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Abstract
We introduce a family of operators called the family of k-quasi-(n,m)-power normal
operators. Such family includes normal, n-normal and (n,m)-power normal operators.
An operator T ∈ B(H) is said to be k-quasi-(n,m)-power normal if it satisfies

T ∗k
(
TnT ∗m − T ∗mTn

)
T k = 0,

where k, n and m are natural numbers. Firstly, some basic structural properties of
this family of operators are established with the help of special kind of operator ma-
trix representation associated with such family of operators. Secondly, some properties of
algebraically k-quasi-(n,m)-power normal operators are discussed. Thirdly, we consider
the study of tensor products of k-quasi-(n,m)-power normal operators. A necessary and
sufficient condition for T ⊗ S to be a k-quasi-(n,m)-power normal is given, when T ̸= 0
and S ̸= 0.
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1. Introduction
Let H be a complex Hilbert space and B(H) be the C∗-algebra of all bounded linear

operators defined on H. For every T ∈ B(H), denote the range, the nullspace and the
adjoint of T by T (H) ( = R(T )), N(T )(= T−1(0)) and T ∗, respectively. A closed subspace
M of H is invariant if T (M) ⊂ M and in addition, if T ∗(M) ⊆ M, then M is called a
reducing subspace for T . The closure of a subset F of H will be denoted by F . For
any arbitrary operator T ∈ B(H), we will denote the point spectrum, the approximate
spectrum, the spectrum, the surjective spectrum, and the essential spectrum of T by
σp(T ), σa(T ), σ(T ), σs(T ), and σe(T ), respectively.
For any T ∈ B(H), set [T ∗, T ] = T ∗T − TT ∗.
(1) T is normal if [T, T ∗] = 0,
(2) T is paranormal if ∥Tu∥2 ≤ ∥T 2u∥∥u∥ for all u ∈ H.
(3) T is normaloid if ∥T∥ = r(T ), where r(T ) is the spectral radius of T [8].
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(4) T belongs to class A if |T 2| ≥ |T |2 [13].
Recently, I.H. Jeon et al. in [11] have extended class A operators to quasi-class A operators.
An operator T ∈ B(H) belongs to quasi-class A if

T ∗
(

|T 2| − |T |2
)
T ≥ 0.

For further generalization, Tanahashi et al. [27] introduced the class of k-quasi-class A

operators. T is said to be a k-quasi-class A operator if

T ∗k
(

|T 2| − |T |2
)
T k ≥ 0,

where k is a positive integer. An operator S ∈ B(H) is said to be k-quasi-paranormal
operator [24] if

∥Sk+1u∥2 ≤ ∥Sk+2u∥∥Sku∥,
for every u ∈ H , k is a natural number.

A generalization of normal operators to the concept of n-normal operators has been
introduced and studied by A.A. Jibril [12] and S.A. Alzuraiqi et al. [3]. An operator T is
called n-normal if TnT ∗ = T ∗Tn. Very recently, several papers have appeared on n-normal
operators. We refer to [4, 5, 18] for complete study.
An operator T ∈ B(H) is called (n,m)-power normal if TnT ∗m −T ∗mTn = 0 and it is said
to be (n,m)-power quasi-normal if

(
TnT ∗m−T ∗mTn

)
T = 0 where n,m be two nonnegative

integers. We refer the reader to [1], [2] and [5] for complete details on these families of
operators.

Recall that an T ∈ B(H) have the single-valued extension property (SVEP) if for every
open subset U of C and any analytic function f : U −→ H for which (T − λ)f(λ) ≡ 0 on
U , we have f(λ) ≡ 0 on U . T ∈ B(H) has Bishop’s property (β) if, for every open subset
D of C and every sequence gn : D −→ H of analytic functions with (T −µ)gn(µ) converges
uniformly to 0 in norm on compact subsets of D, and gn(µ) converges uniformly to 0 in
norm on compact subsets of D.

An operator T ∈ B(H) is called scalar of order m s.t. 0 ≤ m ≤ ∞ if there exists a
continuous unital homomorphism of topological algebra ψ : Cm

0 (C) −→ B(H) for which
ψ(z) = T , where Cm

0 (C) is the Fréchet space of all continuously differentiable functions of
order m with compact support. T is subscalar of order m if it is similar to the restriction
of a scalar operator of order m to an invariant subspace. An operator T ∈ B(H) is called
algebraic if there is a nonconstant polynomial Q ∈ C[z] for which Q(T ) = 0. An operator
T ∈ B(H) is said to be isoloid [4] if every isolated point of σ(T ) belongs to the point
spectrum of T . An operator T ∈ B(H) is called polaroid [7] if π(T ) = {µ ∈ isoσ(T )},
where isoσ(T ) is the set of isolated points of the spectrum of T and π(T ) is the set of
poles of the resolvent of T. An operator T ∈ B(H) is quasinilpotent if σ(T ) = {0}.

This paper is devoted to some class of operators on the Hilbert space which is a gen-
eralization of normal, n-normal and (n,m)-power normal operators. More precisely, we
introduce a new class of operators which is called the class of k-quasi-(n,m)-power normal
operators. It is proved in Example 2.4 that there is an operator which is k-quasi-(n,m)-
power normal, but not (n,m)-power normal for some positive integers n,m and k, and
thus, the proposed new class of operators contains the class of (n,m)-power normal oper-
ators as a proper subset. In Section 2 we characterize this class of operators in terms of
(n,m)-power normal operators on the subspace R(T k) (Lemma 2.5). Other characteriza-
tions are given in Propositions 2.6, 2.7, 2.11 and Theorem 2.13. In Section 3, we study
algebraically k-quasi-(n,m)-power normal operators. Using the operator matrix repre-
sentation of k-quasi-(n,m)-power normal operators which is related to the (n,m)-power
normal operators, we prove that in many cases the algebraically k-quasi-(n,m)-power nor-
mal operators are very close (even are equal in some cases) to power-scalar, nilpotent,
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polaroid, operator with Bishop’s property (β) and the so-called SVEP operator. Section
4 is devoted to the tensor product for k-quasi-(n,m)-power normal operators, and some
new results are obtained.

