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Abstract

The axioms for a metric D were transformed into axioms of the function expD, and a
new generalized metric called multiplicative metric was introduced in 2008 based on these
transformed axioms. A review of a method of converting metric fixed point results through
logarithmic transformation to multiplicative metric fixed point results and converting multi-
plicative metric fixed point results through exponential transformation to metric fixed point
results has been presented. Applications of this procedure have also been discussed.

1. Introduction

Fixed point theory accommodates many types of distance functions. On many occasions distance functions are introduced just
to derive fixed point theorems and this is justified in the survey articles ([1],[2]). The survey article [2] presents conversions of
metric fixed point results through exponential logarithmic transformations into fixed point results on a class of generalized
metric spaces which are called multiplicative metric spaces. The concept of a multiplicative metric was just mentioned in the
article [3] in the year 2008. But, other researchers used this concept to derive fixed point results by transforming arguments of
proofs of results of metric fixed point theory. The survey article [2] applied transformations on statements instead of proofs,
by referring to many research articles. The present article is to review these techniques of applying transformations, but by
referring to books having collections of results with proofs. It is concluded as in [2] that there is a one to one correspondence
between metric fixed point results and multiplicative metric fixed point results. Exact applications are also mentioned. The
main purpose of applying transformations is to obtain many examples and to obtain new results. The main purpose of fixed
point theory is to solve equations.

Only very few results are selected, mostly from the book [4], for transformation, and new articles like [5] are not considered
for transformations. The statements of these results chosen for transformations are not presented for management of symbols.
One more thing should be mentioned. The name “multiplicative metric” given in [3] is changed into “EL metric” to stress the
usefulness of transformations. The usual notation used for a multiplicative metric is also changed in this article for convenience.
It should be mentioned that apart from special nonlinear transformations there are special linear transformations. See for
example [6]-[9].

2. Transformed metrics and topologies

Let us first recall the definition of a metric D.
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Definition 2.1. [1] Let X be a non empty set. Let D be a real valued function on X×X satisfying the following axioms.

(I) D(x,y)≥ 0, for all x,y ∈ X
(II) D(x,y) = D(y,x), for all x,y ∈ X

(III) D(x,y)≤ D(x,z)+D(z,y), for all x,y,z ∈ X
(IV) D(x,y) = 0 if and only if x = y in X.

Then D is called a metric on X. The pair (X ,D) is called a metric space.

Definition 2.2. [3] Let X be a non empty set. Let d be a real valued function on X×X satisfying the following axioms.

(i) d(x,y)≥ 1, for all x,y ∈ X
(ii) d(x,y) = d(y,x), for all x,y ∈ X

(iii) d(x,y)≤ d(x,z)d(z,y), for all x,y,z ∈ X
(iv) d(x,y) = 1 if and only if x = y in X.

Then d is called an EL metric on X. The pair (X ,d) is called an EL metric space.

E and L are used for the words “Exponential” and “Logarithmic”. So, EL metrics are our transformed metrics. The word
“generalized” is suppressed in giving name in Definition 2.2, because metrics are to be derived from EL metrics and EL metrics
are to be derived from metrics.

Let (X ,D) be a metric space. Let us use the notation “ expD” for the composite function which is defined by

(expD)(x,y) = exp(D(x,y)) = eD(x,y), for all x,y ∈ X .

Let d = expD. Then d satisfies the conditions (i),(ii),(iii) and (iv) given in Definition 2.2. Thus, (X ,d) is an EL metric space,
when d = expD.

On the other hand, let us consider an EL metric space (X ,d). Let us use the notation “logd” for the composite function which
is defined by

(logd)(x,y) = log(d(x,y)), for all x,y ∈ X .

Let D = logd. Then D satisfies the conditions (I),(II),(III) and (IV) given in Definition 2.1. Thus (X ,D) is a metric space,
when D = logd.

These two transformations provide fundamental techniques required to convert classical fixed point results for metric spaces
into fixed point results for EL metric spaces. Let us first introduce technical terms required for transformations in results. Let
us always associate D for a metric and d for an EL metric, even if it is not mentioned explicitly. Some times, the variations
like DX ,DY ,D1,D2, and dX ,dY ,d1,d2 will be used for these purposes. Let us assume all classical definitions for open sets,
closed sets, closures, topology induced by a metric, Cauchy sequences, convergent sequences, complete metric spaces, totally
bounded metric spaces, compact spaces, etc., corresponding to metric spaces.

Notation 2.3. Let (X ,D) be a metric space. For each r ≥ 0, and for each x ∈ X, let BD(x,r) = {y ∈ X : D(x,y) < r} and
CD(x,r) = {y ∈ X : D(x,y)≤ r} denote open balls and closed balls.

Definition 2.4. [10] Let (X ,d) be an EL metric space. For each r≥ 1, and for each x ∈ X, let Bd(x,r) = {y ∈ X : d(x,y)< r}
and Cd(x,r) = {y ∈ X : d(x,y)≤ r}. Let us call them also as open ball and closed ball having centre x and radius r. Let us
say that (X ,d) is totally bounded if for every r > 1, X is covered by finitely many open balls with radius r.

Remark 2.5. [10] Let d be an EL metric on X. Let D = logd so that d = expD. Then BD(x,r) = Bd(x,expr), because
D(x,y)< r if and only if d(x,y)< expr, for r > 0. Similarly, CD(x,r) =Cd(x,expr), for r > 0. So, (X ,d) is totally bounded if
and only if (X ,D) is totally bounded.

Definition 2.6. [10] A subset A of an EL metric space (X ,d) is said to be open, if for each x ∈ A, there is a number r > 1
such that Bd(x,r)⊆ A. Let τd = {A⊆ X : A is open in (X ,d)}.

Remark 2.7. [10] Let A be a subset of an EL metric space (X ,d). Then A ∈ τd if and only if it is open with respect to the
topology τD induced by D = logd. This is a consequence of Remark 2.5. Thus τd is a topology and it coincides with τD. Let us
say that (X ,d) is compact, if (X ,τd) is compact.

