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Abstract
We introduce various new type of recurrent sets for finitely generated semigroups on non-
compact metric spaces that are conjugacy invariant, and obtain some basic properties of
chain recurrent sets for semigroups via these new definitions. Moreover, we define the
notion of weak shadowing property for finitely generated group actions on compact metric
spaces, which is weaker than that of shadowing property, and prove the equivalence of the
shadowing and weak shadowing properties for the finitely generated group actions on a
generalized homogeneous space without isolated points.
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1. Introduction
The notion of shadowing was introduced in the 1970s independently by Anosov [3] and

Bowen [6]. A dynamical system has the shadowing property if every sufficiently precise
trajectory is closed to some exact trajectory. The shadowing property has been developed
intensively in recent years, and many authors obtained results about chaos and stability
by studying the various type of shadowing (see [1, 11, 17, 19, 20, 22, 24, 25, 27–29]). Wu
et al. [25] introduced the notion of Mα-shadowing and proved that a dynamical system
has the average shadowing property if and only if it has the Mα-shadowing property for
any α ∈ [0, 1). Oprocha and Wu [17] proved that a dynamical system with the average
shadowing of periodic pseudo-orbits property is distributionally chaotic if and only if it has
a distal pair. Lewowicz [14] introduced the concept of persistence for dynamical systems
which is weaker than that of topological stability. Artigue [4] showed that if a bi-Lipschitz
homeomorphism on a compact manifold is persistent or has the weak shadowing property,
then it is Lipschitz structurally stable. Zhang and Wu [29] obtained that the C1-stably
M0-shadowing property on a non-trivial transitive set implies the diffeomorphism has a
dominated splitting, extending main results in [20].
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Throughout this paper, let N = {1, 2, 3, . . .} and Z+ = {0, 1, 2, . . .}. Let (X, d) be
a metric space, id be the identity map on X, and each gi : X → X (i = 1, . . . , m)
is a continuous self-maps on X. The finitely generated semigroup (G, ◦) generated by
G1 = {id, g1, . . . , gm} is defined by G =

∪
n∈Z+ Gn, where G0 = id and

Gn = {gin ◦ · · · ◦ gi1 : gij ∈ G1}, n ≥ 1. (1.1)
Indeed, each element of Gn is a composition of at most n elements of G1. We mention
that the finitely generated semigroup action is also called iterated function system.

Recently, Osipov and Thikhomirov [18] introduced the notion of shadowing property for
finitely generated group action. Chung and Lee [9] studied the topological stability and
pseudo-orbit tracing property for group actions. Ahn et al. [2] introduced the notion of
persistent actions for finitely generated group action on compact metric spaces and studied
its relation to the topological stability. Bahabadi [5] discussed the shadowing and average
shadowing properties for iterated function systems. Wu et al. [26] further studied some
chain properties and average shadowing for iterated function systems and proved that an
iterated function system with (asymptotic) average shadowing is chain mixing. For more
recent results on finitely generated group or semigroup actions on compact metric spaces,
we refer the reader to [7, 10,12,15,23,30] and references therein.

However, the definitions of chain recurrent sets and shadowing property for continuous
map f and also for the finitely generated semigroup actions on a compact metric space
depend on the metrics on non-compact metric spaces. In other words, a point in chain
recurrent set of f (or semigroup G) with respect to one metric, may not be in chain recur-
rent set of f (or semigroup G) with respect to another metric inducing the same topology
(see [13, Example 2.2] and Example 3.1). Lee et al. [13] introduced the notions of ε-chain
and shadowing property for homeomorphisms on non-compact metric spaces, which are
dynamical properties and equivalent to the classical definitions in case of compact metric
spaces, and extended Walters’s stability theorem to homeomorphisms on locally compact
metric spaces.

In the present paper, we extend the notion of ε-chain defined in [13] to the case of
finitely generated semigroup actions on non-compact metric spaces and show that the
new notion of ε-chain on a non-compact metric space X is independent of metrics on X.
Afterwards, we extend the notion of weak shadowing property from homeomorphisms to
finitely generated semigroup actions on compact metric spaces, and we show that while
the shadowing property implies the weak shadowing property, there exists a semigroup
on a compact metric space X that has the weak shadowing property but does not have
the shadowing property. Furthermore, we obtain the equivalence of shadowing and weak
shadowing properties on generalized homogeneous spaces without the isolated points.

This paper is organized as follows. In Section 2, we extend the notion of weakly periodic
points and weakly non-wandering points defined in [8] to the case of finitely generated
semigroup actions on compact metric spaces and obtain some basic properties on them,
and chain recurrent sets for finitely generated semigroup. In Section 3, we first introduce
various new type of recurrent sets for finitely generated semigroups on non-compact metric
spaces that are conjugacy invariant, and then study some properties of chain recurrent sets
for finitely generated semigroup via these new definitions. In Section 4, we introduce the
notion of weak shadowing property for finitely generated semigroups on compact metric
spaces and build an example showing that the shadowing property is strictly stronger than
the weak shadowing property on compact metric spaces. Moreover, we prove that they
are equivalent on generalized homogeneous spaces without isolated points.

2. Various type of recurrent sets on compact metric spaces
Let G be a semigroup generated by the finite family G1 = {id, g1, . . . , gm}. Symbolic

dynamic is a way to display the elements of the semigroup G. Let Σm be the space of
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two sided infinite sequences of m symbols {1, . . . , m}, that is, Σm = {1, . . . , m}Z. For any
sequence ω = · · · ω−2ω−1 ω0 ω1ω2 · · · ∈ Σm, take G0

ω := id and, for any n ∈ N,

Gn
ω(x) := gωn−1 ◦ · · · ◦ gω0(x).

In particular, if the elements of G1 are invertible, we take G0
ω := id and, for any n > 0,

Gn
ω(x) := gωn−1 ◦ · · · ◦ gω0(x), G−n

ω (x) := g−1
ω−n

◦ · · · ◦ g−1
ω−1(x).

Let Am be the set of all finite words of symbols {1, . . . , m}, that is,

Am =
∪

n∈N
{1, . . . , m}n.

We use the notation |w| for the length of w ∈ Am. For any w = w1 · · · wn ∈ Am, we denote
G0

w = id, Gw = gwn ◦ · · · ◦ gw1 , and Gi
w := gwi ◦ · · · ◦ gw1 for 1 ≤ i ≤ n. Clearly, Gw = G

|w|
w .