2. k-quasi-(n, m)-power normal operators
In this section, the family of k-quasi-(n,m)-power normal operators is introduced. In

addition, we study several properties of members from this family of operators.

Definition 2.1. We say that T ∈ B(H) is k-quasi-(n,m)-power normal if

T ∗k
(
TnT ∗m − T ∗mTn

)
T k = 0. (2.1)

for some positive integers k, n and m.

Remark 2.2. (1) A 1-quasi-(n,m)-power normal operator is a quasi-(n,m)-power normal
operator.
(2) If n = m = k = 1, then (2.1) coincides with

(
T ∗T

)2 = T ∗2T 2, i.e., T is a class
(Q) operator.

(3) Every k-quasi-(n,m)-power normal operator is a (k + 1)-quasi-(n,m)-power normal
operator.

Remark 2.3. We give an example which is k-quasi-(n,m)-power normal, but not (n,m)-
power normal.

Example 2.4. Let T =

 0 0 0
1 0 0
0 1 0

 ∈ B(C3). Then T is k-quasi-(2, 1)-power normal,

but not (2, 1)-power normal.

In fact, we have T 2T ∗ − T ∗T 2 ̸= 0. Hence T is not (2, 1)-power normal. However
T ∗k

(
T 2T ∗ − T ∗T 2)

T k = 0 for k = 1, 2, · · · . Therefore T is a k-quasi-(2, 1)-power nor-
mal.

Lemma 2.5. T ∈ B(H) is k-quasi-(n,m)-power normal if and only if it is (n,m)-power
normal on R(T k).

Proof.

T is a k−quasi−(n,m)−power normal ⇔ T ∗k
(
TnT ∗m − T ∗mTn

)
T k = 0

⇔
〈
T ∗k

(
TnT ∗m − T ∗mTn

)
T kx | x

〉
= 0 ,∀ x ∈ H

⇔
〈(
TnT ∗m − T ∗mTn

)
T kx | T kx

〉
= 0, ∀ x ∈ H

⇔ TnT ∗m − T ∗mTn = 0, on T k(H).
�

Proposition 2.6. If T ∈ B(H), then T is k-quasi-(n,m)-power normal if and only if T
is k-quasi-(m,n)-power normal.

Proof. This assertion is obvious. We omit this proof. �
Proposition 2.7. Let T ∈ B(H) be a k-quasi-(n,m)-power normal. If N(T ∗k) ⊂ N(T ),
then T ∗ is a k-quasi- (m,n)-power normal.
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Proof. As T is a k-quasi-(n,m)-power normal,

T ∗k
(
TnT ∗m − T ∗mTn

)
T k = 0.

Under the assumption N(T ∗k) ⊂ N(T ), we obtain

T

(
TnT ∗m − T ∗mTn

)
T k = 0,

and hence
T ∗k

(
TmT ∗n − T ∗nTm

)
T ∗ = 0.

So,

T

(
TmT ∗n − T ∗nTm

)
T ∗ = 0,

which implies

T k
(
TmT ∗n − T ∗nTm

)
T ∗k = 0.

Thus T ∗ is a k-quasi-(m,n)-power normal. �
In the following theorem, we give a sufficient condition for a k-quasi-(n,m)-power normal
operator to be a q-quasi-(n,m)-power normal.

Theorem 2.8. Let T be a k-quasi-(n,m)-power normal operator. If N(T ∗q) = N(T ∗(q+1))
for some 1 ≤ q ≤ k − 1, then T is a q-quasi-(n,m)-power normal.

Proof. Under the assumption that N(T ∗q) = N(T ∗(q+1)) we have N(T ∗q) = N(T ∗k) ∀ k ∈
N, k ≥ 2. From the hypothesis, T is a k-quasi-(n,m)-power normal, then

T ∗k
(
TnT ∗m − T ∗mTn

)
T k = 0.

Since N(T ∗q) = N(T ∗k), then a direct computation shows that

T ∗q
(
TnT ∗m − T ∗mTn

)
T q = 0,

which implies that T is a q-quasi-(n,m)-power normal as required. �
Remark 2.9. In the following example, we show that Theorem 2.8 is not true in general
if N(T ∗q) ̸= N(T ∗(q+1)).

Example 2.10. Consider the operator T =
(

0 1
0 0

)
acting on the two dimensional

Hilbert space C2. Then a direct calculation shows that T is a 2-quasi-(1, 1)-power normal
but it is not a quasi-(1, 1)-power normal. However N(T ∗) ̸= N(T ∗2).

Proposition 2.11. Let T be a k-quasi-(n,m)-normal operator and let M be a closed
subspace of H which reduces T . Then T

∣∣M is a k-quasi-(n,m)-power normal.

Proof. Under the assumption that M is a reducing subspace of T , then

T =
(
T1 0
0 T3

)
on H = M ⊕ M⊥.

From the fact that T is k-quasi-(n,m)-power normal, we have

T ∗k
(
TnT ∗m − T ∗mTn

)
T k = 0.
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Hence(
T1 0
0 T3

)∗k { (
T1 0
0 T3

)n (
T1 0
0 T3

)∗m

−
(
T1 0
0 T3

)∗m (
T1 0
0 T3

)n } (
T1 0
0 T3

)k

= 0.