Definition 2.8. [10] Let (xn)
+∞

n=1 be a sequence in an EL metric space (X ,d). Then (xn)
+∞

n=1 is said to be Cauchy in (X ,d), if
for every ε > 1, there is an integer n0 such that d(xn,xm)< ε , for all n,m≥ n0. The sequence (xn)

+∞

n=1 is said to be convergent
in (X ,d), if for every ε > 1, there is an element x ∈ X, and there is an integer n0 such that d(xn,x)< ε , for all n≥ n0. Let us
say that (xn)

+∞

n=1 converges to a limit point x in (X ,d), in this case. An EL metric space is said to be complete, if every Cauchy
sequence is convergent in it.
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Remark 2.9. [10] Let (xn)
+∞

n=1 be a sequence in an EL metric space (X ,d). Let D = logd. By Remark 2.5, (xn)
+∞

n=1 is Cauchy
in (X ,d) if and only if it is Cauchy in (X ,D). Also, (xn)

+∞

n=1 is convergent to x in (X ,d) if and only if it is convergent to x in
(X ,D). In particular, every convergent sequence in (X ,d) is Cauchy. Moreover, (X ,d) is complete if and only if (X ,D) is
complete.

A transformation method can be applied for arguments of proofs. The first illustration for this action is a proof of the following
known fact.

Proposition 2.10. Let (X ,d) be an EL metric space. Let (xn)
+∞

n=1 be a sequence converging to x in (X ,d). Then (xn)
+∞

n=1 is
Cauchy in (X ,d).

Proof. Fix ε > 1. Then there is an integer n0 such that d(xn,x)<
√

ε , for all n≥ n0. Then d(xn,xm)≤ d(xn,x)d(x,xm)< ε ,
for all n,m≥ n0. This completes the proof.

Let us establish two more results which can also be obtained by applying transformation directly to the known results.

Lemma 2.11. Let (X ,d) be an EL metric space. Then

1≤ max

{
d(u,v)
d(x,y)

,
d(x,y)
d(u,v)

}
≤ d(u,x)d(v,y), for all x,y,u,v ∈ X .

Proof. d(u,v)≤ d(u,x)d(x,y)d(y,v). So, d(u,v)
d(x,y) ≤ d(u,x)d(y,v). Similarly, d(x,y)

d(u,v) ≤ d(u,x)d(y,v). Now, the lemma follows.

Proposition 2.12. Let (X ,d) be an EL metric space. Let (xn)
+∞

n=1 converge to x and (yn)
+∞

n=1 converge to y in (X ,d). Then
d(xn,yn)→ d(x,y) as n→+∞.

Proof.

1≤ max

{
d(xn,yn)

d(x,y)
,

d(x,y)
d(xn,yn)

}
≤ d(xn,x)d(yn,y), for all n,

by Lemma 2.11. The result follows, because d(xn,x)→ 1 and d(yn,y)→ 1 as n→+∞.

Let us now transform arguments of the proof of the metrization lemma ([11], Chapter 6, Lemma 12).

Lemma 2.13. Let (Un)
+∞

n=0 be a sequence of symmetric subsets of X×X such that U0 = X×X, each Un contains the diagonal

∆ = {(x,x) : x ∈ X},Un+1 ◦Un+1 ◦Un+1 ⊆Un for each n, and such that ∆ =
+∞⋂
n=1

Un. Then there is an EL metric d on X (that is,

a function on X×X) such that Un ⊆ {(x,y) ∈ X×X : d(x,y)< 52−n} ⊆Un−1, for each positive integer n.

Proof. Define a function f : X×X→ [1,+∞) by f (x,y)= 52−n if and only if (x,y)∈Un−1\Un and by f (x,x)= 1, for all x∈X .

For every x,y ∈ X , let d(x,y) = inf
n
∏
i=0

f (xi,xi+1), where infimum is taken over all finite sequences (or chains) x0,x1, ...,xn+1

such that x = x0 and y = xn+1. Then d(x,y)≥ 1 and d(x,y)≤ d(x,z)d(z,y), for all x,y,z ∈ X . Also, f (x,y) = f (y,x), for all
x,y ∈ X , because each Un is symmetric. So, d(x,y) = d(y,x), for all x,y ∈ X . Moreover, d(x,x) = 1, for all x ∈ X , because
f (x,x) = 1, for all x ∈ X . Since d(x,y)< 52−n, for all (x,y) ∈Un, then Un ⊆ {(x,y) ∈ X ×X : d(x,y)< 52−n}. Let us claim

that, for any chain x0,x1, ...,xn+1, f (x0,xn+1) ≤ (
n
∏
i=0

f (xi,xi+1))
2. Let us establish the claim by induction on n. Let us call

n as the length of the chain x0,x1, ...,xn+1. The claim is true for any chain with length n = 0, because f (x,y) ≥ 1, for all
x,y ∈ X . Let us assume for induction that the claim is true for any chain with length less than n, and n ≥ 1. To complete

the proof of our claim, let us consider a chain x0,x1, ...,xn+1 in X such that f (xi,xi+1) > 1, for all i. Let a =
n
∏
i=0

f (xi,xi+1).

Let k be the largest integer such that
k
∏
i=0

f (xi,xi+1)≤
√

a. Then
n
∏

i=k+1
f (xi,xi+1)≤

√
a. Hence, by our induction hypothesis,

f (x0,xk) ≤ a and f (xk+1,xn+1) ≤ a. Moreover, f (xk,xk+1) ≤ a. If m is the smallest integer such that 52−m−1 ≤ a, then
(x0,xk),(xk,xk+1),(xk+1,xm+1) ∈Um and hence (x0,xn+1) ∈Um−1. Hence f (x0,xn+1) ≤ 52−m ≤ a2. Thus our claim is true.
This claim proves that {(x,y) ∈ X×X : d(x,y)< 52−n} ⊆Un−1, for all n = 1,2, , ... . This completes the proof.
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One should compare the previous proof with the proof of ([11], Chapter 6, Lemma 12). This comparison is necessary to
understand the technique of applying transformation in arguments of proofs. Note that the exponential function does not appear
in the previous proof. This one happens, because 5d(x,y) is also a metric, when d is an EL metric. One can also observe that the
statement of ([11], Chapter 6, Lemma 12) can be directly converted into the statement of Lemma 2.13 of this article without
going through proofs. Lemma 2.13 of this article and ([11], Chapter 6, Lemma 12) jointly imply the following. The topology
induced by an EL metric is also induced by a metric, and the topology induced by a metric is also induced by an EL metric.
But, this was already implied by Remark 2.7.

