|Γ(α+1) ,

and
∆4 = MB1γ

6(1−η)QΓ(β−p+1) + A1γ
Q|λ+γ−1|Γ(β+1) + 1

Γ(β+1) .

In view of Lemma 1.2, we define the operator T : X ×X → X ×X by

T (u, v) (t) =

(
T1 (u, v) (t)
T2 (u, v) (t)

)
,

where

T1 (u, v) (t) =

t∫
0

(t− s)α−1

Γ (α)
f (s, u (s) , v (s)) ds+

1

1− η

η∫
0

 s∫
0

(s− τ)
β−1

Γ (β)
g (τ, u (τ) , v (τ)) dτ

 ds

− B (t)M

6 (1− η)Q

 η∫
0

(η − s)β−p−1

Γ (β − p)
g (s, u (s) , v (s)) ds− γ

1∫
0

(1− s)α−p−1

Γ (α− p)
f (s, u (s) , v (s)) ds


+

A (t)

Q |β + γ − 1|

 η∫
0

(η − s)β−1

Γ (β)
g (s, u (s) , v (s)) ds− γ

1∫
0

(1− s)α−1

Γ (α)
f (s, u (s) , v (s)) ds.


− A (t)

Q (1− η)

η∫
0

 s∫
0

(s− τ)
β−1

Γ (β)
g (τ, u (τ) , v (τ)) dτ

 ds

and

T2 (u, v) (t) =

t∫
0

(t− s)β−1

Γ (β)
g (s, u (s) , v (s)) ds+

1

1− η

η∫
0

 s∫
0

(s− τ)
α−1

Γ (α)
f (τ, u (τ) , v (τ)) dτ

 ds
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− B (t)M

6 (1− η)Q

 η∫
0

(η − s)α−p−1

Γ (α− p)
f (s, u (s) , v (s)) ds− γ

1∫
0

(1− s)β−p−1

Γ (β − p)
g (s, u (s) , v (s)) ds


+

A (t)

Q |β + γ − 1|

 η∫
0

(η − s)α−1

Γ (α)
f (s, u (s) , v (s)) ds− γ

1∫
0

(1− s)β−1

Γ (β)
g (s, u (s) , v (s)) ds.


− A (t)

Q (1− η)

η∫
0

 s∫
0

(s− τ)
α−1

Γ (α)
f (τ, u (τ) , v (τ)) dτ

 ds.

Observe that the boundary value problem (1.1)− (1.2) has solutions if the operator
equation (u, v) = T (u, v) has fixed points.

Now we are in a position to present the first main results of this paper. The
existence results is based on Leray-Schauder nonlinear alternative.

Lemma 3.2. [14] (Leray-Schauder alternative ). Let E be a Banach space and
T : E → E be a completely continuous operator (i.e., a map restricted to any
bounded set in E is compact). Let

ε (T ) = {(u, v) ∈ X ×X : (u, v) = λT (u, v) , for some 0 < λ < 1} .

Then either the ε (T ) is unbounded or T has at least one fixed point.

Theorem 3.3. Assume that f , g : [0, 1] × R × R → R are a continuous function
and
(H1) there exist constants ki > 0, mi > 0, i = 0, 1, 2 such that ∀u ∈ R, ∀v ∈ R, we
have

|f (t, u, v)| ≤ k0 + k1 |u|+ k2 |v| ,
and

|g (t, u, v)| ≤ m0 +m1 |u|+m2 |v| .
If (∆2 + ∆3) k1 + (∆1 + ∆4)m1 < 1 and (∆2 + ∆3) k2 + (∆1 + ∆4)m3 < 1, where
∆i, i = 1, 2, 3, 4 are given above. Then the boundary value problem (1.1) − (1.2)
has at least one solution on [0, 1].

Proof. It is clear that T is a continuous operator where T : X × X → X × X is
defined above. Now, we show that T is completely continuous. Let Ω ⊂ X ×X be
bounded. Then there exist positive constants L1 and L2 such that

|f (t, u (t) , v (t))| ≤ L1, |g (t, u (t) , v (t))| ≤ L2, ∀ (u, v) ∈ Ω.