Therefore (
T ∗k

1
(
Tn

1 T
∗m
1 − T ∗m

1 Tn
1

)
T k

1 0
0 V

)
= 0,

for some operator V. This means that

T ∗k
1

(
Tn

1 T
∗m
1 − T ∗m

1 Tn
1

)
T k

1 = 0.

Consequently, T1 = T
∣∣M is k-quasi-(n,m)-power normal. �

Proposition 2.12 ([18]). Let T ∈ B(H) be n-power normal. The following assertions
hold.

(1) Tn(H) reduces T .
(2) T has the following matrix representation

T =
(
T1 0
0 T2

)
on H = Tn(H) ⊕ N(T ∗n),

where T1 = T
∣∣Tn(H) is also n-power normal, T2 is nilpotent. Furthermore σ(T ) =

σ(T1) ∪ {0}.

Now we give an equivalent condition for T to be k-quasi-(n,m)-power normal operator.
Using this result we obtained several important properties of this class of operators.

Theorem 2.13. Let T ∈ B(H) such that T k(H) ̸= H. The following properties are
equivalent.

(1) T is a k-quasi-(n,m)-power normal.

(2) T =
(
T1 T2
0 T3

)
on H = T k(H) ⊕ N(T ∗k), where T1 is an (n,m)-power normal

operator and T k
3 = 0. Therefore σ(T ) = σ(T1) ∪ {0}.

Proof. Since T k(H) $ H is an closed invariant subspace of T , T can be written as

T =
(
T1 T2
0 T3

)
, relative to H = T k(R) ⊕ N(T ∗k).

Assume that T is a k-quasi-(n,m)-power normal operator and let P =
(
I1 0
0 0

)
be the

projection onto T k(H), where I1 = I|T k(H). It follows that

PT ∗k
(
TnT ∗m − T ∗mTn

)
T kP = 0

and so that
Tn

1 T
∗m
1 − T ∗m

1 Tn
1 = 0.

Hence T1 is an (n,m)-power normal operator.
On the other hand, let u = u1 + u2 ∈ H = T k(H) ⊕N(T ∗k). A simple computation shows
that

⟨T k
3 u2, u2⟩ = ⟨T k(I − P )u, (I − P )u⟩

= ⟨(I − P )u, T ∗k(I − P )u⟩ = 0.

So, T k
3 = 0.



On the class of k-quasi-(n,m)-power normal operators 331

In view of [16, Corollary 7], it follows that σ(T ) ∪V = σ(T1) ∪σ(T3), where V is the union
of certain of the holes in σ(T ) which is a subset of σ(T1) ∩ σ(T3). Further σ(T3) = {0}
and σ(T1) ∩ σ(T3) has no interior points. So we have by [16, Corollary 8]

σ(T ) = σ(T1) ∪ σ(T3) = σ(T1) ∪ {0}.

(2) ⇒ (1) Suppose that T =
(
T1 T2
0 T3

)
onto H = R(T k) ⊕ N(T ∗k) , such that

∆m
n (T ) := Tn

1 T
∗m
1 − T ∗m

1 Tn
1 = 0 and T k

3 = 0.

Since T k =

 T k
1

k−1∑
j=0

T j
1T2T

k−1−j
3

0 T k
3

 we have

T ∗k

(
TnT ∗m − T ∗mTn

)
T k

=
(
T1 T2
0 T3

)∗k { (
T1 T2
0 T3

)n (
T1 T2
0 T3

)∗m

−
(
T1 T2
0 T3

)∗m (
T1 T2
0 T3

)n }
×

(
T1 T2
0 T3

)k

=

 T ∗k
1 0

k−1∑
j=0

T ∗k−1−j
3 T ∗

2 T
∗j
1 T ∗k

3

 ×
{  Tn

1

n−1∑
j=0

T j
1T2T

n−1−j
3

0 Tn
3


 T ∗m

1 0
m−1∑
j=0

T ∗m−1−j
3 T ∗

2 T
∗j
1 T ∗m

3



−

 T ∗m
1 0

m−1∑
j=0

T ∗m−1−j
3 T ∗

2 T
∗j
1 T ∗m

3


 Tn

1

n−1∑
j=0

T j
1T2T

n−1−j
3

0 Tn
3

 }
×

 T k
1

n−1∑
j=1

T j
1T2T

k−1−j
3

0 T k
3



=

 T ∗k
1 0

k−1∑
j=1

T ∗k−1−j
3 T ∗

2 T
∗j
1 0

 ×
{  ∆m

n (T1) C

D B

 }
×

 T k
1

k−1∑
j=1

T j
1T2T

k−1−j
3

0 0



=


T ∗k

1 ∆m
n (T1)T k

1 T ∗k
1 ∆m

n (T1)
n−1∑
j=1

T j
1T2T

n−1−j
3

( n−1∑
j=1

T j
1T2T

n−1−j
3

)∗

∆m
n (T1)T k

1

( k−1∑
j=1

T j
1T2T

k−1−j
3

)∗

∆m
n (T1)

( k−1∑
j=1

T j
1T2T

k−1−j
3

)
 .

The condition ∆m
n (T1) = 0 implies that T ∗k

(
TnT ∗m − T ∗mTn

)
T k = 0. Hence T is a

k-quasi-(n,m)-power normal. �

Proposition 2.14. Let T ∈ B(H). The following properties hold.
(1) If T is k-quasi-(n,m)-power normal and k-quasi-(n+ 1,m)-power normal, then T

is k-quasi-(n+ 2,m)-power normal.
(2) If T is k-quasi-(n,m)-power normal and k-quasi-(n,m+ 1)-power normal, then T

is k-quasi-(n,m+ 2)-power normal.

Proof. (1) If T k(H) = H, then by Lemma 2.5, T is (n,m)-power normal and (n+ 1,m)-
power normal. From [1, Proposition 1.11] we deduce that T is (n + 2,m)-power normal.
So, T is a k-quasi-(n+ 2,m)-power normal operator.