Conclusion 2.14. If d is an EL metric and D = logd, then topologies, convergent sequences, Cauchy sequences, continuity,
compactness, and completeness are common for both d and D. Both d and D are jointly continuous. All these fundamental
facts will be applied in this article.

3. Advantage of transformations in arguments

Theorem 3.1. Let (X ,d) be a compact EL metric space. Let T : X → X be a mapping such that d(T 2x,T x) < d(T x,x),
whenever T x 6= x in X. Then T has a fixed point. Moreover, if d(T x.Ty)< d(x,y), whenever x 6= y in X, then T has a unique
fixed point x∗, and (T nx0)

+∞

n=1 converges to x∗, for any fixed x0 in X.

Proof. Let φ(x) = d(T x,x), for all x ∈ X . Then φ has a minimum at some x∗ ∈ X . If T x∗ 6= x∗, then

1≤ φ(T x∗) = d(T 2x∗,T x∗)< d(T x∗,x∗) = φ(x∗).

So, T x∗ = x∗, because φ has a minimum at x∗.

Suppose further that d(T x,Ty)< d(x,y), whenever x 6= y in X . Suppose T x∗∗ = x∗∗ and T x∗ = x∗ for two points x∗,x∗∗ in X .
If x∗ 6= x∗∗, then

1≤ d(x∗∗,x∗) = d(T x∗∗,T x∗)< d(x∗∗,x∗).

So, x∗ = x∗∗. Thus T has a unique fixed point x∗ in X . Fix x0 in X . Let cn = d(T nx0,x∗). If cm = 1 for some m, then (T nx0)
+∞

n=1
converges to x∗ in (X ,d). Suppose cn 6= 1 for every n. Then

1≤ cn+1 ≤ d(T n+1x0,x∗) = d(T (T nx0),T x∗)< d(T nx0,x∗) = cn, for all n.

Let lim
n→+∞

cn = c. If c = 1, then (T nx0)
+∞

n=1 converges to x∗ in (X ,d). Suppose c > 1. Let (T nix0)
+∞

i=1 be a subsequence of

(T nx0)
+∞

n=1 such that the subsequence converges to some z in (X ,d). Then

1 < c = lim
i→+∞

cni = lim
i→+∞

d(T nix0,x∗) = d(z,x∗)

so that x∗ 6= z. Since T is continuous,

1 < c = lim
i→+∞

d(T ni+1x0,x∗) = d(T z,x∗) = d(T z,T x∗)< d(z,x∗) = c.

This is impossible. Thus c = 1, and the result follows.

Corollary 3.2. Let (X ,D) be a compact metric space. Let T : (X ,D)→ (X ,D) be a mapping such that D(T x,Ty)< D(x,y),
for x 6= y in X. Then there is a unique fixed point x∗ in X. Moreover, for any x0 ∈ X, (T nx0)

+∞

n=1 converges to x∗ in (X ,D).

Proof. Define d = expD. Then (X ,d) is a compact EL metric space. Also, d(T x,Ty)< d(x,y), for x 6= y in X . So, the result
follows from Theorem 3.1.

The previous Corollary 3.2 is ([4], Theorem 3.5). The following Corollary 3.4 is the most fundamental theorem of metric
fixed point theory. It is ([4], Theorem 3.1), which is the Banach contraction principle.

Theorem 3.3. Let (X ,d) be a complete EL metric space. Let k ∈ (0,1). Let T : X → X be a mapping such that d(T x,Ty)≤
(d(x,y))k, for all x,y ∈ X. Then T has a unique fixed point x∗. Also, for each x0 in X, the sequence (T nx0)

+∞

n=1 converges to x∗

in (X ,d). Moreover,

d(T nx0,x∗)≤ (d(x0,T x0))
kn

1−k , for all n.
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Proof. Fix x0 ∈ X . Let xn = T nx0, for all n = 1,2,3... . Then d(xn+1,xn)≤ (d(xn,xn−1))
k ≤ (d(x1,x0))

kn
. For m > n,

1 ≤ d(xn,xm)

≤ d(xn,xn+1)d(xn+1,xn+2)....d(xm−1,xm)

≤ (d(x1,x0))
kn+kn+1+...+km−1

≤ (d(x1,x0))
kn+kn+1+....

= (d(x1,x0))
kn

1−k .

Since the right hand side tends to 1 as n→+∞, (xn)
+∞

n=1 is a Cauchy sequence that converges to some element x∗ in (X ,d).
Moreover, when m tends to infinity in the previous relation, it is obtained that

1≤ d(xn,x∗)≤ (d(T x0,x0))
kn

1−k ,

for every n = 1,2,... . If n tends to infinity in this relation, then it is concluded that d(xn,x∗)→ 1 as n→+∞. Since

1≤ d(T x∗,x∗) = lim
n→+∞

d(xn+1,xn)≤ lim
n→+∞

(d(x1,x0))
kn
= 1,

it follows that T x∗ = x∗. Moreover, if T x∗∗ = x∗∗, then

1≤ d(x∗,x∗∗) = d(T x∗,T x∗∗)≤ (d(x∗,x∗∗))k.

Since k ∈ (0,1), it follows that x∗ = x∗∗. That is, T has a unique fixed point x∗ in X .

Corollary 3.4. Let (X ,D) be a complete metric space. Let k ∈ (0,1). Let T : X → X be a mapping such that D(T x,Ty)≤
kD(x,y), for all x,y ∈ X. Then T has a unique fixed point x∗. Moreover, for any x0 in X, the sequence (T nx0)

+∞

n=1 converges to
x∗.

Proof. Let d = expD. Then (X ,d) is a complete EL metric space. Also, d(T x,Ty)≤ (d(x,y))k, for all x,y ∈ X . Corollary 3.4
now follows from Theorem 3.3.

Conclusion 3.5. One may understand that the proofs of Theorem 3.1 and Theorem 3.3 use arguments which resemble
classical arguments and the arguments used in this article are obtained from classical arguments by means of logarithmic
transformation. These types of transformed arguments should be developed, because one can derive fixed point results for
metric spaces, as it is illustrated in Corollary 3.2 and Corollary 3.4.

4. Transformation in statements

Sometimes, it would be convenient to establish existence of fixed points in particular examples, when transformed statements
of results are applied. This is the main advantage of transformation of statements of results.