Let (X, d) be a compact metric space and G be a semigroup generated by the finite
family {id, g1, . . . , gm} of continuous self-maps on X. For w = w0 · · · wn−1 ∈ Am and ε > 0,
an (ε, w)-chain of semigroup G from x to y is a finite sequence {x0 = x, x1, . . . , xn = y}
satisfying

d(gwi(xi), xi+1) < ε for 0 ≤ i ≤ n − 1.

An ε-chain of semigroup G from x to y is an (ε, w)-chain from x to y for some w ∈ Am.
We say that a subset Λ ⊂ X is invariant for the semigroup G if gi(Λ) ⊂ Λ for 1 ≤ i ≤ m.
Let (X, d) be a compact metric space and C(X) be the collection of all continuous

self-maps on X with the following C0-metric d0:
d0(f, g) = max

x∈X
d(f(x), g(x)).

Let Cm(X) be the collection of all semigroups such as G on a metric space X which
has a finite set of generators {id, g1, . . . , gm}, where gi ∈ C(X), i = 1, . . . , m. Given
two semigroups F, G ∈ Cm(X) generated by the finite families F1 = {id, f1, . . . , fm} and
G1 = {id, g1, . . . , gm}, respectively, define the C0-metric D0 on Cm(X) by

D0(F, G) = max
1≤i≤m

d0(fi, gi).

Also, we say that F is ε-close to G if D0(F, G) < ε.

Definition 2.1. Let (X, d) be a compact metric space and G ∈ Cm(X) be a semigroup
generated by G1 = {id, g1, . . . , gm}. A point x ∈ X is

(i) a periodic point of the semigroup G if there exists some w ∈ Am such that G
|w|
w (x) =

x.
(ii) a weakly periodic point of the semigroup G if, for any ε > 0, there exists a semigroup

F ∈ Cm(X) such that D0(F, G) < ε and x is a periodic point of F .
(iii) a chain recurrent point of semigroup G if, for any ε > 0, there exists an ε-chain of

the semigroup G from x to itself.
(iv) a non-wandering point of the semigroup G if, for every open neighborhood U of x,

there exist n ∈ N and ω ∈ Σm such that Gn
ω(U) ∩ U ̸= ∅.

(v) a weakly non-wandering point of the semigroup G if, for any ε > 0, there exists a
semigroup F ∈ Cm(X) such that D0(F, G) < ε and x is a non-wandering point of F .

The sets of periodic points, weakly periodic points, chain recurrent points, non-wandering
points, and weakly non-wandering points of the semigroup G are denoted by Per(G),
Perw(G), CR(G), Ω(G), and Ωw(G), respectively.

Remark 2.2. (1) From Definition 2.1, it is clear that Per(G) ⊆ Perw(G), Ω(G) ⊆
Ωw(G), and Perw(G) ⊆ Ωw(G), Per(G) ⊆ Ω(G).

(2) Note that every compact dynamical system contains a minimal point. This implies
that for every finitely generated semigroup G on a compact metric space, Ω(G) ≠ ∅.
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Let (X, d) be a compact metric space and G ∈ Cm(X) be a semigroup generated by
G1 = {id, g1, . . . , gm}. Fix x ∈ Ωw(G). Then, for any ε > 0, there exists a semigroup
F ∈ Cm(X) such that D0(F, G) < ε

2 and x ∈ Ω(F ). Without loss of generality, as-
sume that F is generated by {id, f1, . . . , fm}. The uniform continuity of g1, . . ., gm

implies that there exists 0 < δ < ε
2 such that for any x1, x2 ∈ X with d(x1, x2) < δ,

max1≤i≤m d(gi(x1), gi(x2)) < ε
2 . Applying x ∈ Ω(F ) yields that there exist ω ∈ Σm and

n ∈ N such that F n
ω (B(x, δ)) ∩ B(x, δ) ̸= ∅, where B(x, δ) = {z ∈ X : d(x, z) < δ}. Take

y ∈ B(x, δ) with F n
ω (y) ∈ B(x, δ). We have

(1) d(G1
ω(x), F 1

ω(y)) = d(gω0(x), fω0(y)) ≤ d(gω0(x), gω0(y)) + d(gω0(y), fω0(y)) < ε
2 +

D0(F, G) < ε;
(2) for 1 ≤ i < n − 1, d(gωi(F i

ω(y)), F i+1
ω (y)) = d(gωi(F i

ω(y)), fωi(F i
ω(y))) ≤ D0(F, G) < ε;

(3) d(gωn−1(F n−1
ω (y)), x) ≤ d(gωn−1(F n−1

ω (y)), fωn−1(F n−1
ω (y))) + d(fωn−1(F n−1

ω (y)), x) =
d(gωn−1(F n−1

ω (y)), fωn−1(F n−1
ω (y))) + d(F n

ω (y), x) < D0(F, G) + δ < ε.
This implies that the sequence

{
x, F 1

ω(y), F 2
ω(y), . . . , F n−1

ω (y), x
}

is an ε-chain of G from
x to itself. By this observation, the following result is obtained.

Proposition 2.3. Let G be a finitely generated semigroup on a compact metric space X.
Then Ωw(G) ⊆ CR(G).

Remark 2.4. Choi et al. [8, Example 8] showed that there exists a dynamical system
(X, f) such that Ωw(f) $ CR(f).

From Remark 2.2 and Proposition 2.3, it is clear that
Per(G) ⊆ Ω(G) ⊆ Ωw(G) ⊆ CR(G), (2.1)

and
Perw(G) ⊆ Ωw(G) ⊆ CR(G). (2.2)

For ε > 0 and x ∈ X, let
Cε(x, G) = {y ∈ X : there exists an ε-chain from x to y} ,

and C(x, G) =
∩

ε>0 Cε(x, G). Clearly, x ∈ CR(G) if and only if x ∈ C(x, G). We say
that the finitely generated semigroup G on X is
(1) chain transitive on a non-empty subset Λ of X if, for any x ∈ Λ, C(x, G) = Λ;
(2) chain transitive if it is chain transitive on the whole space X.

Applying Remark 2.2, the proof of the following proposition is straightforward and is
similar to the classical case for the continuous map f : X → X, so we omit it.

