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Abstract

In this paper, we classify warped translation surfaces being invariant surfaces of i-type, that
is, the generating curve has formed by the intersection of the surface with the isotropic
xz-plane in the three-dimensional simply isotropic space I3 under the condition

∆
Jxi = λixi, with J = I, II.

Here, ∆J is the Laplace operator with respect to first and second fundamental form and
λi, i = 1,2,3 are some real numbers. Also, as an application, we give some examples for
these surfaces and also some explicit graphics of them. All graphics have been plotted with
Maple14.

1. Introduction

Let Em denotes the m-dimensional Euclidean space and Mn be a connected n-dimensional submanifold in this space. An
isometric immersion x : M→ Em is said to be of k-type if it can be expressed as a sum of eigenvectors of the Laplace-Beltrami
operator of the induced metric ∆, corresponding to k distinct eigenvalues of ∆:

x = x0 +x1 + · · ·+xk, such that ∆xi = λixi, i = 1, . . . ,k,

for a consant vector x0, smooth non-constant functions xk and λi ∈ R, [1]. If an isometric immersion x is of k-type, then the
submanifold M is said to be of k-type [2, 3]. In [4], Chen gave a good survey related to finite type submanifolds. In [5], author
proved that a submanifold Mn in Em is of 1-type, that is, ∆x = λx, λ ∈ R+, if and only if it is either a minimal submanifold of
Em (λ = 0) or a minimal submanifold of hypersphere Sm−1 in Em (λ 6= 0). In [6, 7], by generalizing of this, authors showed
that if a hypersurface Mn of En+1 satisfies

∆x = Ax, (1.1)

where A ∈ R(n+1)×(n+1) is a diagonal matrix A = diag(λ1, . . . ,λn+1). Moreover, Senoussi and Bekkar studied helicoidal
surfaces in Euclidean 3-spaces satisfying the condition (1.1), [8]. Furthermore, in [9], Chen gave a detailed paper account of
recent development about finite type submanifolds in Euclidean spaces.

On the other hand, very recently, the study on intrinsic (or extrinsic) properties of surfaces in (pseudo-) isotropic spaces has
become a research subject for many researchers, see for examples [10]-[17]. Moreover, coordinate finite-type submanifolds

Email address and ORCID number: alevkelleci@hotmail.com, https://orcid.org/0000-0003-2528-2131



138 Fundamental Journal of Mathematics and Applications

have been studied in isotropic spaces [18, 19]. Moreover, the study of finite type submanifolds was studied in simply isotropic
spaces. In particular, Karacan et. al. studied translation surfaces and surfaces of revolution satisfying

∆
Jxi = λixi, (1.2)

where J = I, II and i = 1,2,3, in these spaces in [20, 21] and [22], respectively. Also, in [23], [24] and [25], authors studied
affine translation surfaces, helicoidal surfaces and ruled surfaces satisfying the same condition.

In this paper, we are going to study on warped translation surfaces of finite type in three dimensional Isotropic space I3

satisfying (1.2).

2. Preliminaries

The simply isotropic 3-space I3 is a Cayley-Klein space defined from the 3-dimensional real projective space P3(R) with the
absolute figure as given {ω,d1,d2, f}. In this space, the homogeneous coordinates [x0 : x1 : x2 : x3] are presented such that
ω : x0 = 0 is a plane in P3(R), d1 : x0 = 0 = x1 + ix2 and d2 : x0 = 0 = x1− ix2 are two complex-conjugate straight lines in the
plane, and also f = [0 : 0 : 0 : 1] is a point in the intersection d1∩d2.

The group of motions of I3 is a six-parameter group given by [26]

x̃ = a0 + xcosφ − ysinφ ,

ỹ = a1 + xsinφ + ycosφ , (2.1)
z̃ = a2 + c1x+ c2y+ z,

where φ ,a0,a1,a2,c1,c2 ∈R. Concerning this group of i-motions, it can be easily seen that these motions are indeed composed
of an Euclidean motions onto the xy-plane and an affine shear transformation in z-direction. Thus, the projection of a point
S(x,y,z), in the z-direction onto R2, S̃(x,y,0) is called the top view of S. Let ~A = (x1,x2,x3) be a vector in I3. If x1 = x2 = 0,
then ~A is called as isotropic, otherwise non-isotropic. A plane having an isotropic line is said to be an isotropic plane and a line
with an isotropic director is an isotropic line.

Given two vectors ~A = (x1,x2,x3) and ~B = (y1,y2,y3), the isotropic inner product is calculated by [26]〈
~A,~B

〉
= x1y1 + x2y2.

Moreover, M2 is called as an admissible surface when the metric in M2 induced by the isotropic scalar product has rank
2. More precisely, M2 parameterized by a C2 map x(u1,u2) =

(
x1(u1,u2),x2(u1,u2),x3(u1,u2)

)
, is admissible if and only if

X12 = x1
1x2

2− x1
2x2

1 6= 0, where xi
k = ∂xi/∂uk and

Xi j =
∣∣∣xi

1x j
2− x j

1xi
2

∣∣∣ , (2.2)

[17, 26]. As a result, every admissible C2 surface M2 can be locally parameterized as x(u1,u2) =
(
u1,u2, f (u1,u2)

)
: one can

say that M is in its normal form.