If T k(H) ̸= H, we can write T =
(
T1 T2
0 T3

)
, relative to H = T k(H) ⊕ N(T ∗k), where

T1 = T
∣∣T k(H) is both (n,m)- and (n + 1,m)-power normal. Moreover T k

3 = 0. In view
of [1, Proposition 1.11], T1 is (n + 2,m)-power normal. By applying Theorem 2.13, we
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deduce that T is k-quasi-(n+ 2,m)-power normal.

(2) This proof is similar to the statement (1). So, we omit this proof. �

Corollary 2.15. Let T ∈ B(H) be a k-quasi-(n,m)-power normal operator. Then T j is
k-quasi- (1, 1)-power normal, where j is the least common multiple (LCM) of n and m.

Proof. If T k(H) is dense then T is an (n,m)-power normal operator and therefore T j ,
j = LCM(n,m), is normal by [4, Lemma 4.2]. Since T j is normal it is (1, 1)- power
normal and hence k-quasi-(1, 1)-power normal. Now assume that T k(H) is not dense, by

Theorem 2.13 we have T =
(
T1 T2
0 T3

)
on H = T k(H) ⊕N(T ∗k), where T1 = T

∣∣T k(H) is

an (n,m)-power normal operator and T k
3 = 0. We notice that

T j =

 T j
1

j−1∑
r=0

T r
1T2T

j−1−r

0 T j
3

 ,

where T j
1 is a normal operator ([4, Lemma 4.2]) and (T j

3 )k = 0. Hence T j is an k-quasi-
(1, 1)-normal operator by Theorem 2.13. �

Recall that two operators T ∈ B(H) and S ∈ B(H) are said to be similar if there exists
an operator Z ∈ B(H) which is invertible such that ZT = SZ, i.e, T = Z−1SZ or
S = ZTZ−1.

Corollary 2.16. Let T ∈ B(H) be a k-quasi-(n,m)-power normal operator such that

T =
(
T1 T2
0 T3

)
on H = R(T k) ⊕N(T ∗k). If T1 is invertible, then T is similar to a direct

sum of an (n,m)-power normal and a nilpotent operator.

Proof. Since 0 /∈ σ(T1) and T3 is nilpotent, then σ(T1) ∩ σ(T3) = ∅. Then from [22] there
exists an operator S satisfying T1S − ST3 = T2 . Hence

T =
(
T1 T2
0 T3

)
=

(
I S
0 I

)−1 (
T1 0
0 T3

) (
I S
0 I

)
.

Consequently, the desired result follows from Theorem 2.13. �

Proposition 2.17. Let T ∈ B(H) be k-quasi-(2,m)-power normal and k-quasi-(3,m)-
power normal for some m ∈ N, then T is k-quasi-(n,m)-power normal for all n ≥ 4.

Proof. Indeed, under the assumptions that T is a (2,m)-power normal and a k-quasi-
(3,m)-power normal operator, we have the following two cases.

If T k(H) = H, then T is a (2,m)-power normal and (3,m)-power normal and hence
T is (n,m)-power normal by [25, Proposition 2.4]. If T k(H) ̸= H, then T on H =

T k(H) ⊕ N(T ∗k) may be written as a matrix T =
(
T1 T2
0 T3

)
, where T1 is (2,m)-power

normal and (3,m)-power normal. Hence T is (n,m)-power normal by [25, Proposition 2.4].
Moreover T k

3 = 0. Consequently, T is k-quasi-(n,m)-power normal by Theorem 2.13. �

Proposition 2.18. Let T be k-quasi-(n, 2)-power normal and k-quasi-(n, 3)-power normal
for some n ∈ N. Then T is k-quasi-(n,m)-power normal for all integer m ≥ 4.

Proof. We omit the proof since the techniques are similar to the proof of Proposition
2.17. �
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Theorem 2.19. Let T ∈ B(H) such that T k does not have dense range. Assume that

T =
(
T1 T2
0 T3

)
is k-quasi-(n,m)-power normal for some positive integers n and m such

that n ≥ m. If Tm
1 is a partial isometry, then T is k-quasi-(n+m,m)-power normal.

Proof. Since T is k-quasi-(n.m)-power normal, it follows from Theorem 2.13 that T1 =
T

∣∣T k(H) is (m,n)-power normal and T k
3 = 0. The assumption that Tm

1 is a partial
isometry implies that T1 is (n+m,m)-power normal operator by [25, Theorem 2.4]. Hence,
by Theorem 2.13, T is k-quasi-(n+m,m)-power normal. �

Theorem 2.20. Let T ∈ B(H) and S ∈ B(H) be commuting k-quasi-(n,m)-power normal
operators, then TS is k-quasi-(j, p)-power normal for every p ∈ N, where j is the least
common multiple of n and m.

Proof. (i) If T k(H) = H = Sk(H), then T and S are (n,m)-power normal operators. It
follows from [4, Theorem 4.4] that TS is (j, p)-power normal for every p ∈ N, where j is
the least common multiple of n and m. Hence, TS is k-quasi-(j, p)-power normal.

(ii) If T k(H) ̸= H ̸= Sk(H), in view of Theorem 2.13, we have

T =
(
T1 T2
0 T3

)
on H = T k(H) ⊕ N(T ∗k)

with T1 = T
∣∣T k(H) is (n,m)-power normal and T k

3 = 0.
Similarly,

S =
(
S1 S2
0 S3

)
on H = Sk(H) ⊕ N(S∗k)

where S1 = S
∣∣Sk(H) is (n,m)-power normal and Sk

3 = 0.
By observing that T1

∣∣(ST )k(H) and S1
∣∣(ST )k(H) are (n,m)-power normal operators, it

follows from [4, Theorem 4.4] that T1S1 is (j, p)-power normal. Moreover, (T3S3)k = 0.
Hence we have for the decomposition

TS =
(
T1S1 ∗

0 T3S3

)
on H = (TS)k(H) ⊕ N((TS)∗k),

T1S1
∣∣(ST )k(H) is (j, p)-power normal and (T3S3)k = 0. Therefore TS is a k-quasi-(j, p)-

power normal operator by Theorem 2.13.