Proposition 2.5. Let G be a finitely generated semigroup on a compact metric space X
and x ∈ X. The following statements hold:
(1) The set Ω(G) is a nonempty closed subset of X.
(2) The set CR(G) is a nonempty closed subset of X.
(3) The set C(x, G) is closed and invariant for the semigroup G.

Example 2.6. Consider the space X = {a, b, c} with discrete metric d, where a, b, c are
different points. Let gi : X → X is defined by gi(b) = c and gi(c) = c for i = 1, 2 and
g1(a) = a and g2(a) = b. It can be verified that a ∈ Per(G) but g2(a) = b /∈ CR(G). This,
together with (2.1), implies that Per(G), Ω(G), Ωw(G), and CR(G) may not be invariant.

Next, we show that, for a finitely generated semigroup G, the chain transitivity on the
non-wandering set Ω(G) implies the chain transitivity on the whole space.

Proposition 2.7. Let G be a semigroup generated by the finite family {id, g1, . . . , gm} of
homeomorphisms on a compact metric space (X, d) and x ∈ X. If Ω(G) ⊆ C(x, G), then
C(x, G) = X, and therefore x ∈ CR(G).
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Proof. Fix any y ∈ X. For any fixed ε > 0, let K =
{
z ∈ X : dist(z, Ω(G)) ≥ ε

4
}
, where

dist(z, Ω(G)) = inf{d(z, x) : x ∈ Ω(G)}. For any ŷ ∈ X\K, i.e., dist(ŷ, Ω(G)) < ε
4 ,

since Ω(G) is a nonempty closed set, there exists some z ∈ Ω(G) ⊆ C(x, G) such that
d(ŷ, z) = d(ŷ, Ω(G)) < ε

4 . From z ∈ C(x, G), it follows that there exists an ε
4 -chain

{x0 = x, x1, . . . , xn−1, xn = z} from x to z, implying that {x0 = x, x1, . . . , xn−1, ŷ} is an
ε-chain from x to ŷ, and thus X\K ⊂ Cε(x, G).

For any z ∈ K ⊂ X\Ω(G), it follows from Definition 2.1 that there exists an open
neighborhood U(z) of z such that Gn

w(U(z)) ∩ U(z) = ∅ for any n ∈ N and any w ∈ Σm.
By the compactness of K, there exists a finite set {z1, z2, . . . , zm0} ⊂ K such that K ⊆∪m0

i=1 U(zi).
To prove y ∈ Cε(x, G), consider the following two cases:

Case 1. If y ∈ X\K, it is clear that y ∈ Cε(x, G) as X\K ⊂ Cε(x, G);
Case 2. If y ∈ K, we claim that for any w ∈ Σm, there exists 0 ≤ j ≤ m0 such that

G−j
w (y) /∈ K. Suppose on the contrary that there exists some w ∈ Σm such that,

for any 0 ≤ j ≤ m0, G−j
w (y) ∈ K. This implies that {G−j

w (y) : 0 ≤ j ≤ m0} ⊂ K.

Noting that K ⊆
m0∪
i=1

U(zi), applying the pigeon-hole principle yields that there

exist two integers j1, j2 ∈ {0, 1, . . . , m0} with j1 < j2 and t ∈ {1, . . . , m0} such
that G−j1

w (y), G−j2
w (y) ∈ U(zt). This, together with

G−j2
w (y) = g−1

w−j2
◦ · · · ◦ g−1

w−j1
◦ · · · ◦ g−1

w−1(y)

= g−1
w−j2

◦ · · · ◦ g−1
w−(j1+1)

(G−j1
w (y)) ∈ U(zt),

implies that g−1
w−j2

◦ · · · ◦ g−1
w−(j1+1)

(U(zt)) ∩ U(zt) ̸= ∅, which is a contradiction.
Therefore, there exists 1 ≤ j ≤ m0 such that G−j

w (y) /∈ K (as G0
w(y) = y ∈ K).

From Case 1, it follows that there is an ε-chain {x0 = x, x1, . . . , xn = G−j
w (y)} from

x to G−j
w (y). This implies that {x0, x1, . . . , xn = G−j

w (y), G
−(j−1)
w (y), . . . , G−1

w (y), y}
is an ε-chain from x to y, i.e., y ∈ Cε(x, G).

Therefore, y ∈ C(x, G) as ε is arbitrary. �
Corollary 2.8. If the finitely generated semigroup G is chain transitive on Ω(G), then it
is chain transitive.
Proof. It follows directly from Proposition 2.7. �

The following example shows that the assumption that the generators gi, i = 1, . . . , m
are homemorphisms in Proposition 2.7 is necessary.
Example 2.9. Let X = {a, b, c} with the discrete metric. Define two continuous maps
g1, g2 : X → X by g1 ≡ a and g2 ≡ b, respectively. Let G be the semigroup generated
by G1 = {id, g1, g2}. Then it is easy to see that Ω(G) = {a, b} and a, b ∈ C(c, G). But
c /∈ C(c, G), and thus C(c, G) ̸= X.
Definition 2.10 ([16]). A metric space (X, d) is said to be generalized homogeneous if,
for any ε > 0, there exists δ > 0 such that if {(x1, y1), . . . , (xn, yn)} is a finite set of points
in X × X satisfying:
(a) max

1≤i≤n
d(xi, yi) < δ,

(b) xi ̸= xj and yi ̸= yj for 1 ≤ i ̸= j ≤ n,
then there exists a homeomorphism h : X → X with d0(h, id) < ε and h(xi) = yi for
1 ≤ i ≤ n. Here, we will call such δ an ε-modulus of homogeneity of X.

From [16], a topological manifold without boundary (dim(X) ≥ 2), a Cartesian product
of a countably infinite number of manifolds with nonempty boundary, and the Cantor set
are all generalized homogeneous.
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By Remark 2.4, Ωw(G) ̸= CR(G). In what follows, we shall show that Ωw(G) = CR(G)
for a finitely generated semigroup G on a generalized homogeneous space.

Proposition 2.11. Let G be a semigroup generated by the finite family {id, g1, . . . , gm}
of continuous self-maps on a generalized homogeneous space X. Then

Perw(G) = Ωw(G) = CR(G).