Example 4.1. Let X =
[

1
2 ,2
]
. Let d(x,y) = max{xy−1,yx−1}, for all x,y ∈ X. Then (X ,d) is a compact EL metric space.

Define T : X → X by T x = x
1
2 , for all x ∈ X. Then d(T x,Ty)< d(x,y) whenever x 6= y. This mapping T has a unique fixed

point 1. For any fixed x ∈ X, T nx→ 1 as n→+∞.

One may understand that the following Corollary 4.2 can be associated with Example 4.1. Although Corollary 4.2 is a part of
Theorem 3.1, let us derive it from Corollary 3.2 for an illustration of transformation techniques.

Corollary 4.2. Let (X ,d) be a compact EL metric space. Let T : X → X be a mapping such that d(T x,Ty)< d(x,y), for all
x,y ∈ X. Then T has a unique fixed point x∗. Moreover, for any x0 in X, (T nx0)

+∞

n=1 converges to x∗ in (X ,d).

Proof. Let D = logd. Then (X ,D) is a compact metric space, and D(T x,Ty)< D(x,y), whenever x 6= y in X . Now, Corollary
3.2 implies Corollary 4.2.

Corollary 4.3. Let (X ,d) be a complete EL metric space. Let k ∈ (0,1). Let T : X → X be a mapping such that d(T x,Ty)≤
(d(x,y))k, for all x,y ∈ X. Then T has a unique fixed point.

Proof. Let D = logd. Then (X ,D) is a complete metric space and D(T x,Ty)≤ kD(x,y), for all x,y ∈ X . Now, Corollary 3.4
implies Corollary 4.3.
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Corollaries 3.2, 3.4, 4.2 and 4.3 are evidences for existence of a one to one correspondence between fixed point results for
metric spaces and fixed point results for EL metric spaces. Since fixed point results for metric spaces have already been
established, let us go for transformations of fixed point results for metric spaces. Let us consider some results from the book
[4] for transformation.

Theorem 4.4. Let (X ,d) be a complete EL metric space. Let k ∈ (0,1). Let T : X → X be a mapping such that d(T x,Ty)≤
(d(x,y))k, for all x,y ∈ X. Let x∗ be the unique fixed point of T . Let (εn)

+∞

n=1 be a sequence of numbers such that lim
n→+∞

εn = 1

and εn > 1, for all n. Let (yn)
+∞

n=1 be a sequence in X such that d(yn+1,Tyn)≤ εn, for all n = 1,2, ... . Then lim
n→+∞

yn = x∗.

Proof. Let D = logd. Then D(T x,Ty)≤ kD(x,y), for all x,y ∈ X . Also, (logεn)
+∞

n=1 is a sequence of positive numbers such
that D(yn+1,Tyn) ≤ logεn, for all n = 1,2, ..., and such that logεn → 0 as n→ +∞. Now, ([4], Theorem 3.2) implies the
result.

Theorem 4.5. Let (X ,d) be a complete EL metric space. Let k ∈ (0,1). Let n be a positive integer. Let T : X → X be a
mapping such that d(T nx,T ny)≤ (d(x,y))k, for all x,y ∈ X. Then T has a unique fixed point.

Proof. Let D = logd. Then D(T nx,T ny)≤ kD(x,y), for all x,y ∈ X . By ([4], Theorem 3.3), the result follows.

Theorem 4.6. Let (X ,d) be a complete EL metric space. Let α : [1,+∞)→ [0,1) be a function which satisfies the condition
“α(tn)→ 1 implies tn→ 1”. Let T : X→ X be a mapping such that d(T x,Ty)≤ (d(x,y))α(d(x,y)), for all x,y ∈ X. Then T has a
unique fixed point x∗. Also, for each x0 in X, (T nx0)

+∞

n=1 converges to x∗.

Proof. Let D = logd. Let A : [0,+∞)→ [0,1) be a mapping defined by A(t) = α(exp t) , for all t ∈ (0,+∞). If A(tn)→ 1,
then α(exp tn)→ 1, exp tn→ 1, and tn→ 0 as n→+∞. Moreover,

D(T x,Ty) ≤ α(d(x,y))D(x,y)

= α(explogd(x,y))D(x,y)

= A(D(x,y))D(x,y), for all x,y ∈ X .

The conditions required for ([4], Theorem 3.6) are satisfied for T : (X ,D)→ (X ,D) in the complete metric space (X ,D). Now,
([4], Theorem 3.6) implies the result.

Definition 4.7. Let (X ,d) be an EL metric space. For a subset A of X, diameter of A is denoted by diam A and defined by
diam A = sup{d(x,y) : x,y ∈ A}. The subset A is said to be a bounded set, if diam A is finite. The EL metric space (X ,d) is
bounded, if diam X is finite.

Let D = logd for an EL metric d on X . A subset A of X is bounded in the metric space (X ,D) if and only if it is bounded in
the EL metric space (X ,d).

Theorem 4.8. Let (X ,d) be a bounded EL metric space. Let ψ : [1,+∞)→ [1,+∞) be a function such that ψ is continuous
from right at all points and such that 1 < ψ(r)< r for r > 1. Let T : (X ,d)→ (X ,d) be a continuous mapping, with respect to
the topology induced by d, such that d(T x,Ty)≤ ψ(d(x,y)), for all x,y ∈ X. Then T has a unique fixed point x∗. Also, for
each x0 in X, (T nx0)

+∞

n=1 converges to x∗ as n→+∞.

Proof. Let D = logd so that (X ,D) is a complete metric space and T : (X ,D)→ (X ,D) is continuous. Define A : [0,+∞)→
[0,+∞) by A(x) = log(ψ(expx)), for all x ∈ [0,+∞). Then A is continuous from right at all points such that 0 < A(r) =
log(ψ(expr))< r for r > 0. Moreover,

D(T x,Ty)≤ logψ(exp(logd(x,y))) = A(D(x,y)), for all x,y ∈ X .

Then, the conditions of ([4], Theorem 3.7) are satisfied. So, by ([4], Theorem 3.7), the result follows.

Let us recall from [4] that a real valued function ψ on [a,+∞) is upper semi continuous at r ∈ [a,+∞) from right, if
limsup

j→+∞

ψ(r j)≤ ψ(r), whenever r j→ r.