(iii) If T k(H) = H ̸= Sk(H), we can write

T =
(
T 0
0 0

)
and S =

(
S1 S2
0 S3

)
on H = Sk(H) ⊕ N(S∗k),

where T is (n,m)-power normal and S1 is (n,m)-power normal on Sk(H). Clearly, TS =(
TS1 TS2

0 0

)
and moreover TS1 is (n,m)-power normal. By a similar argument as in

(ii) we can see that TS is k-quasi-(n,m)-power normal.

(iv) We omit the case when T k(H) ̸= H = Sk(H) because the proof is similar to the one
given in (iii) since ST = TS. �

Theorem 2.21. If T ∈ B(H) is k-quasi-(n,m)-power normal, then T has Bishop’s prop-
erty (β).

Proof. We consider two cases:
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(1) If T k(H) is dense, then T is an (n,m)-power normal operator and hence T is decom-
posable (by [4, Lemma 4.2]. So, T has Bishop’s property (β).

(2) If T k(H) is not dense, by Theorem 2.13, we write T on H = T k(H)⊕N(T ∗k) as follows:

T =
(
T1 T2
0 T3

)
with T1 is an (n,m)-power normal operator on T k(H) and T k

3 = 0.
Let gk(µ) be analytic on D ⊆ C with (T − µ)gk(µ) → 0 uniformly on each compact K of
D. Then T1 − µ T2

0 T3 − µ

  gk1(µ)

gk2(µ)

 =

 (T1 − µ)gk1(µ) + T2gk2(µ)

(T3 − µ)gk2(µ)

 → 0.

Since T3 is nilpotent, T3 satisfies Bishop’s property (β). Thus, gk2(µ) → 0 uniformly on
each compact K of D. Therefore, (T1−µ)gk1(µ) → 0 as k1 → ∞. Since T1 satisfies Bishop’s
property, it follows that gk1(µ) → 0 and so T has Bishop’s property (β) as required. �
Corollary 2.22. Let T ∈ B(H) be k-quasi-(n,m)-power normal, then T has SVEP.

In [18], it was proved that if T is quasinilpotent n-normal operator, then T is nilpotent
and in [4] it was proved that a quasinilpotent (n,m)-normal operator is nilpotent. In the
following theorem, we extend this result to k-quasi-(n,m)-power normal operators.
Theorem 2.23. If T ∈ B(H) is k-quasi-(n,m)-power normal and quasinilpotent, then T
is nilpotent, and hence subscalar.
Proof. Assume that T k(H) = H, then T is (n,m)-power normal. By [4, Theorem 4.3], T
is nilpotent. Therefore T is algebraic and hence T is subscalar by [15]. So we may assume
that T k(H) ̸= H. Hence by Theorem 2.13, we write

T =
(
T1 T2
0 T3

)
on H = T k(H) ⊕ N(T ∗k),

with T1 is an (n,m)-power normal operator, T k
3 = 0 and σ(T ) = σ(T1) ∪ {0}.

Since σ(T1) ≠ ∅ and σ(T ) = {0}, we see that σ(T1) = {0}. Therefore T1 is quasinilpotent
(n,m)-power normal. Hence T1 is nilpotent. Then T q

1 = 0, for some positive integer q.
An easy computation yields

T k+q = T qT k
(

0 U
0 T q

3

) (
T k

1 V
0 0

)
= 0.

Consequently, T is nilpotent and hence algebraic. So, T is subscalar ([15]). �
Recall that an operator X ∈ B(H) satisfying X−1(0) = {0} and X(H) = H is called

quasiaffinity. Let T, S ∈ B(H). S is said to be a quasiaffine transform of T if there is a
quasiaffinity X such that XS = TX. Furthermore, S and T are quasisimilar if there are
quasi-affinities X and Y such that XS = TX and SY = Y T .

Theorem 2.24. Let T =
(
A B
0 C

)
∈ B(H ⊕ H). If A is a surjective (n,m)-power

normal operator and Ck = 0 for some integer k ∈ N, then T is similar to a k-quasi-
(n,m)-power normal operator.
Proof. Under the conditions A(H) = H and C is nilpotent, we have σs(A)∩σa(C) = ∅. In
view of the statement (c) in [17, Theorem 3.5.1], it follows that there exists some operator
R ∈ B(H) for which AR−RC = B. Since(

I R
0 I

) (
A B
0 C

)
=

(
A 0
0 C

) (
I R
0 I

)
,
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it easy to see that T is similar to S =
(
A 0
0 C

)
.

From the assumptions that A is (n,m)-power normal and Ck = 0, we get

S∗k

(
SnS∗m − S∗mSn

)
Sk

=
(
A∗k 0

0 C∗k

) { (
An 0
0 Cn

) (
A∗m 0

0 C∗m

)
−

(
A∗m 0

0 C∗m

) (
An 0
0 Cn

) }
×

(
Ak 0
0 Ck

)
=

(
A∗k

(
AnA∗m −A∗mAn

)
Ak 0

0 0

)
= 0.

Thus T is similar to a k-quasi-(n,m)-power normal operator. �
Question 2.25. If A,B and C ∈ B(H) are such that A is an (n,m)-power normal operator

and Ck = 0 for some k ∈ N, then is the operator matrix T =
(
A B
0 C

)
∈ B

(
H ⊕ H

)
a

k-quasi-(n,m)-power normal operator?