Proof. Fix x ∈ CR(G). For any ε > 0, choose δ > 0 as an ε-modulus of homogeneity of
X. Take a (δ, w)-chain Γ = {xi}k

i=0 from x to x for some w = w0 · · · wk−1 ∈ Am. Without
loss of generality, we may assume that xi ̸= xj and gwi(xi) ̸= gwj (xj) for 0 ≤ i ̸= j ≤ k−1.
In fact, if there exists 0 ≤ i < j ≤ k − 1 such that xi = xj or gwi(xi) = gwj (xj), we can
replace Γ by {x0, . . . , xi, xj+1, . . . , xk}. This implies that the finite set{

(gw0(x), x1), (gw1(x1), x2), . . . , (gwk−1(xk−1), x)
}

satisfies the conditions (a) and (b) in Definition 2.10. Then, there exists a continuous
map h : X → X with d0(h, id) < ε such that h(gwi(xi)) = xi+1 for 0 ≤ i ≤ k − 1. Take
fi = h ◦ gi (1 ≤ i ≤ m) and let F be the semigroup generated by {id, f1, . . . , fm}. It can
be verified that Fw(x) = x and D0(G, F ) < ε, and hence x ∈ Perw(G). This, together
with (2.2), implies that Perw(G) = Ωw(G) = CR(G). �

3. Various type of recurrent sets on non-compact metric spaces
The aim of this section is to present new notions for recurrent sets introduced in Defi-

nition 2.1 on the non-compact metric spaces, which are dependent of metrics.
Given a semigroup G ∈ Cm(X) generated by G1 = {id, g1, . . . , gm}. Note that the

definition of non-wandering point of the semigroup G as in Definition 2.1 is independent
of the choices of metrics for the space X. As we can see in the following, the definitions
of weakly periodic points, weakly non-wandering points, and the set of chain recurrent
points depend on the choices of metrics for non-compact space X.

Example 3.1. Define T : R → S1 by

T (t) =
(

2t

1 + t2 ,
t2 − 1
t2 + 1

)
for t ∈ R,

and let X = T (Z). Also let d′ be the metric on X induced by the Riemannian metric on
S1 and let d be a discrete metric on X. It is clear that d and d′ induce the same topology
on X. Define respectively g1, g2 : X → X by g1(ai) = ai+2 and g2(ai) = ai+1, where
ai = T (i) (i ∈ Z). Denote by G the semigroup generated by G1 = {id, g1, g2}. It is easy
to see that T (0) ∈ CR(G) with respect to the metric d′, while T (0) /∈ CR(G) with respect
to the metric d.

Now, fix ε > 0 and choose k ∈ N satisfying d′(ak, a−k) < ε. Consider a homeomorphism
f2 : X → X which is defined by

f2(ai) =


ai+1, i ∈ {−k, . . . , k − 1},

a−k, i = k,

ai, otherwise.

Take f1 := g1 and let F be the semigroup generated by {id, f0, f1}. By construction,

D0(F, G) = max
1≤i≤2

max
x∈X

d′(fi(x), gi(x)) < ε.

It is easy to see that a0 = T (0) ∈ Per(F ), and thus a0 ∈ Perw(G) ⊂ Ωw(G) with respect
to the metric d′, but a0 /∈ Ωw(G) with respect to the metric d. Clearly, a0 /∈ Perw(G)
with respect to the metric d by applying Perw(G) ⊂ Ωw(G).
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Definition 3.2. Let X and Y be two metric spaces. We say that two semigroups F
and G with generating sets F1 = {id, f1, . . . , fm} and G1 = {id, g1, . . . , gm} on X and Y ,
respectively, are (topologically) conjugate if there exists a homeomorphism h : X → Y
such that h ◦ fi = gi ◦ h for all 1 ≤ i ≤ m. The homeomorphism h is called a conjugacy
between F and G.

For a semigroup G ∈ Cm(X) and Λ(G) ∈ {Per(G), P erw(G), Ω(G), Ωw(G), CR(G)},
we say that Λ(G) is preserved under conjugacy if, for every semigroup F ∈ Cm(Y ), which
is conjugate to G under some conjugacy h : X → Y , we have h(Λ(G)) = Λ(F ).

By Example 3.1, the definitions of CR(G), Perw(G), and Ωw(G) depend on the choices
of metrics, and thus they are not preserved under conjugacy. In what follows, we introduce
new notions of chain recurrent point, weakly periodic point, weakly non-wandering point
for the semigroups on non-compact metric spaces, which are preserved under conjugacy.
Also, they are all equivalent to the classical definitions in the case of compact metric
spaces.

Let C(X) be the collection of all continuous functions from X to (0, ∞). For α, β ∈ C(X),
we use the notation α < β, whenever α(x) < β(x) for all x ∈ X.

Definition 3.3. Let (X, d) be a metric space and G, F ∈ Cm(X) be two semigroups gen-
erated by the finite families G1 = {id, g1, . . . , gm} and F1 = {id, f1, . . . , fm}, respectively.

(i) For w ∈ Am, x, y ∈ X, and ε ∈ C(X), an (ε, w)-chain of semigroup G from x to y
is a finite sequence {x0 = x, x1, . . . , xn = y} such that d(fwi(xi), xi+1) < ε(fwi(xi)),
for all 1 ≤ i ≤ n − 1.

(ii) For ε ∈ C(X), the semigroup F is ε-close to G, denoted by D0(F, G) < ε, if
d(gi(x), fi(x)) < min{ε(gi(x)), ε(fi(x))} for all 1 ≤ i ≤ m and x ∈ X.

(iii) x ∈ X is a chain recurrent point of semigroup G if, for any ε ∈ C(X), there exists an
(ε, w)-chain of the semigroup G from x to itself for some w ∈ Am.

(iv) x ∈ X is weakly periodic point of the semigroup G if, for any ε ∈ C(X), there exists
a semigroup F ′ ∈ Cm(x) such that D0(G, F ′) < ε and x ∈ Per(F ′).

(v) x ∈ X is weakly non-wandering point of the semigroup G if, for any ε ∈ C(X), there
exists a semigroup F ′ ∈ Cm(X) such that D0(G, F ′) < ε and x ∈ Ω(F ′).

In what follows, the sets of chain recurrent points, weakly periodic points, and weakly
non-wandering points of the semigroup G in Definition 3.3 are also denoted by CR(G),
Perw(G), and Ωw(G), respectively.