Then for any (u, v) ∈ Ω, we have

|T1 (u, v) (t)| ≤ L2

1− η

η∫
0

 s∫
0

(s− τ)
β−1

Γ (β)
dτ

 ds

+
|A (t)|L2

Q (1− η)

η∫
0

 s∫
0

(s− τ)
β−1

Γ (β)
dτ

 ds+ L1

t∫
0

(t− s)α−1

Γ (α)
ds

+
M |B (t)|

6 (1− η)Q

L2

η∫
0

(η − s)β−p−1

Γ (β − p)
ds+ γL1

1∫
0

(1− s)α−p−1

Γ (α− p)
ds


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+
|A (t)|

Q |λ+ γ − 1|

L2

η∫
0

(η − s)β−1

Γ (β)
ds+ γL1

1∫
0

(1− s)α−1

Γ (α)
ds


≤ L2

 1

1− η

η∫
0

 s∫
0

(s− τ)
β−1

Γ (β)
dτ

 ds+
A1

Q (1− η)

η∫
0

 s∫
0

(s− τ)
β−1

Γ (αβ)
dτ

 ds

+
MB1

6 (1− η)Q

η∫
0

(η − s)β−p−1

Γ (β − p)
ds+

A1

6 |λ+ γ − 1|

η∫
0

(η − s)β−1

Γ (β)
ds


+L1

 MγB1

6 (1− η)Q

1∫
0

(1− s)α−p−1

Γ (α− p)
ds+

A1γ

Q |λ+ γ − 1|

1∫
0

(1− s)α−1

Γ (α)
ds

+

t∫
0

(t− s)α−1

Γ (α)
ds


≤ L2∆1 + L1∆2.

Hence

‖T1 (u, v)‖ ≤ L2∆1 + L1∆2. (3.6)

In the same way, we can obtain that

‖T2 (u, v)‖ ≤ L1∆3 + L2∆4. (3.7)

Thus, it follows from (3.6) and (3.7) that the operator T is uniformly bounded, since
‖T (u, v)‖ ≤ L1 (∆1 + ∆3)+L2 (∆2 + ∆4). Now, we show that T is equicontinuous.
Let t1, t2 ∈ [0, 1] with t1 < t2. Then we have

|T1 (u (t2) , v (t2))− T1 (u (t1) , v (t1))| ≤ L1

t1∫
0

(t2 − s)α−1 − (t1 − s)α−1

Γ (α)
ds

+L1

t2∫
t1

(t2 − s)α−1

Γ (α)
ds+

|A (t2)−A (t1)|L2

Q (1− η)

η∫
0

 s∫
0

(s− τ)
β−1

Γ (β)
dτ

 ds

+
(B (t2)−B (t1))M

6 (1− η)Q

L2

η∫
0

(η − s)β−p−1

Γ (β − p)
ds+ γL1

1∫
0

(1− s)α−p−1

Γ (α− p)
ds


+
A (t2)−A (t1)

Q |λ+ γ − 1|

L2

η∫
0

(η − s)β−1

Γ (β)
ds− γL1

1∫
0

(1− s)α−1

Γ (α)
ds

 .
Obviously, the right-hand side of the above inequality tends to zero as t2 → t1.
Similarly, we have

|T2 (u (t2) , v (t2))− T2 (u (t1) , v (t1))| ≤ L2

t1∫
0

(t2 − s)β−1 − (t1 − s)β−1

Γ (β)
ds
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+L2

t2∫
t1

(t2 − s)β−1

Γ (β)
ds+

|A (t2)−A (t1)|L1

Q (1− η)

η∫
0

 s∫
0

(s− τ)
α−1

Γ (α)
dτ

 ds

+
(B (t2)−B (t1))M

6 (1− η)Q

L1

η∫
0

(η − s)α−p−1

Γ (α− p)
ds+ γL2

1∫
0

(1− s)β−p−1

Γ (β − p)
ds


+
A (t2)−A (t1)

Q |λ+ γ − 1|

L1

η∫
0

(η − s)α−1

Γ (α)
ds− γL2

1∫
0

(1− s)β−1

Γ (β)
ds

 .
Again, it is seen that the right-hand side of the above inequality tends to zero as
t2 → t1. Thus, the operator T is equicontinuous.
Therefore, the operator T is completely continuous.
Finally, it will be verified that the set ε (T ) = {(u, v) ∈ X ×X : (u, v) = λT (u, v) , 0 ≤ λ ≤ 1}
is bounded. Let (u, v) ∈ ε (T ), with (u, v) = λT (u, v) for any t ∈ [0, 1], we have

u (t) = λT1 (u, v) (t) , v (t) = λT2 (u, v) (t) .