The following example gives a negative answer to the Question 2.25.

Example 2.26. Let T =
(
I I
0 0

)
∈ B

(
H ⊕ H

)
. Obviously, A = I is (n,m)-power

normal and Ck = 0k = 0. On the other hand, we observe that T q =
(
I I
0 0

)
for all

q ≥ 1 and easy calculation shows that

T ∗k
(
TnT ∗m − T ∗mTn

)
T k =

(
I I
I I

)
̸= 0.

Therefore, T is not a k-quasi-(n,m)-power normal operator for all positive integers n,m
and k.

It was observed in [6, Lemma 4.1] that quasisimilar normal operators are unitarily
equivalent. Therefore quasisimilar normal operators have equal spectra and essential
spectra. The following theorem extended these properties to k-quasi-(n,m)-power nor-
mal operators.

Theorem 2.27. Let T ∈ B(H) and S ∈ B(H) be quasisimilar k-quasi-(n,m)-power
normal operators, then σ(T ) = σ(S) and σe(T ) = σe(S).

Proof. In view of Theorem 2.21, we have that T and S satisfy the Bishop’s property (β).
The proof follows from [21]. �
Definition 2.28 ([18]). Let T ∈ B(H).
(1) The ascent of T is the smallest nonnegative integer p = p(T ) such that N(T p) =
N(T p+1). If such integer does not exist, then we put p(T ) = ∞.
(2) The descent of T is defined as the smallest nonnegative integer q = q(T ) such that
T q(H) = T q+1(H). If such integer does not exist, then we put q(T ) = ∞.

If p(T ) and q(T ) are both finite then p(T ) = q(T ) by [9, Proposition 38.6].

Recall that for µ ∈ isoσ(T ), the Riesz idempotent (spectral projection) Pµ of T relative
to µ is given by Pµ = 1

2iπ

∫
∂D

(
z − T

)−1
dz, where D is a closed disk with center at µ and

radius small such that D ∩ σ(T ) = {µ}.
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Theorem 2.29. Let T ∈ B(H) be k-quasi-(n,m)-power normal for some integers n,m
and k ∈ N. Let 0 ̸= λ0 ∈ isoσ(T ) and Pλ0 the Riesz idempotent for λ0. Then λ0 ∈ π(T )
and

Pλ0H = N(T − λ0I).
Therefore λ0 ∈ σp(T ).

Proof. If the range T k(H) is dense, then T is an (n,m)-power normal operator and the
theorem holds by Theorem 3.6 in [5]. Assume that T k(H) ̸= H. Let

T =
(
T1 T2
0 T3

)
on H = T k(H) ⊕ N(T ∗k).

Theorem 2.13 implies that T1 is (n,m)-power normal on T k(H) and σ(T ) = σ(T1) ∪ {0}.
If 0 ̸= λ0 ∈ isoσ(T ), then λ0 ∈ isoσ(T1). Therefore λ0 is a simple pole of the resolvent of
T1 and T1 has the representation

T1 =
(
λ0 0
0 S

)
on T k(H) = N(T1 − λ0I) ⊕ R(T1 − λ0),

where λ0 /∈ σ(S). Therefore,

T−λ0 =

 0 0 T21
0 S − λ0 T22
0 0 T3 − λ0

 =
(

0 A
0 B

)
on H = N(T1−λ0I)⊕R(T1 − λ0)⊕N(T ∗k),

where B =
(
S − λ0 T22

0 T3 − λ0

)
.

Since B is an invertible operator on R(T1 − λ0) ⊕ N(T ∗k), a direct calculation shows that
p(T − λ0) = q(T − λ0) = 1. Thus λ0 is a simple pole of the resolvent of T . By observing
that Pλ0 is the Riesz idempotent of T relative to λ0 we have

Pλ0H = N(T − λ0).

�

Following [5, Corollary 4.3], it was observed that if T ∈ B(H) is (n,m)-power normal,
then T is isoloid and polaroid.

Corollary 2.30. Let T ∈ B(H) be k-quasi-(n,m)-power normal. If 0 /∈ isoσ(T ), then T
is isoloid.

Proof. Assume that 0 ̸= λ ∈ isoσ(T ). In view of Theorem 2.29, we have

PλH = N(T − λ) ̸= {0}, for Pλ ̸= 0.

Therefore λ ∈ σp(T ). Hence, every nonzero isolated point of T is an eigenvalue of T .
Therefore T is isoloid. �

3. Algebraically k-quasi-(n, m)-power normal operators
An operator T ∈ B(H) is said to be algebraically (n,m)-power normal if there exists a

nonconstant polynomial Q ∈ C[z] such that Q(T ) is an (n,m)-power normal operator.
In general, the following implications hold:

normal ⇒ n-normal ⇒ (n,m)-power normal ⇒ algebraically (n,m)-power normal.

Lemma 3.1. Let T ∈ B(H) be (n,m)-power normal and µ ∈ C. If σ(T ) = {µ}, then there
exists a positive integer j such that T j = µjI.
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Proof. We consider two cases:

(i) µ = 0. Under the assumption that T is (n,m)-power normal, it follows that T j is
normal where j is the least common multiple of n and m. Hence T j is normaloid. Hence
T j = 0.

(ii) µ ̸= 0. Obviously, T is invertible, and (n,m)-power normal. So T−1 is also (n,m)-

power normal. Therefore T−j is normaloid. Moreover, σ(T−j) =
{ 1
µj

}
. Hence

∥∥T j
∥∥∥∥T−j

∥∥ =
∣∣µj

∣∣∣∣ 1
µj

∣∣ = 1.