Lemma 3.4 ([13, Lemmas 2.7 and 2.8]). Let (X, d) and (Y, d′) be two metric spaces.
(i) A function f from X to Y is continuous if and only if, for any ε ∈ C(Y ), there exists

δ ∈ C(X) such that if d(x, y) < δ(x) (x, y ∈ X), then d′(f(x), f(y)) < ε(f(x)).
(ii) For any α ∈ C(X), there exists γ ∈ C(X) such that

γ(x) ≤ inf {α(z) : z ∈ B(x, γ(x))} . (3.1)

Remark 3.5. Suppose inequality (3.1) holds. It can be verified that
(1) d(x, y) < γ(x) implies that d(x, y) < inf {α(z) : z ∈ B(x, γ(x))} ≤ min{α(x), α(y)};
(2) d(x, y) < γ(y) implies that

d(x, y) = d(y, x) < inf {α(z) : z ∈ B(y, γ(y))} ≤ min{α(x), α(y)}.

Thus, d(x, y) < max{γ(x), γ(y)} implies that d(x, y) < min{α(x), α(y)}.

Lemma 3.6. Let (X, d) be a metric space and let f1, . . . , fm : X → X be continuous
maps. Then, for every ε ∈ C(X), there exists δ ∈ C(X) such that if d(x, y) < δ(x), then
d(fi(x), fi(y)) < ε(fi(x)) for all 1 ≤ i ≤ m.

Proof. Since each fi is continuous, from Lemma 3.4, it follows that for ε ∈ C(X), there
exists δi ∈ C(X) such that d(x, y) < δi(x) implies that d(fi(x), fi(y)) < ε(fi(x)). Take
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δ : X → (0, ∞) by
δ(x) = min{δi(x) : 1 ≤ i ≤ m} for x ∈ X.

It can be verified that δ ∈ C(X) satisfies the condition of the lemma. �
Proposition 3.7. Let F and G be two semigroups generated by the finite family F1 =
{id, f1, . . . , fm} and G1 = {id, g1, . . . , gm} of continuous self-maps on the metric spaces
(X, d) and (Y, ρ), respectively. If F and G are topologically conjugate with the conjugacy h :
X → Y , then h(Λ(F )) = Λ(G), where Λ := CR, Ωw, Perw are defined in Definition 3.3.

Proof. Since h is a homeomorphism, it suffices to check that h−1(Λ(G)) ⊆ Λ(F ).
(1) Let x ∈ CR(G) and ε ∈ C(X). Since h−1 is continuous, by Lemma 3.4, there exists δ ∈

C(Y ) such that that if ρ(x, y) < δ(x) (x, y ∈ Y ), then d(h−1(x), h−1(y)) < ε(h−1(x)).
From x ∈ CR(G), it follows that there exists a (δ, w)-chain {x0 = x, x1, . . . , xn = x}
of G from x to itself for some w ∈ Am, implying that, for any 0 ≤ i ≤ n − 1,

d(h−1 ◦ gwi(xi), h−1(xi+1)) < ε(h−1 ◦ gwi(xi)).
This, together with h−1 ◦ gwi = fwi ◦ h−1, implies that d(fwi ◦ h−1(xi), h−1(xi+1)) <
ε(fwi ◦ h−1(xi)). Thus, {h−1(x), h−1(x1), . . . , h−1(x)} is an (ε, w)-chain of F from
h−1(x) to itself, and therefore h−1(x) ∈ CR(F ).

(2) Given any fixed ε′ ∈ C(X), by the continuity of h−1 and Lemma 3.4, there exists
ε ∈ C(Y ) such that

if ρ(x, y) < ε(x) (x, y ∈ Y ), then d(h−1(x), h−1(y)) < ε′(h−1(x)). (3.2)
Fix p ∈ Ωw(G). From Definition 3.3, it follows that there exists a semigroup G′ ∈
Cm(Y ) with the generators {id, g′

1, . . . , g′
m} such that D0(G, G′) < ε and p ∈ Ω(G′).

Put h−1 ◦ g′
i ◦ h = f ′

i . For 1 ≤ i ≤ m, since G is ε-close to G′, we have ρ(gi(y), g′
i(y)) <

ε(gi(y)) for all y ∈ Y . This, together with (3.2), implies that
d(fi ◦ h−1(y), f ′

i ◦ h−1(y)) = d(h−1 ◦ gi(y), h−1 ◦ g′
i(y))

< ε′(h−1 ◦ gi(y)) = ε′(fi ◦ h−1(y)).
(3.3)

This implies that the semigroup F ′ generated by {id, f ′
1, . . . , f ′

m} is ε′-close to F , as
h−1(Y ) = X. Now, we show that h−1(p) ∈ Ω(F ′). For any open neighborhood U of
h−1(p), it is clear that h(U) is an open neighborhood of p, as h is a homeomorphism.
From p ∈ Ω(G′), it follows that there exist n ∈ N and ω ∈ Σm such that G′n

ω (h(U)) ∩
h(U) ̸= ∅. This, together with G′n

ω ◦ h = h ◦ F ′n
ω , implies that

∅ ̸= G′n
ω (h(U)) ∩ h(U) = h(F ′n

ω (U)) ∩ h(U) = h(F ′n
ω (U) ∩ U).

This means that h−1(p) ∈ Ω(F ′). Thus, h−1(p) ∈ Ωw(F ), as ε′ is arbitrary. That is
h−1(Ωw(G)) ⊂ Ωw(F ).

(3) Similar to the proof of (2), it can be verified that h−1(Perw(G)) ⊂ Perw(F ).
�

In the following, we show that the set CR(G) with new notion of Definition 3.3 is also
closed.

Proposition 3.8. Let G be a semigroup generated by the finite family {id, g1, . . . , gm} of
continuous self-maps on a metric space (X, d). Then CR(G) is a closed set.