Theorem 4.9. Let (X ,d) be a complete EL metric space. Let a mapping ψ : [1,+∞)→ [1,+∞) be upper semi continuous
from right at all points such that 1 < ψ(t)< t for t > 1. Let T : (X ,d)→ (X ,d) be a mapping such that d(T x,Ty)≤ψ(d(x,y)),
for all x,y ∈ X. Then T has a unique fixed point x∗. Also, for each x0 in X, (T nx0)

+∞

n=1 converges to x∗.
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Proof. Define D and A as in the proof of the previous theorem. Then 0 < A(t)< t for t > 0 and A is upper semi continuous
from right at all points. Moreover,

D(T x,Ty)≤ A(D(x,y)), for all x,y ∈ X ,

and (X ,D) is a complete metric space. Then, by ([4], Theorem 3.8), the result follows.

Theorem 4.10. Let (X ,d) be a complete EL metric space. Let ψ : [1,+∞)→ [1,+∞) be a monotone non decreasing function
such that lim

n→+∞
ψn(t) = 1 for t > 1. Let T : (X ,d)→ (X ,d) be a mapping such that d(T x,Ty)≤ ψ(d(x,y)), for all x,y ∈ X.

Then T has a unique fixed point x∗ and (T nx0)
+∞

n=1 converges to x∗, for every x0 ∈ X.

Proof. Let D = logd. Define A : (0,+∞)→ (0,+∞) by A(t) = log(ψ(exp t)), for all t ∈ (0,+∞). Then A is a monotone non
decreasing function such that An(t) = log(ψn(exp t)), for all t > 0 and for all n = 1,2, .... So, lim

n→+∞
An(t) = 0, for every t > 0.

Also,

D(T x,Ty)≤ A(D(x,y)), for all x,y ∈ X .

Now the result follows from ([4], Theorem 3.10).

Notation 4.11. For a mapping T : (X ,d)→ (X ,d) on an EL metric space (X ,d), let k(T ) = sup
{

logd(T x,Ty)
logd(x,y) : x,y ∈ X ,x 6= y

}
,

and let k+∞(T ) = limsup
n→+∞

(k(T n))
1
n .

Theorem 4.12. Let (X ,d) be a complete EL metric space. Let T : (X ,d)→ (X ,d) be a continuous mapping for which
k+∞(T )< 1. Then T has a unique fixed point x∗. Also, (T nx0)

+∞

n=1 converges to x∗, for each x0 ∈ X.

Proof. Let D = logd. Then the result follows from ([4], Theorem 3.11).

Theorem 4.13. Let (X ,d) be a complete EL metric space. Let φ : X → [1,+∞) be a mapping. Let T : (X ,d)→ (X ,d) be a
continuous mapping which satisfies d(x,T x)≤ φ(x)

φ(T x) , for all x ∈ X. Then (T nx0)
+∞

n=1 converges to a fixed point of T , for each
x0 ∈ X.

Proof. Let D = logd. Define A : X → [0,+∞) by A(x) = log(φ(x)), for all x ∈ X . Then T : (X ,D)→ (X ,D) is a continuous
mapping such that

D(x,T x)≤ A(x)−A(T x), for all x ∈ X .

Now the result follows from ([4], Theorem 3.13).

Let us recall from [4] that a real valued function φ on a metric space (X ,D) is lower semi continuous at x, if φ(x) ≤ r,
whenever lim

n→+∞
xn = x in (X ,D) and lim

n→+∞
φ(xn) = r in the real line. In this case, it can also be stated that φ on (X ,d) is lower

semi continuous at x, where d = expD, in view of Remark 2.7.

Theorem 4.14. Let (X ,d) be a complete EL metric space. Let φ : (X ,d)→ [1,+∞) be a function which is lower semi
continuous at every point of (X ,d). Let T : X → X be a mapping which satisfies d(x,T x)≤ φ(x)

φ(T x) , for all x ∈ X. Then T has a
fixed point.

Proof. Let D = logd. Define A : (X ,D)→ [0,+∞) by A(x) = log(φ(x)), for all x ∈ X . Then A is lower semi continuous at
every point of (X ,d). Moreover,

D(x,T x)≤ A(x)−A(T x), for all x ∈ X .

Now the result follows from ([4], Theorem 3.15).

Theorem 4.15. Let (X ,dX ) and (Y,dY ) be complete EL metric spaces. Let T : X → X be a mapping. Let S : (X ,dX )→ (Y,dY )
be a mapping having closed graph. Let φ : (S(X),dY )→ [1,+∞) be a function which is lower semi continuous at every point
of (S(X),dY ). Let c > 0 be a constant such that

max{dX (x,T x),(dY (Sx,S(T x)))c} ≤ φ(Sx)
φ(S(T x))

, for all x ∈ X .

Then T has a fixed point.
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Proof. Let DX = logdX and DY = logdY . Define A : (S(X),DY )→ [0,+∞) by A(y) = logφ(y), for all y ∈ S(X). Then A is
lower semi continuous at every point of (S(X),DY ). Also,

max{DX (x,T x),cDY (Sx,S(T x))} ≤ A(Sx)−A(S(T x)), for all x ∈ X .

Now the result follows from ([4], Theorem 3.16).

Definition 4.16. Let (X ,d) be an EL metric space. Let D = logd. Let CB(X) denote the collection of all nonempty closed
and bounded subsets of (X ,d) (or of (X ,D)). For every A,B ∈CB(X), let

P(A,B) = max
{

sup
y∈B

inf
x∈A

d(x,y),sup
y∈A

inf
x∈B

d(x,y)
}
,

and let

H(A,B) = max
{

sup
y∈B

inf
x∈A

D(x,y),sup
y∈A

inf
x∈B

D(x,y)
}
.

Then H is the usual Hausdorff metric on CB(X) derived from D. Then P = expH on CB(X) so that P is an EL metric on
CB(X). Let us call the EL metric P as Pompieu EL metric.

Let us recall that if (X ,D) is a complete metric space, then (CB(X),H) is also a complete metric space. The next theorem is a
transform of the first fundamental fixed point theorem for set valued mappings.

Theorem 4.17. Let (X ,d) be a complete EL metric space. Let P be the Pompeiu EL metric on CB(X) derived from d. Let
k ∈ (0,1). Let T : X →CB(X) be a mapping such that P(T x,Ty)≤ (d(x,y))k, for all x,y ∈ X. Then there exists an element
x∗ ∈ X such that x∗ ∈ T (x∗).