Then

|u (t)| ≤ ∆2 (k0 + k1 |u|+ k2 |v|) + ∆1 (m0 +m1 |u|+m2 |v|) ,

= ∆2k0 + ∆1m0 + (∆2k1 + ∆1m1) |u|+ (∆2k2 + ∆1m2) |v| ,
and

|v (t)| ≤ ∆3 (k0 + k1 |u|+ k2 |v|) + ∆4 (m0 +m1 |u|+m2 |v|) ,

= ∆3k0 + ∆4m0 + (∆3k1 + ∆4m1) |u|+ (∆3k2 + ∆4m2) |v| .
Hence we have

‖u‖ = ∆2k0 + ∆1m0 + (∆2k1 + ∆1m1) ‖u‖+ (∆2k2 + ∆1m2) ‖v‖ ,

and

‖v‖ = ∆3k0 + ∆4m0 + (∆3k1 + ∆4m1) |u|+ (∆3k2 + ∆4m2) |v| ,
which imply that

‖u‖+ ‖v‖ = (∆2 + ∆3) k0 + (∆1 + ∆4)m0 + [(∆2 + ∆3) k1 + (∆1 + ∆4)m1] ‖u‖

+ [(∆2 + ∆3) k2 + (∆1 + ∆4)m2] ‖v‖ .
Consequently,

‖(u, v)‖ =
(∆2 + ∆3) k0 + (∆1 + ∆4)m0

∆0
,

where

∆0 = min {1− [(∆2 + ∆3) k1 + (∆1 + ∆4)m1] , 1− [(∆2 + ∆3) k2 + (∆1 + ∆4)m2]},

which proves that ε (T ) is bounded. Thus, by Lemma 3.2, the operator T has at
least one fixed point. Hence boundary value problem (1.1)− (1.2) has at least one
solution. The proof is complete. �

Now, we are in a position to present the second main results of this paper
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Theorem 3.4. Assume that f, g : [0, 1] × R2 → R are continuous functions and
there exist positive constants L1 and L2 such that for all t ∈ [0, 1] and ui , vi ∈
R, i = 1, 2, we havre
(1) |f (t, u1, u2)− f (t, v1, v2)| ≤ L1 (|u1 − v1|+ |u2 − v2|),

(2) |g (t, u1, u2)− g (t, v1, v2)| ≤ L2 (|u1 − v1|+ |u2 − v2|).
Then the boundary value problem (1.1)−(1.2) has a unique solution on [0, 1] provided

(∆1 + ∆3)L1 + (∆2 + ∆4)L2 < 1.

Proof. Let us set sup
t∈[0,1]

|f (t, 0, 0)| = N1 < ∞ and sup
t∈[0,1]

|g (t, 0, 0)| = N2 < ∞. For

u ∈ X, we observe that

|f (t, u (t) , v (t))| ≤ |f (t, u (t))− f (t, 0, 0)|+ |f (t, 0, 0)| ,

≤ L1 (|u (t)|+ |v (t)|) +N1,

≤ L1 (‖u‖+ ‖v‖) +N1,

and

|g (t, u (t) , v (t))| ≤ |g (t, u (t))− g (t, 0, 0)|+ |g (t, 0, 0)| ≤ L2 ‖u‖+N2.

Then for u ∈ X, we have

|T1 (u, v) (t)| ≤ 1

1− η

η∫
0

 s∫
0

(s− τ)
β−1

Γ (β)
[L2 ‖(u, v)‖+N2] dτ

 ds

+
|A (t)|

Q (1− η)

η∫
0

 s∫
0

(s− τ)
β−1

Γ (β)
[L2 ‖(u, v)‖+N2] dτ

 ds+

t∫
0

(t− s)α−1

Γ (α)
[L1 ‖(u, v)‖+N1] ds

+
M |B (t)|

6 (1− η)Q

 η∫
0

(η − s)β−p−1

Γ (β − p)
[L2 ‖(u, v)‖+N2] ds+ γ

1∫
0

(1− s)α−p−1

Γ (α− p)
[L1 ‖(u, v)‖+N1] ds


+

|A (t)|
Q |λ+ γ − 1|

 η∫
0

(η − s)β−1

Γ (β)
[L2 ‖(u, v)‖+N2] ds+ γ

1∫
0

(1− s)α−1

Γ (α)
[L1 ‖(u, v)‖+N1] ds,


≤ (L2 ‖(u, v)‖+N2)

 1

1− η

η∫
0

 s∫
0

(s− τ)
β−1

Γ (β)
dτ

 ds+
A1

Q (1− η)

η∫
0

 s∫
0

(s− τ)
β−1

Γ (β)
dτ

 ds

+
MB1

6 (1− η)Q

η∫
0

(η − s)β−p−1

Γ (β − p)
ds+

A1

6 |λ+ γ − 1|

η∫
0

(η − s)β−1

Γ (β)
ds


+

MB1

6 (1− η)Q

η∫
0

(η − s)β−p−1

Γ (β − p)
ds+

A1

6 |λ+ γ − 1|

η∫
0

(η − s)β−1

Γ (β)
ds


+ (L1 ‖(u, v)‖+N1)


t∫

0

(t− s)α−1

Γ (α)
ds
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+
MγB1

6 (1− η)Q

1∫
0

(1− s)α−p−1

Γ (α− p)
ds+

A1γ

Q |λ+ γ − 1|

1∫
0

(1− s)α−1

Γ (α)
ds

 ,

≤ (L2r +N2) ∆1 + (L1r +N1) ∆2

Hence

‖T1 (u, v)‖ ≤ (L2∆1 + L1∆2) r +N2∆1 +N1∆2

In the same way, we can obtain that

‖T2 (u, v)‖ ≤ (L1∆3 + L2∆4) r +N2∆4 +N1∆3.