Proof. Let {xn}n∈N ⊆ CR(G) and let xn → y for some y ∈ X. For any δ ∈ C(X), since
δ : X → (0, ∞) is continuous, there exists ε0 > 0 such that

δ(B(y, ε0)) ⊆
(

δ(y)
2 , 3δ(y)

2

)
, (3.4)

and
δ(B(gi(y), ε0)) ⊆

(
δ(gi(y))

2 , 3δ(gi(y))
2

)
for 1 ≤ i ≤ m. (3.5)
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Take M ∈ N such that ε0 − δ(y)
2M+1 > 0. By Lemma 3.4, there exists γ ∈ C(X) such that

γ(x) ≤ inf
{

δ(z)
2M+2 : z ∈ B(x, γ(x))

}
for all x ∈ X. (3.6)

For β ∈ C(X) with β < min{ε0, γ}, by applying Lemma 3.6, there exists α ∈ C(X)
such that d(x1, x2) < α(x1) implies that d(gi(x1), gi(x2)) < β(gi(x1)) for 1 ≤ i ≤ m and
x1, x2 ∈ X. From xn → y, it follows that there exists N1 ∈ N such that, for any n ≥ N1,

d(y, xn) < min
{

ε0 − δ(y)
2M+1 , δ(y)

2 , α(y)
}

. (3.7)

Applying δ(xn)
2M+2 → δ(y)

2M+2 > 0 yields that there exists N > N1 such that

for any n ≥ N,
δ(xn)
2M+2 <

δ(y)
2M+1 . (3.8)

Since xN ∈ CR(G), there exists a (γ, w)-chain {y0 = xN , y1, . . . , yℓ+1 = xN } ⊂ X from
xN to itself for some w ∈ Am, i.e., for any 0 ≤ i ≤ ℓ,

d(gwi(yi), yi+1) < γ(gwi(yi)). (3.9)
Since xN ∈ B(gwℓ

(yℓ), γ(gwℓ
(yℓ))), applying (3.6) yields

γ(gwℓ
(yℓ)) ≤ δ(xN )

2M+2 , (3.10)

which, together with (3.8) and (3.9), implies that

d(gwℓ
(yℓ), xN ) < γ(gwℓ

(yℓ)) ≤ δ(xN )
2M+2 <

δ(y)
2M+1 . (3.11)

This, together with d(xN , y) < ε0 − δ(y)
2M+1 , implies that d(gwℓ

(yℓ), y) < ε0, i.e., gwℓ
(yℓ) ∈

B(y, ε0), and hence by (3.4)
δ(y)

2
< δ(gwℓ

(yℓ)) <
3δ(y)

2
. (3.12)

By applying (3.7) and (3.9), it follows

d(gwℓ
(yℓ), y) ≤ d(gwi(yℓ), xN ) + d(xN , y) < γ(gwℓ

(yℓ)) + δ(y)
2

. (3.13)

Meanwhile, by applying (3.6) and (3.12), it follows

γ(gwℓ
(yℓ)) + δ(y)

2
<

δ(gwℓ
(yℓ))

2M+2 + δ(gwℓ
(yℓ)). (3.14)

This, together with (3.13), implies that

d(gwℓ
(yℓ), y) <

δ(gwℓ
(yℓ))

2M+2 + δ(gwℓ
(yℓ)) ≤ 2δ(gwℓ

(yℓ)). (3.15)

On the other hand, d(y, xN ) < α(y) implies that
d(gw0(y), gw0(xN )) < β(gw0(y)) < ε0.

Then, gw0(xN ) ∈ B(gw0(y), ε0), and thus δ(gw0(xN )) <
3δ(gw0 (y))

2 by applying (3.5). There-
fore,

d(gw0(y), y1) ≤ d(gw0(y), gw0(xN )) + d(gw0(xN ), y1)
≤ β(gw0(y)) + γ(gw0(xN )) (as y0 = xN )

≤ δ(gw0(y))
2M+2 + δ(gw0(xN ))

2M+2

(
as β < γ ≤ δ

2M+2

)
≤ δ(gw0(y))

2M+2 + 3δ(gw0(y))
2M+3 = 5δ(gw0(y))

2M+3 < δ(gw0(y)).
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This, together with (3.15), implies that the sequence {y0 = y, y1, . . . , yℓ, y} is a (2δ, w)-
chain from y to y. Hence y ∈ CR(G), as δ ∈ C(X) is arbitrary. �

In the following, we study the relation between some notions in Definition 3.3. It is
clear from the definition that Per(G) ⊆ Perw(G) ⊆ Ωw(G) and Ω(G) ⊆ Ωw(G).

Proposition 3.9. Let G ∈ Cm(X) be a semigroup generated by the finite family
{id, g1, . . . , gm} of continuous self-maps on a metric space (X, d). Then Ωw(G) ⊆ CR(G).

Proof. Fix p ∈ Ωw(G). For any ε ∈ C(X), by Lemma 3.4, there exists ε1 ∈ C(X) such
that ε1(x) ≤ inf

{
ε(z)

2 : z ∈ B(x, ε1(x))
}

. Let δ ∈ C(X) such that δ(x) ≤ inf{ε1(z) :
z ∈ B(x, δ(x))}. From p ∈ Ωw(G), it follows that there exists a semigroup F ∈ Cm(X)
generated by {id, f1, . . . , fm} such that D0(G, F ) < δ and p ∈ Ω(F ). Applying Lemma 3.6
yields that there exists δ1 ∈ C(X) with δ1 < δ such that

if d(x, y) < δ1(x) (x, y ∈ X), then d(fi(x), fi(y)) < δ(fi(x)) for all 1 ≤ i ≤ m. (3.16)

This implies that there exist n ∈ N and ω ∈ Σm such that

F n
ω (B(p, δ1(p))) ∩ B(p, δ1(p)) ̸= ∅.

Take y ∈ B(p, δ1(p)) such that F n
ω (y) ∈ B(p, δ1(p)).

We claim that
{
p, fω0(y), F 2

ω(y), . . . , F n−1
ω (y), p

}
is an (ε, w)-chain of G from p to it-

self for some w ∈ Am. Since d(gω0(p), fω0(p)) < δ(gω0(p)) and δ(x) ≤ inf{ε1(z) : z ∈
B(x, δ(x))}, by Remark 3.5, it follows that

d(gω0(p), fω0(p)) < min{ε1(gω0(p)), ε1(fω0(p))} ≤ ε1(fω0(p)),

i.e., gω0(p) ∈ B(fω0(p)), ε1(fω0(p)). This implies that

δ(fω0(p)) ≤ ε1(fω0(p)) ≤ ε(gω0(p))
2

. (3.17)

Then,

d(gω0(p), fω0(y)) ≤ d(gω0(p), fω0(p)) + d(fω0(p), fω0(y))
< δ(gω0(p)) + δ(fω0(p)) (by d(p, y) < δ1(p) and (3.16))

<
ε(gω0(p))

2
+ ε(gω0(p))

2
= ε(gω0(p)).