Proof. Let D = logd and H = logP. Then H(T x,Ty)≤ kD(x,y), for all x,y ∈ X . Now, the result follows from ([4], Theorem
3.20).

Let (X ,d) be an EL metric space. For a subset A of X , let us use the notation diam A for the diameter sup{d(x,y) : x,y ∈ A} in
(X ,d). Let D = logd. Let us use the notation Diam A for the diameter sup{D(x,y) : x,y ∈ A} in (X ,D). Let us observe that
Diam A = log diam A.

Theorem 4.18. Let (X ,d) be a bounded complete EL metric space. For every x,y∈X, let O(x,y)= {x,T x,T 2(x), ...,y,Ty,T 2y, ...}.
Let φ : [1,+∞)→ [1,+∞) be a non decreasing continuous function such that φ(s)< s, for s > 1. Let T : (X ,d)→ (X ,d) be a
continuous mapping. Suppose for each x ∈ X, there exists a positive integer n(x) such that d(T nx,T ny)≤ φ(diam O(x,y)), for
all y ∈ X, for all n≥ n(x). Then there exists a unique fixed point x∗ such that (T nx0)

+∞

n=1 converges to x∗, for every x0 ∈ X.

Proof. Let D = logd. Define A : [0,+∞)→ [0,+∞) by A(x) = log(φ(expx)), for all x ∈ [0,+∞). Then A is a non decreasing
continuous function such that A(s)< s for s > 0. Also, for each x ∈ X there exists a positive integer n(x) such that

D(T nx,T ny)≤ log(φ(exp(log(diam O(x,y))))) = A(Diam O(x,y)), f orally ∈ X , for all n≥ n(x).

Here T : (X ,D)→ (X ,D) is continuous. Now the result follows from ([4], Theorem 3.22).

The arguments used in the previous proof and ([4], Theorem 3.23) imply the following theorem.

Theorem 4.19. Let (X ,d), φ and O(x,y) be as described in the previous theorem. Let T : X → X be a mapping such that

d(T x,Ty)≤ φ(diam O(x,y)), for all x,y ∈ X .

Then T has a unique fixed point x∗. Also, for each x0 ∈ X, the sequence (T nx0)
+∞

n=1 converges to x∗.

Let us next convert ([4], Exercise 3.3), which is ([12], Chapter 1, Theorem 5.1). Let us recall the notations used in Definition
2.4 and let us use the transformation D = logd for this purpose.

Theorem 4.20. Let (X ,d) be a complete EL metric space and Let T : X → X be a mapping. Assume that for each ε > 1, there
is a δ > 1 such that T (Bd(x,ε)) ⊆ Bd(x,ε), whenever d(x,T x) < δ . If d(T nx0,T n+1x0)→ 1, as n→ +∞, for some x0 ∈ X,
then the sequence (T nx0)

+∞

n=1 converges to a fixed point x∗ of T in (X ,d).

Let us again use the notations used in Definition 2.4 to transform ([4], Definition 4.1).
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Definition 4.21. Let (X ,d) be an EL metric space. Suppose, for any class (Cd(xi,ri))i∈I of closed balls in (X ,d) which satisfy

d(xi,x j)≤ rir j, for all i, j ∈ I,

the intersection
⋂
i∈I

Cd(xi,ri) is non empty. Then (X ,d) is said to be EL hyperconvex.

Remark 4.22. Suppose (X ,d) is EL hyperconvex. Let D = logd. Then, for any class (CD(xi,ri))i∈I of closed balls in (X ,D)
which satisfy

D(xi,x j)≤ ri + r j, for all i, j ∈ I,

the intersection
⋂
i∈I

CD(xi,ri) is non empty, because CD(xi,ri) =Cd(xi,expri), for all i ∈ I, and

d(xi,x j)≤ (expri)(expr j), for all i, j ∈ I.

Then, by ([4], Definition 4.1), the metric space (X ,D) is hyperconvex. On the other hand, if (X ,D) is a hyperconvex metric
space, then the EL metric space (X ,d) is EL hyperconvex, where d = expD.

Example 4.23. Consider the vector space l∞ of all bounded real sequences with the usual metric D defined by

D((xn)
+∞

n=1,(yn)
+∞

n=1) = sup
n=1,2,...

|xn− yn|.

Then by ([4], Proposition 4.2) and ([4], Theorem 4.2), (l∞,D) is hyperconvex and hence (l∞,d) is EL hyperconvex, where
d = expD.

Theorem 4.24. Let (X ,d) be a bounded EL hyper convex EL metric space. Let T : X → X be a mapping such that
d(T x,Ty) ≤ d(x,y), for all x,y ∈ X. Then the fixed point set {x ∈ X : T x = x} is non empty and it is EL hyper convex with
respect to d.

Proof. Let D = logd. Then D(T x,Ty)≤ D(x,y), for all x,y ∈ X . Now, the result follows from ([4], Theorem 4.8).

Definition 4.25. Let (X ,d) be an EL metric space, and let D = logd. Let A be a subset of X. Let covd(A) (or, covD(A))
denote the intersection of all closed balls in (X ,d) (or, in (X ,D), respectively) which contain A. Since CD(x, logr) =Cd(x,r),
for r ≥ 1 and x ∈ X, then covd(A) = covD(A), for any subset A of X.

A bounded set A in a metric space (X ,D) is an admissible subset of X , according to ([4], Definition 4.2), if A = covD(A). So,
let us say that a bounded subset A of an EL metric space (X ,d) is admissible when A = covd(A), because covd(A) = covD(A)
for D = logd. Following the book [4], let us write A(X) for the collection of all admissible subsets of (X ,d) or (X ,D).

The next definition is ([4], Definition 5.1) for metric spaces.

Definition 4.26. Let (X ,D) be a metric space. Then A(X) is said to be compact, if every descending chain non empty members
of A(X) has non empty intersection. Let us follow the same terminology even for (X ,d), where d = logD.

Let (X ,D) be a metric space and let d = expD. Let A be a subset of X . Let rD(A) = inf
{

sup{D(x,y) : y ∈ A} : x ∈ A
}

and

rd(A) = inf
{

sup{d(x,y) : y ∈ A} : x ∈ A
}

. Then rd(A) = exprD(A). Hence rd(A)< diam A if and only if rD(A)< Diam A.

The next definition is ([4], Definition 5.2) given for metric spaces.