Consequently,

‖T (u, v)‖ ≤ ((∆2 + ∆3)L1 + (∆1 + ∆4)L2) r+N2 (∆1 + ∆4)+N1 (∆2 + ∆3) ≤ r.

Now, for (u1, v1) , (u2, v2) ∈ X×X and for each t ∈ [0, 1], it follows from assumption
(H3) that

|T1 (u2, v2) (t)− T1 (u1, v1) (t)| ≤ L2 (‖u2 − u1‖+ ‖v2 − v1‖)

 1

1− η

η∫
0

 s∫
0

(s− τ)
β−1

Γ (β)
dτ

 ds

+
A1

Q (1− η)

η∫
0

 s∫
0

(s− τ)
β−1

Γ (β)
dτ

 ds

+
MB1

6 (1− η)Q

η∫
0

(η − s)β−p−1

Γ (β − p)
ds+

A1

6 |λ+ γ − 1|

η∫
0

(η − s)β−1

Γ (β)
ds


+L1 (‖u2 − u1‖+ ‖v2 − v1‖)


t∫

0

(t− s)α−1

Γ (α)
ds

+
MγB1

6 (1− η)Q

1∫
0

(1− s)α−p−1

Γ (α− p)
ds+

A1γ

Q |λ+ γ − 1|

1∫
0

(1− s)α−1

Γ (α)
ds


≤ (L2∆1 + L1∆2) (‖u2 − u1‖+ ‖v2 − v1‖) .

Thus

‖T1 (u2, v2)− T1 (u1, v1)‖ ≤ (L2∆1 + L1∆2) (‖u2 − u1‖+ ‖v2 − v1‖) . (3.8)

. Similarly,

‖T2 (u2, v2)− T2 (u1, v1)‖ ≤ (L2∆3 + L1∆4) (‖u2 − u1‖+ ‖v2 − v1‖) . (3.9)

It follows from (3.8) and (3.9) that

‖T (u2, v2)− T (u1, v1)‖ ≤ (L2 (∆1 + ∆3) + L1 (∆2 + ∆4)) (‖u2 − u1‖+ ‖v2 − v1‖) .

Since L2 (∆1 + ∆3) +L1 (∆2 + ∆4) < 1, thus T is a contraction operator. Hence it
follows by Banach’s contraction principle that the boundary value problem (1.1)−
(1.2) has a unique solution on [0, 1].

�

We construct an example to illustrate the applicability of the results presented.
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Example 3.1. Consider the following system fractional differential equation cD3u (t) = t
8

(
(cost) sin

(
|u(t)|+|v(t)|

2

))
+ e−(u(t)+v(t))2

1+t2 , t ∈ [0, 1] ,

cD3v (t) = 1
32sin (2πu (t)) + |v(t)|

16(1+|v(t)|) + 1
2 , t ∈ [0, 1] ,

subject to the three-point coupled boundary conditions
1

100u (0) + 1
10u (1) = u

(
1
2

)
,

u (0) =
∫ 0,5

0
u (s) ds,

1
100

c
D

3
2u (0) + 1

10

c
D

3
2u (1) =c D

3
2u
(

1
2

)
,

where f (t, u, v) = t
8

(
(cost) sin

(
|u|+|v|

2

))
+ e−(u+v)2

1+t2 , t ∈ [0, 1] , η = 0, 5, λ =

0, 01, γ = 0, 1, p = 1, 5 and g (t, u, v) = 1
32π sin (2πu (t)) + |v(t)|

16(1+|v(t)|) + 1
2 .

It can be easily found that M = 20
3 and Q = 9

400 .
Furthermore, by simple computation, for every ui, vi ∈ R, i = 1, 2, we have

|f (t, u1, u2)− f (t, v1, v2)| ≤ L (|u1 − v1|+ |u2 − v2|) ,
and

|g (t, u1, u2)− g (t, v1, v2)| ≤ L (|u1 − v1|+ |u2 − v2|) ,
where L1 = L2 = L = 1

16 . It can be easily found that ∆1 = ∆
3
∼= 0, 799562, ∆2 =

∆4
∼= 1, 182808.

Finally, since L1 (∆1 + ∆3) + L2 (∆2 + ∆4) = 2L (∆1 + ∆2) ∼= 0, 247796 < 1, thus
all assumptions and conditions of Theorem 3.4 are satisfied. Hence, Theorem im-
plies that the three-point boundary value problem (1.1)− (1.2) has a unique solution
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