(3.18)

From F n
ω (y) ∈ B(p, δ1(p)) ⊂ B(p, δ(p)), it follows

δ(p) < ε1(F n
ω (y)). (3.19)

From D0(F, G) < δ, it is easy to obtain that, for any 1 ≤ i ≤ n − 1,

d(fωi(F i
ω(y)), gωi(F i

ω(y))) < δ(fωi(F i
ω(y))) ≤ ε1(F i+1

ω (y)), (3.20)

and
d(fωi(F i

ω(y)), gωi(F i
ω(y))) < δ(gωi(F i

ω(y))) ≤ ε(gωi(F i
ω(y))). (3.21)

In particular,
d(fωn−1(F n−1

ω (y)), gωn−1(F n−1
ω (y))) ≤ ε1(F n

ω (y)),

i.e., gωn−1(F n−1
ω (y)) ∈ B(fωn−1(F n−1

ω (y)), ε1(F n
ω (y))), by the choice of ε1, it follows

ε1(F n
ω (y)) = ε1(fωn−1(F n−1

ω (y))) ≤
ε(gωn−1(F n−1

ω (y)))
2

. (3.22)
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This implies that
d(gωn−1(F n−1

ω (y)), p) ≤ d(gωn−1(F n−1
ω (y)), fωn−1(F n−1

ω (y))) + d(F n
ω (y), p)

≤ δ(gωn−1(F n−1
ω (y)) + δ1(p) (as D0(F, G) < δ)

≤ δ(gωn−1(F n−1
ω (y)) + δ(p) (as δ1 < δ)

<
ε(gωn−1(F n−1

ω (y)))
2

+ ε1(F n
ω (y)) (by (3.19))

= ε(gωn−1(F n−1
ω (y))) (by (3.22)).

Combining this with (3.18) and (3.21), it follows that
{
p, fω0(y), F 2

ω(y), . . . , F n−1
ω (y), p

}
is

an ε-chain of G from p to itself. Therefore, p ∈ CR(G) as ε is arbitrary. �

4. Shadowing and weak shadowing on compact metric spaces
In this section, we introduce the notion of weak shadowing property for the finitely

generated semigroup actions on the compact metric spaces and investigate the relationship
between the shadowing and weak shadowing properties.

Let (X, d) be a compact metric space and H(X) be the collection of all homeomorphisms
on X with the following C0-metric d0:

d0(f, g) = max
x∈X

d(f(x), g(x)) + max
x∈X

d(f−1(x), g−1(x)).

Let Hm(X) be the collection of all semigroups such as G on the space X which has
a finite set of generators {id, g1, . . . , gm}, where gi ∈ H(X), i = 1, . . . , m. Given two
semigroups F, G ∈ Hm(X) generated by the finite families F1 = {id, f1, . . . , fm} and
G1 = {id, g1, . . . , gm}, respectively. Defined the C0-metric D0 on Hm(X) by

D0(F, G) = max
1≤i≤m

d0(fi, gi).

Definition 4.1. We say that a semigroup G ∈ Hm(X) has the weak shadowing property
if, for any ε > 0, there exists δ(ε) > 0 such that, for any F ∈ Hm(X) with D0(G, F ) < δ,
x ∈ X, and ω ∈ Σm, there exists y ∈ X such that

d(Gi
ω(y), F i

ω(x)) < ε for all i ∈ Z.

Clearly, the above definition of weak shadowing property for the semigroup action G
generated by {id, g1} coincides with the notion of weak shadowing property for homeo-
morphisms in [4, Definition 4.2].

Definition 4.2. Let G ∈ Hm(X) be a semigroup generated by G1 = {id, g1, . . . , gm} on
a compact metric space (X, d) and δ > 0.
(1) The sequence {xi}i∈Z is a (δ, ω)-pseudo orbit of G for some ω = (. . . , ω−1, ω0, ω1, . . .) ∈

Σm if, for any i ∈ Z,
d(gωi(xi), xi+1) < δ.

(2) G has the shadowing property if, for any ε > 0, there exists δ > 0 such that every
(δ, ω)-pseudo orbit {xi}i∈Z can be ε-shadowed by some point z in X, that is,

d(Gi
ω(z), xi) < ε for all i ∈ Z.

(3) G has the finite shadowing property if, for any ε > 0, there exists δ > 0 such that, for
every (δ, w)-chain {xi}n

i=0, there exists a point z ∈ X such that

d(Gi
w(z), xi) < ε for all 0 ≤ i ≤ n.

Remark 4.3. Note that, for a compact metric space X, we can define the shadowing and
weak shadowing properties for the semigroup G ∈ Cm(X), by replacing Z with Z+ and
using the C0-metric on Cm(X) defined in Section 2.
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It is well known that every mapping with the shadowing property has the weak shad-
owing property. In the following, we show that this is also true for the semigroup actions.

Lemma 4.4. Let G ∈ Hm(X) be a semigroup generated by G1 = {id, g1, . . . , gm} on
a compact metric space (X, d). If G has the shadowing property, then it has the weak
shadowing property.

Proof. Given any ε > 0, choose δ > 0 as an ε-modulus of the shadowing property. For
any ω ∈ Σm, x ∈ X, and F ∈ Hm(x) with D0(F, G) < δ, we have

d(gωi(F i
ω(x)), F i+1

ω (x)) = d(gωi(F i
ω(x)), fωi(F i

ω(x)) < δ for all i ∈ Z.

This implies that {F i
ω(x)}i∈Z is a δ-pseudo orbit of G. Therefore, {F i

ω(x)}i∈Z can be
ε-shadowed by some point in X. �

Lemma 4.5. Let G ∈ Hm(X) be a semigroup generated by G1 = {id, g1, . . . , gm} on a
compact metric space (X, d). If G has the weak shadowing property, then each gi for
(1 ≤ i ≤ m) has the weak shadowing property.