In view of [19, Lemma 3], we deduce that T j is convexoid, so W (T j) = {µj}, where
W (T j) is the numerical range of T j . Therefore T j = µjI. �
Lemma 3.2. If T ∈ B(H) is quasinilpotent algebraically (n,m)-power normal, then T is
nilpotent.

Proof. Suppose that Q(T ) is (n,m)-power normal for some nonconstant polynomial Q.
From the fact that σ(Q(T )) = Q(σ(T )) = {Q(0)}, by Lemma 3.1 there exists a positive
integer j such that Q(T )j −Q(0)j = 0. Set P (z) = Q(z)j −Q(0)j .
We observe that P (0) = 0 and P (T ) = 0. Hence

P (T ) = aT k(T − µ1)(T − µ2) · · · (T − µr) = Q(T )j −Q(0)j = 0 (where k ≥ 1).
By observing that T − µs is invertible for each µs ̸= 0 , we must have T k = 0. �
Theorem 3.3. Let T ∈ B(H) be an algebraically (n,m)-power normal operator. If T − µ
is an algebraically (n,m)-power normal operator for µ ∈ isoσ(T ), then T is isoloid.

Proof. Assume that µ ∈ isoσ(T ) and consider Pµ := 1
2iπ

∫
∂D(µ,r)−

(
λ− T

)−1
dλ

the Riesz idempotent of T associated to µ, where D(µ, r)− is a closed disk centered at µ
which contains no other point of σ(T ). Then, T can be written as

T =
(
T1 0
0 T2

)
with σ(T1) = {µ} and σ(T2) = σ(T ) − {µ}.

By the assumption that T is algebraically (n,m)-power normal operator, it follows that
there exists a nonconstant polynomial Q for which Q(T ) is (n,m)-power normal. From
the equality σ(T1) = {µ}, we have

σ(Q(T1)) = Q(σ(T1)) = {Q(µ)}.
Hence Q(T1)−Q(µ) is quasinilpotent. Since Q(T1) is (n,m)-power normal, it follows from
Lemma 3.1 that there exists a positive integer j for which

Q(T1)j −Q(µ)j = 0.
Put q(z) := Q(z)j−Q(µ)j . Then q(T1) = 0, and so T1 is algebraically (n,m)-power normal.
By observing that T1 −µ is quasinilpotent and algebraically (n,m)-power normal, we have
from Lemma 3.2 that T1 − µ is nilpotent. Consequently, µ ∈ π(T1), and hence µ ∈ π(T ).
This means that T is isoloid. �

An operator T ∈ B(H) is called algebraically k-quasi-(n,m)-power normal, if there
exists a nonconstant polynomial Q ∈ C[z] such that Q(T ) is k-quasi-(n,m)-power normal.

Proposition 3.4. Let T ∈ B(H) be a quasinilpotent algebraically k-quasi-(n,m)-power
normal. Then T is nilpotent.
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Proof. Since T is an algebraically k-quasi-(n,m)-power normal operator, there exists a
nonconstant polynomial Q for which Q(T ) is k-quasi-(n,m)-power normal. If

(
Q(T )

)k

has dense range, then Q(T ) is an (n,m)-power normal operator. Hence T is algebraically
(n,m)-power normal and it follows from Lemma 3.2 that T is nilpotent. So we assume that
R

(
Q(T )

)k is not dense. From Theorem 2.13 we can write Q(T ) on the upper triangular
matrix from

Q(T ) =
(
S R
0 V

)
on H = R

(
Q(T )k

)
⊕ N

(
Q(T )∗k)

,

where S := Q(T )
∣∣R(

Q(T ))k
)

is an (n,m)-power normal operator and σ(Q(T ) = σ(S)∪{0}.
Since T is quasinilpotent we have from spectral mapping theorem that

σ(Q(T )) = Q(σ(T )) = {Q(0)}.
Therefore Q(T )−Q(0) is quasinilpotent. Moreover σ(S)∪{0} = {Q(0)} implies Q(0) = 0.
Hence Q(T ) is quasinilpotent. However Q(T ) is a k-quasi-(n,m)-power normal operator,
by Theorem 2.23, Q(T ) is nilpotent.
On the other hand, by Q(0) = 0, we have

Q(z) = a.zj0
(
z − λ1

)j1 · · ·
(
z − λq

)jq ,

where λr ̸= λs for r ̸= s. Consequently,

0 =
(
Q(T )

)p = apT j0p(
T − λ1

)j1p · · ·
(
T − λq

)jqp
.

Since σ(T ) = {0} , (T −λ1), (T −λ2), · · · , (T −λq) are invertible, we have T j0p = 0. Hence
T is nilpotent. �
Proposition 3.5. Let T ∈ B(H) be an algebraically k-quasi-(n,m)-power normal opera-
tor. If T − µ is an algebraically k-quasi-(n,m)-power normal operator for µ ∈ isoσ(T ),
then T is polaroid and isoloid.

Proof. Since T is algebraically k-quasi-(n,m)-power normal operator, there exists a non-
constant polynomial Q such that Q(T ) is a k-quasi-(n,m)-power normal operator. Let
µ ∈ isoσ(T ) and consider the spectral projection,

Pµ = 1
2iπ

∫
∂D(µ,r)−

(
λ− T

)−1
dλ,

where D(µ, r)− is a closed disk of center µ such that D(µ, r)− ∩σ(T ) = {µ}, we can write T

as the direct sum T =
(
T1 0
0 T2

)
, with σ(T1) = {λ1} and σ(T2) = σ(T ) − {µ}. We have

Q(T ) =
(
Q(T1) 0

0 Q(T2)

)
and by the fact that Q(T ) is a k-quasi-(n,m)-power normal

operator, it follows that Q(T1) is a k-quasi-(n,m)-power normal operator, i.e., T1 is an
algebraically k-quasi-(n,m)-power normal operator, so is T1 − µ. Since σ(T1 − µ) = {0},
it follows that T1 − µ is quasinilpotent and hence nilpotent (from Proposition 3.4). This
means that T1 − µ has finite ascent and descent.