Definition 4.27. Let (X ,D) be a metric space. Then A(X) is said to be normal if rD(A)< Diam A, whenever A ∈ A(X) and
Diam A > 0. Equivalently, A(X) is said to be normal if rd(A)< diam A, whenever A ∈ A(X) and diam A > 1, where d = logD.

The following is an obvious transformed form of ([4], Theorem 5.1).

Theorem 4.28. Let (X ,d) be a non empty bounded EL metric space for which A(X) is compact and normal. Let T : X → X
be a mapping such that d(T x,Ty)≤ d(x,y), for all x,y ∈ X. Then T has atleast one fixed point.

From the results which have been derived, it can be observed that a transformation for a fixed point result requires transfor-
mations for some concepts. It has been established indirectly that there is an assurance for transformations of metric fixed
point results to EL metric fixed point results. Only one thing should be observed: Results to be transformed should depend
only on metrics. For example, let us consider ([4], Corollary 8.4) which states that if T : A→ A is a mapping on an admissible
subset A of (l1, || ||1) such that ||T x−Ty||1 ≤ ||x− y||1, for all x,y ∈ A, then T has a fixed point in A. It seems to be a result
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for a normed space depending on algebraic structures; but it is a result for a metric space which is independent of algebraic
structures. So, it is a result for the EL metric space (l1,d) when

d((xn)
+∞

n=1,(yn)
+∞

n=1) =
+∞

∏
n=1

e|xn−yn|, for all (xn)
+∞

n=1,(yn)
+∞

n=1 ∈ l1.

For this metric d, ([4], Corollary 8.4) can be transformed to the following form.

Theorem 4.29. Let A be an admissible subset of (l1,d). Let T : A→ A be a mapping such that d(T x,Ty)≤ d(x,y), for all
x,y ∈ X. Then T has a fixed point in A.

A continuation is separated by the following conclusion of this section.

Conclusion 4.30. Convert hypotheses of a metric fixed point result by means of exponential transform to get hypotheses for
an EL metric fixed point result. For a proof of the EL metric fixed point result, use logarithmic transform.

5. More transformed results

The next definition is proposed for transformed norms.

Definition 5.1. Let X be a vector space over the field of real numbers or the field of complex numbers. Let || || be a real
valued function on X satisfying the following conditions, where ||x|| is || ||(x):

(i) ||x|| ≥ 1, for all x ∈ X, and ||x||= 1 if and only if x = 0 in X.
(ii) ||λx||= ||x|||λ |, for all x ∈ X, and for all scalars λ .

(iii) ||x+ y|| ≤ ||x|| ||y||, for all x,y ∈ X.

Then, let us call || || as EL norm, and (X , || ||) as EL normed space.

Example 5.2. If (X , || ||) is a normed space, then || ||0 is defined by ||x||0 = 8π||x||, for all x ∈ X, is an EL norm on X. On the
other hand, if (X , || ||) is an EL normed space, then ||x||0 defined by ||x||0 = log ||x||, for all x ∈ X, is a norm on X.

Let us discuss fixed point theorems again on metric spaces. Let us first transform the statement of ([4], Theorem 3.4), but let
us present a direct proof (out line).

Corollary 5.3. Let X be a non empty set with two EL metrics d1 and d2. Suppose d1(x,y)≤ d2(x,y), for all x,y ∈ X. Suppose
(X ,d1) be complete. Let T : (X ,d1)→ (X ,d1) be a continuous mapping such that d2(T x,Ty)≤ (d2(x,y))k, for all x,y ∈ X, for
some k ∈ (0,1). Then T has a unique fixed point x∗.

Proof. Fix x0 ∈ X . Then (T nx0)
+∞

n=1 is a Cauchy sequence in (X ,d2), because d2(T x,Ty)≤ (d2(x,y))k, for all x,y ∈ X . Since
d1(x,y)≤ d2(x,y), for all x,y ∈ X , the sequence (T nx0)

+∞

n=1 is Cauchy also in (X ,d1). Let (T nx0)
+∞

n=1 converge to x∗ in (X ,d1).
Then x∗ is a fixed point of T , because T : (X ,d1)→ (X ,d1) is continuous. The uniqueness of x∗ follows, because k ∈ (0,1).

One can introduce D1 = logd1, D2 = logd2 and apply ([4], Theorem 3.4) to obtain the previous Theorem 5.3. But a direct
proof has been presented just to observe that there is a technique of sharing conditions in hypotheses in a metric fixed point
result between two metrics. This sharing technique is also a simple technique for converting results for generalizations. This
sharing technique is also indirectly applied by using metric preserving functions; see [13]. For a good introduction about
results on metric preserving functions, one may see the article [14].

Definition 5.4. Let us say that a function f : [1,+∞)→ [1,+∞) is EL metric preserving, if f ◦d is an EL metric for every EL
metric d. It is said to be strongly metric preserving, if the topologies induced by d and f ◦d coincide, for every EL metric d.

The exercise problem ([11], Chapter 4, Problem C) is converted to the following result.

Proposition 5.5. Let f : [1,+∞)→ [1,+∞) be a non decreasing continuous function such that f (x) = 1 if and only if x = 1
and such that f (xy)≤ f (x) f (y), for all x,y ∈ [1,+∞). Then f is a strongly EL metric preserving function.

Proof. Define F : [0,+∞)→ [0,+∞) by F(x) = log( f (expx)). Then F is continuous, non decreasing, and F(x) = 0 if and
only if x = 0 in [0,+∞). Moreover,

F(x+ y) = log( f (exp(x+ y)))≤ log( f (expx))+ log( f (expy)) = F(x)+F(y), for all x,y ∈ [0,+∞).

Then F is a strongly metric preserving function (see [14], for definition). Then F ◦ logd is a metric whenever d is an EL metric,
and the metrics logd, F ◦ logd induce a common topology. Hence,

exp◦F ◦ logd = exp◦ log◦ f ◦ exp◦ logd = f ◦d

is an EL metric whenever d is an EL metric, and the EL metrics f ◦d and d induce the same topology.
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Let us now state a simplified version of ([4], Theorem 3.17) in transformed form.