Furthermore, the isotropic first and second fundamental forms I and II, and also their coefficients of the isotropic metric tensor
gi j and hi j are given by, respectively, [17]

I = gi juiu j and gi j = 〈xi,x j〉, (2.3)
II = hi juiu j and hi j = xi j ·Nm,

where

Nm =
x1×x2

X12
= (

X23

X12
,

X31

X12
,1). (2.4)

Here, we may call Nm the minimal normal because the trace of the Weingarten-like operator −Nm vanishes identically.

Also, the isotropic Gaussian and mean curvatures are given by [17]

K =
h11h22−h2

12

g11g22−g2
12

and H =
1
2

g11h22−2g12h12 +g22h11

g11g22−g2
12

. (2.5)

Note that, a surface in I3 is called as isotropic flat (resp. isotropic minimal ) if K (resp. H) vanishes.
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Consequently, according to a local coordinate system, the Laplacian ∆J , J = I, II in terms of the first and second fundamental
forms are defined as usual by, ([20, 21],[26])

∆
I =− 1√

g11g22−g2
12

[
∂1

(g22∂1−g12∂2√
g

)
+∂2

(g11∂2−g12∂1√
g

)]
, (2.6)

and

∆
II =− 1√

h11h22−h2
12

∂1

( h22∂1−h12∂2√
h11h22−h2

12

)
+∂2

( h11∂2−h12∂1√
h11h22−h2

12

) , (2.7)

where ∂i = ∂/∂ui and gi j is the inverse of the metric, that is, gikgk j = δ i
j. Moreover, throughout paper we will take as

g11g22−g2
12 6= 0 and h11h22−h2

12 6= 0.

2.1. Warped translation surface in Simply Isotropic 3-space

In this work, we will be working on warped translation surfaces being one of the types of invariant surfaces in I3 and some
algebraic equations in terms of the Laplacian operator and the coordinate functions of these surfaces. So, in this section, we
will work to explain how warped translation surfaces in I3 are parameterized, (For more details, see [17].)

Let M2 be a warped translation surface being invariant. So, M2 can be parametrized as

M2
(a0,a1,0,c1,c2)

: P(u,v) = (a0v+ x(u),a1v,c1vx(u)+ z(u)), (2.8)

such that a2 = (a0c1 +a1c2) = 0, (a0,a1), (c1,c2) 6= (0,0). Also, φ ,a0,a1,a2,c1,c2 are the real constants as in Eq. (2.1).

Notice that since all simply isotropic invariant surfaces are admissible, throughout paper we will assume that warped translation
surfaces are admissible, (see for more details, [17].)

3. Warped translation surfaces of finite type

As mentioned in the previous section, the warped translation surfaces can be parametrized as in (2.8) in Isotropic 3-spaces. In
this section, we calculate the Laplacian operator ∆J for these surfaces in I3. And then, we examine the warped translation
surfaces satisfying the condition (1.2). Finally, we give the complete classification of these surfaces of finite type in I3.

Now, let us consider on a warped translation surface M2
(a0,a1,0,c1,c2)

defined as in (2.8) with the generating curve α , α(u) =
(u,0,z(u)), i.e.,

x(u,v) = (a0v+u,a1v,c1uv+ z(u)), a1 > 0. (3.1)

Thus, we have

xu = (1,0,c1v+ z′),

xv = (a0,a1,c1u).

Since M2
(a0,a1,0,c1,c2)

is admissible, i.e., a1 6= 0 from (2.2), then Nm the minimal normal defined by (2.4) is computed as

Nm = (−c1v− z′,
a0z′+ c1(a0v−u)

a1
,1).

By considering (2.3), we obtain the corresponding fundamental forms as [17]

I = 1du2 +2a0dudv+(a0
2 +a1

2)dv2 and II = z′′du2 +2c1dudv,

and from (2.5), the Gaussian and mean curvatures are

K =− c2
1

a12 and H =−a0c1

a12 +
(a0

2 +a1
2)

2a12 z′′.

Finally, the Laplace-Beltrami operators defined as in (2.6) and (2.7) of a warped translation surface are obtained as, respectively,

∆
I =−a0

2 +a1
2

a12
∂ 2

∂u2 +
2a0

a12
∂ 2

∂u∂v
− 1

a12
∂ 2

∂v2 , (3.2)
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and

∆
II =− 2

c1

∂ 2

∂u∂v
+

z′′

c12
∂ 2

∂v2 ,

where c1 is a non-zero constant.

Now, firstly we would like to give the following theorem being the classification of parabolic revolution surfaces satisfying
(3.2) in I3.