Since T2 −µ is invertible, clearly it has finite ascent and descent. Hence T −µ has finite
ascent and descent, and hence µ is a pole of the resolvent of T . Thus µ ∈ isoσ(T ) =⇒
µ ∈ π(T ), and so isoσ(T ) ⊂ σ(T ). Hence T is polaroid. �

Proposition 3.6. Let T ∈ B(H) be an algebraically k-quasi-(n,m)-power normal opera-
tor. Then T has Bishop’s property (β).
Proof. Since T is algebraically k-quasi-(n,m)-power normal, Q(T ) is k-quasi-(n,m)-
power normal for some nonconstant polynomial Q, and so it follows from Theorem 2.21
that Q(T ) has Bishop’s property (β). Therefore T has Bishop’s property (β) from [17,
Theorem 3.3.9]. �
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Corollary 3.7. Let T ∈ B(H) be algebraically k-quasi-(n,m)-power normal. Then T has
SVEP.

4. Tensor product for k-quasi-(n, m)-power normal operators
Given T ∈ B(H) and S ∈ B(H) with T ̸= 0 and S ̸= 0, let T ⊗ S be the tensor

product on T and S. It is known that T ⊗ S ∈ B(H ⊗ H). In [26] it was shown that
the tensor product of T and S is normal if and only if T and S are normal and in [23] it
was observed that the tensor product of two normaloid operators is normaloid. However
there exist paranormal operators such that their tensor product is not paranormal (see
[8]). The study of tensor products of members of the class A, class A(k), and ∗-class A

operators was considered in [10, 11, 14]. Panayappan et al. [20] proved that T, S ∈ Ak if
and only if T ⊗ S ∈ Ak operators.

In this section, we prove an analogues property for k-quasi-(n,m)-power normal oper-
ators.

Tensor product of two non-zero operators T and S satisfies the following identities:

(1)
(
T ⊗ S

)∗(
T ⊗ S

)
= T ∗T ⊗ S∗S.

(2)
(
T ⊗ S

)k = T k ⊗ Sk, k ∈ N.

Proposition 4.1 ([26, Proposition 2.1]). Let Aj ∈ B(H) and Bj ∈ B(H) for j = 1, 2 are
nonzero operators, then A1 ⊗B1 = A2 ⊗B2 if and only if there exists c ∈ C\{0} such that
A2 = cA1 and B2 = c−1B1.

Theorem 4.2. Let S ∈ B(H) and T ∈ B(H) such that S, T ̸= 0. Then T ⊗ S is k-quasi-
(n,m)-power normal if and only if one of the following conditions holds:

(i) T and S are k-quasi-(n,m)-power normal operators.
(ii) There exists a constant c ∈ C\{0} such that

T ∗kTnT ∗mT k = cT ∗k+mT k+m,

S∗kSnS∗mSk = 1
cS

∗k+mSk+m.

Proof. A direct calculation shows that(
T ⊗ S

)∗k
[(
T ⊗ S

)n(
T ⊗ S

)∗m −
(
T ⊗ S

)∗m(
T ⊗ S

)n
](
T ⊗ S

)k

= T ∗kTnT ∗mT k ⊗ S∗kSnS∗mSk − T ∗kT ∗mTnT k ⊗ S∗kS∗mSnSk.

Hence, if either (i) or (ii) hold, clearly T ⊗ S is k-quasi-(n,m)-power normal.
Conversely, assume that T ⊗ S is a k-quasi-(n,m)-power normal operator. From the

above equality

T ∗kTnT ∗mT k ⊗ S∗kSnS∗mSk = T ∗kT ∗mTnT k ⊗ S∗kS∗mSnSk

= T ∗k+mT k+mS∗k+mSk+m.

In view of Proposition 4.1 there is a constant c ̸= 0 for which
T ∗kTnT ∗mT k = cT ∗k+mT k+m,

S∗kSnS∗mSk = 1
cS

∗k+mSk+m.

If c = 1, then T and S are k-quasi-(n,m)-normal operators and if c ̸= 1, then T and S
satisfy the condition (ii). �

Lemma 4.3. If T ∈ B(H), then T is a k-quasi-(n,m)-power normal operator if and only
if T ⊗ I (or I ⊗ T ) is k-quasi-(n,m)-power normal.
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Theorem 4.4. Let T ∈ B(H) and S ∈ B(H) be k-quasi-(n,m)-power normal operators.
Then T ⊗ S is k-quasi-(j, p)-power normal for every p ∈ N, where j = LCM(n,m).

Proof. It is well known that

T ⊗ S =
(
T ⊗ I

)(
I ⊗ S

)
=

(
I ⊗ S

)(
T ⊗ I

)
.

Since T and S are k-quasi-(n,m)-power normal, we deduce from Lemma 4.3 that T ⊗ I
and I ⊗ S are k-quasi-(n,m)-power normal operators. Applying Theorem 2.20 it follows
that T ⊗ S is a k-quasi-(j, p)-power normal operator. �

Corollary 4.5. Let T ∈ B(H) and S ∈ B(H) be k-quasi-(n,m)-power normal operators.
Then T j ⊗ Sj is k-quasi-(1, 1)-power normal, where j is the least common multiple of n
and m.

Proof. From Corollary 2.15, it is known that T j and Sj are k-quasi-(1, 1)-power normal,
where j = LCM(n,m). Hence T j ⊗ Sj is a k-quasi-(1, 1)-power normal operators by
Theorem 4.4. �
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[4] M. Chō and B.N. Nac̆tovska, Spectral properties of n-normal operators, Filomat, 32

(14), 5063–5069, 2018.
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