Proof. For any ε > 0, choose δ > 0 as an ε-modulus of the weak shadowing property. Fix
j ∈ {1, . . . , m}. Take fi = gi for i ∈ {1, . . . , m}\{j}, and fj ∈ H(X) with d0(gj , fj) < δ.
Let F be the finitely generated semigroup with generators {id, f1, . . . , fm}. It can be
verified that D0(G, F ) < δ. Given x ∈ X, since G has the weak shadowing property, for
ω = (. . . , j, j, j, . . .) ∈ Σm, there exists y ∈ X such that

d(Gi
ω(y), F i

ω(x)) = d(gi
j(y), f i

j(x)) < ε for all i ∈ Z.

This means that gj has the weak shadowing property. �

The following example is related to [4, Remark 4.4].

Example 4.6. In this example, we present a finitely generated semigroup with the weak
shadowing property that does not have the shadowing property. Let g : [0, 2] → [0, 2] be
defined by

g(x) =
{√

x, x ∈ [0, 1],√
x − 1 + 1, x ∈ [1, 2].

Fix x0 ∈ (1, 2) and define g0 on X = [0, 1] ∪ {gn(x0) : n ∈ Z} ∪ {2} by g0 = g|X . Let
g1 : X → X be defined by

g1(x) =
{

3
√

x, x ∈ [0, 1],
g0(x), x ∈ X\[0, 1].

Then g0, g1 are homeomorphisms on the compact metric space X, with fixed points 0, 1, 2.
Denote G the semigroup action with the finite set of generator {id, g0, g1}. Then G has the
weak shadowing property. Indeed, let F be a finitely generated semigroup associated with
{id, f0, f1}, which is sufficiently closed to G. We have to note that the homeomorphisms
f0, f1 have to fix 0, 1, 2. Take any point x ∈ [0, 1]. Let b1 < b2 be another fixed points
of the mappings f0 and f1, respectively, which are closed to 1 (or 0). It is easy to see
that the map F i

ω has a fixed point b ∈ [b1, b2] for any ω ∈ Σm and any i ∈ Z. Indeed,
the homeomorphisms f0 and f1 move any points of interval [b2, 1] to the right, while the
accumulation points 1 is fixed. Therefore, we can choose y ∈ [0, 1] such that Gi

ω(y) is
closed to F i

ω(x). A similar argument is used for any x ∈ [1, 2]. Thus, G has the weak
shadowing property, but it does not have the shadowing property, since g0 and g1 does not
have the shadowing property. Indeed, there are pseudo-orbits starting at 0 and finishing
at 2 without real orbits tracing them.
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By Lemma 4.4 and Example 4.6, the shadowing property is strictly stronger than the
weak shadowing property finitely generated semigroups on compact metric spaces. Here,
we shall show that the converse also holds for finitely generated semigroups on generalized
homogeneous spaces.

Proposition 4.7. Let (X, d) be a generalized homogeneous space without isolated points.
Then G ∈ Hm(X) has the shadowing property if and only if it has the weak shadowing
property.

Proof. Necessity: By Lemma 4.4, this holds trivially.
Sufficiency: By [21, Lemma 3.3], it suffices to show that G has the finite shadowing

property. Without loss of generality, assume that G is generated by {id, g1, . . . , gm}. For
any fixed ε > 0, choose 0 < δ < ε

2 such that, for any F̂ ∈ Hm(X) with D0(G, F̂ ) < δ,
x ∈ X, and ω ∈ Σm, there exists y ∈ X such that d(Gi

ω(y), F̂ i
ω(x)) < ε

2 for all i ∈ Z. Take
η < δ be a δ-modulus of homogeneity of X. Since g1, . . . , gm are uniformly continuous,
there exists 0 < η̂ < η

3 such that for any x, y ∈ X with d(x, y) < η̂, d(gi(x), gi(y)) < η
3 for

all 1 ≤ i ≤ m. Let {xi}0≤i≤k be an (η̂, w)-pseudo orbit of G with w = w0 · · · wk−1 ∈ Am,
that is, d(gwi(xi), xi+1) < η̂ for 0 ≤ i ≤ k − 1. Since X does not contain isolated points,
we can choose y0 = x0, y1 ∈ B(x1, η̂)\{g−1

w1 ◦ gw0(y0)},

y2 ∈ B(x2, η̂)\{y1, g−1
w2 ◦ gw1(y1), g−1

w2 ◦ gw0(y0)},

...
yi ∈ B(xi, η̂)\{y1, . . . , yi−1, g−1

wi
◦ gwi−1(yi−1), . . . , g−1

wi
◦ gw0(y0)},

...
yk−1 ∈ B(xk−1, η̂)\{y1, . . . , yk−2, g−1

wk−1
◦ gwk−2(yk−2), . . . , g−1

wk−1
◦ gw0(y0)},

yk ∈ B(xk, η̂)\{y1, . . . , yk−1}.

It is easy to see that the set {(gw0(y0), y1), (gw1(y1), y2), . . . , (gwk−1(yk−1), yk)} ⊂ X × X
satisfies the followings:

a) d(gwi(yi), yi+1) ≤ d(gwi(yi), gwi(xi))+d(gwi(xi), xi+1)+d(xi+1, yi+1) < η
3 +η̂+η̂ < η

for 0 ≤ i ≤ k − 1;
b) gwi(yi) ̸= gwj (yj) and yi+1 ̸= yj+1 for 0 ≤ i ̸= j ≤ k − 1.

Since X is a generalized homogeneous space, there exists a homeomorphism h : X → X
with d0(h, id) < δ and h(gwi(yi)) = yi+1 for 0 ≤ i ≤ k − 1. Take fwi := h ◦ gwi .
It is easy to see that, for any 0 ≤ i ≤ k, f i

w(y0) = yi and d0(gwi , fwi) < δ. For
ℓ ∈ {1, . . . , m}\{w0, . . . , wk−1}, take fℓ = gℓ and let F be the semigroup generated by
{id, f1, . . . , fm}. Clearly, F is δ-close to G. By the weak shadowing property of G, there
exists a point z ∈ X such that, for any 0 ≤ i ≤ k, d(Gi

w(z), F i
w(y0)) < ε

2 , implying that

d(Gi
w(z), xi) ≤ d(Gi

w(z), F i
w(y0)) + d(F i

w(y0), xi) <
ε

2
+ d(yi, xi) <

ε

2
+ η̂ < ε.
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