Theorem 3.1. Let M2 be a warped translation surface given by (3.1) in I3 such that it satisfies the condition ∆Ixi = λixi, where
λi, i = 1,2,3 are some real constants. Then M2 refers to one of the followings:

1. If λ1 = λ2 = 0 and λ3 = 0, then the function z(u) is quadratic.
2. If λ1 = λ2 = 0 and λ3 6= 0, then (a0,a1,0,c1,c2) = (a0,a1,0,0,c2) and z is given by either

(a) z(u) = z1 cosh(
√

Λ3 u)+ z2 sinh(
√

Λ3 u), if λ3 > 0, or
(b) z(u) = z1 cos(

√
−Λ3 u)+ z2 sin(

√
−Λ3 u), if λ3 < 0,

where Λ3 =
λ3a1

2

a02+a12 .

Proof. Assume that M2 is a warped translation surface given by (3.1) and it satisfies the condition (1.2) for J = I. Let us take
the expressions

∆
Ix =

(
∆

Ix1,∆
Ix2,∆

Ix3

)
,

(2.6) and (3.1) together. Thus by a straightforward computation, we get

∆
Ix =

(
0,0,−z′′

a0
2 +a1

2

a12 +
2a0c1

a12

)
.

So, as M2 satisfies the condition ∆Ixi = λixi, where λi, i = 1,2,3 are some real constants, we have

0 = λ1(a0v+u), (3.3)
0 = λ2a1v, (3.4)

−z′′
a0

2 +a1
2

a12 +
2a0c1

a12 = λ3

(
c1uv+ z

)
. (3.5)

So, from (3.3) and (3.4), we get directly λ1 = λ2 = 0. Now, we will consider on two possibilities coming from (3.5). First, if
λ3 = 0 then we get the following ODE

a0
2 +a1

2

a12 z′′− 2a0c1

a12 = 0, (3.6)

whose solutions are given as in Case (1) in Theorem 3.1. Secondly, let λ3 6= 0. By considering z = z(u) in (3.5), we obtain
c1 = 0 and

z′′+
λ3a1

2

a02 +a12 z = 0.

By taking Λ3 =− λ3a1
2

a02+a12 , we can rewrite the last ODE as

z′′−Λ3z = 0,

whose solutions is given as in Case(2) in Theorem 3.1.

Remark 3.2. By comparing the second equality of (3.2) and (3.6), we conclude that the warped translation surface M2

parametrized as in Case (1) in Theorem 3.1 is a isotropic minimal surface in I3.

Remark 3.3. By comparing the first equality of (3.2) and (3.6), we conclude that the warped translation surface M2

parametrized as in Case (2) in Theorem 3.1 is a isotropic flat surface in I3.

By considering the above Remark 3.2, we have the following:

Corollary 3.4. A warped translation surface given by (3.1) in the three dimensional simply isotropic space I3 is harmonic if
and only if the surface M2 is isotropic minimal.
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Figure 3.1: An isotropic minimal warped translation surface is parametrized as in Case (1) in Theorem 3.1.

Figure 3.2: An isotropic flat warped translation surface is parametrized as in Case (2a) in Theorem 3.1.

Now, we would like to give some explicit examples of warped translation surfaces satisfing (1.2) for J = I in I3:

Secondly, we would like to give the following theorem being the classification of warped translation surfaces satisfying (1.2)
for J = II in I3.

Theorem 3.5. Let M2 be a warped translation surface given by (3.1) in I3 such that it satisfies the condition ∆IIxi = λixi,
where λi, i = 1,2,3 are some real constants. Then M2

(a0,a1,0,0,c2)
can be parametrized as

x(u,v) = (a0v+u,a1v,c1uv− 2
λ3

), a1 > 0.

Proof. Let M2 be a warped translation surface given by (3.1) satisfying (1.2) and

∆
IIx =

(
∆

IIx1,∆
IIx2,∆

IIx3

)
.

By a straightforward computation, we get from (2.7)

∆
IIx =

(
0,0,−2

)
.
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Figure 3.3: An isotropic flat warped translation surface is parametrized as in Case (2b) in Theorem 3.1.

So, as M2 satisfies the condition ∆IIxi = λixi, where λi, i = 1,2,3 are some real constants, we have

0 = λ1(a0v+u), (3.7)
0 = λ2a1v, (3.8)

−2 = λ3

(
c1uv+ z(u)

)
. (3.9)

From (3.7) and (3.8), we get directly, λ1 = λ2 = 0. Now by considering (3.9), we conclude directly that λ3 6= 0. And so we
obtain c1 = 0 and z =− 2

λ3
. Thus M2 can be parametrized as in Theorem 3.5.

Definition 3.6. A surface in a simply isotropic 3-space, I3 is called as II−harmonic if it satisfies the condition ∆IIx = 0, [20].

By considering the above Definition and the proof of Theorem 3.5, we have the following:

Corollary 3.7. There are no II−harmonic warped translation surface in I3.

Now, we would like to give some explicit examples of warped translation surfaces satisfying ∆IIxi = λixi in I3:

Figure 3.4: A warped translation surface is parametrized as in Theorem 3.5.
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