Theorem 5.6. Let (X ,d) be a complete EL metric space. Let r > 0. Let φ : (X ,d)→ [r,+∞) be a function. Let ψ : [1,+∞)→
[1,+∞) be an EL metric preserving function, which is strictly increasing. Let T : (X ,d)→ (X ,d) be a continuous mapping
which satisfies ψ(d(x,T x))≤ φ(x)

φ(T x) , for all x ∈ X. Then T has a fixed point.

Proof. Let d1 = ψ ◦d. Fix x0 ∈ X . Let xn = T nx0, for all n = 1,2, ... . Then

1≤ d1(xn,xn+1)≤
φ(xn)

φ(xn+1)
, for all n = 1,2, ....

For n > m,

1≤ d1(xm,xn)≤ d1(xm,xm+1)d1(xm+1,xm+2)...d1(xn−1,xn)≤
φ(xm)

φ(xn)
.

So, (φ(xn))
+∞

n=1 is a monotone non increasing sequence. Let φ(xn)→M ≥ r > 0, as n→+∞. Then, by the previous inequality,
d1(xm,xn)→ 1 as n,m→+∞. That is, (ψ ◦d)(xm,xn)→ 1 as n,m→+∞. Therefore, d(xm,xn)→ 1 as n,m→+∞, because
ψ is strictly increasing. Since (X ,d) is complete, (xn)

+∞

n=1 converges to some point x∗ in (X ,d). Since T : (X ,d)→ (X ,d) is
continuous, and (T xn)

+∞

n=1 converges to x∗, then T x∗ = x∗.

Corollary 5.7. Let (X ,D) be a complete metric space. Let φ be a bounded below real valued function on (X ,D). Let
ψ : [0,+∞)→ [0,+∞) be a strictly increasing metric preserving function. Let T : (X ,D)→ (X ,D) be a continuous mapping
which satisfies the condition ψ(D(x,T x))≤ φ(x)−φ(T x), for all x ∈ X. Then T has a fixed point.

Proof. Let d = expD. Define a real valued function A on (X ,d) by A(x) = exp(φ(x)), for all x ∈ X . Then, there is a number
r > 0 such that A(x) ≥ r, for all x ∈ X . Define B : [1,+∞)→ [1,+∞) by B(s) = exp(ψ(logs)), for all s ≥ 1. Then B is a
strictly increasing EL metric preserving function. Moreover,

B(d(x,T x)) = exp(ψ(logd(x,T x))) = exp(ψ(D(x,T x)))≤ exp(φ(x)−φ(T x))

=
A(x)

A(T x)
, for all x ∈ X

Also, T : (X ,d)→ (X ,d) is continuous, and (X ,d) is complete. Now, the result follows from the previous theorem.

Remark 5.8. The function ψ given in Theorem 5.6 should be continuous at 1, and the function ψ given in Corollary 5.7
should be continuous at 0. So, by ([14], Theorem 3.4), ψ should be a strongly EL metric preserving function in Theorem 5.6
and ψ should be a strongly metric preserving function in Corollary 5.7. In both results, the conditions on ψ may be replaced
by following simple conditions. For Theorem 5.6, assume that ψ is a strongly EL metric preserving function. For Corollary 5.7,
assume that ψ is a strongly EL metric preserving function.

Conclusion 5.9. There are standard methods in literature to convert results for extensions and generalizations. Exponential-
Logarithmic transformation method can be extended to derive many transformed results in analysis.

6. Applications

It has been mentioned in Section 4 that the main advantage of transformed statements lies in verifying conditions in examples.
Let us modify slightly Example 4.1 for justification of this sentence.

Example 6.1. Let X =
[

1
2 ,+∞

]
. Let d(x,y) = max{xy−1,yx−1}, for all x,y ∈ X. Let D(x,y) = |x− y|, for all x,y ∈ X. Then

(X ,d) is a complete EL metric space and (X ,D) is a complete metric space. Let T : X → X be defined by T x = x
1
2 , for all

x ∈ X. Then,

D(x,y) = |x− y|=
∣∣∣x 1

2 − y
1
2

∣∣∣∣∣∣x 1
2 + y

1
2

∣∣∣= D(T x,Ty)
∣∣∣x 1

2 + y
1
2

∣∣∣, for all x,y ∈ X .

Thus, there is no constant M > 0 such that

D(T x,Ty)≤MD(x,y), for all x,y ∈ X .

Hence, the Banach contraction principle is not applicable in this case. However,

1≤ d(T x,Ty) = max
{(x

y

) 1
2
,
(y

x

) 1
2
}
= (d(x,y))

1
2 ≤ (d(x,y))k,k ∈

[1
2
,1
)
, for all x,y ∈ X .

By Theorem 3.3, for x0 ∈ X, the sequence (T nx0)
+∞

n=1 converges to the unique fixed point 1.
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Example 6.2. Let X ,d,D be as in the previous Example 6.1. Let T : X → X be defined by T x = x+1
2 , for all x ∈ X. Then

d(T x,Ty) = max
{x+1

y+1
,

y+1
x+1

}
and

d(x,y) = max
{x

y
,

y
x

}
.

Hence, there is no k ∈ (0,1] such that

d(T x,Ty)≤ (d(x,y))k, for all x,y ∈ X .

Thus, Theorem 3.3 is not applicable in this case. However,

D(T x,Ty) =
1
2
|x− y|= 1

2
D(x,y), for all x,y ∈ X .

Then, by the Banach contraction principle, for each x0 ∈ X, the sequence (T nx0)
+∞

n=1 converges to the unique fixed point 1.

Conclusion 6.3. Results in both metric fixed point theory and EL metric fixed point theory are applicable, and both of them
should be developed.

7. Final conclusions

Both metric fixed point theory and EL metric fixed point theory should be developed, as it has been explained by Example 6.1
and Example 6.2. Some more things have to be concluded for transformations.

The open mapping theorem and the closed graph theorem are equivalent in the sense that if one theorem is assumed then the
other theorem can be derived from the first one. One may apply these theorems according to convenience in any particular
format. A similar event happens in measure theory. Lebesgue monotone convergence theorem, Fatou’s lemma and Lebesgue
dominated convergence theorem are equivalent. They are applied according to convenience. So, there is a need to transform
arguments and results of fixed point theory, because of the same reason.

The transformations used in this article are natural ones, but not trivial ones. The ultimate aim of transformation is to increase
possibilities to derive new examples and results. The most expected application of fixed point theory is to increase possibilities
to solve equations. The transform used in this article can be extended to many branches of analysis.
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