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Abstract

We introduce a family of operators called the family of k-quasi-(n, m)-power normal
operators. Such family includes normal, n-normal and (n, m)-power normal operators.
An operator T € B(H) is said to be k-quasi-(n, m)-power normal if it satisfies

where k,n and m are natural numbers. Firstly, some basic structural properties of
this family of operators are established with the help of special kind of operator ma-
trix representation associated with such family of operators. Secondly, some properties of
algebraically k-quasi-(n,m)-power normal operators are discussed. Thirdly, we consider
the study of tensor products of k-quasi-(n, m)-power normal operators. A necessary and
sufficient condition for T'® S to be a k-quasi-(n, m)-power normal is given, when T # 0
and S # 0.
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1. Introduction

Let H be a complex Hilbert space and B(H) be the C*-algebra of all bounded linear
operators defined on H. For every T" € B(H), denote the range, the nullspace and the
adjoint of T by T(H) (= R(T)), N(T)(= T~1(0)) and T*, respectively. A closed subspace
M of H is invariant if T(M) C M and in addition, if 7*(M) C M, then M is called a
reducing subspace for T. The closure of a subset F' of 3 will be denoted by F. For
any arbitrary operator 7' € B(H), we will denote the point spectrum, the approximate
spectrum, the spectrum, the surjective spectrum, and the essential spectrum of T by
op(T), 04(T), o(T), 05(T), and o.(T"), respectively.

For any T' € B(H), set [T*,T]| =T*T —TT*.

(1) T is normal if [T, T*] =0,

(2) T is paranormal if || Tu||? < ||T?ul|||u|| for all u € K.

(3) T is normaloid if ||T'|| = r(T'), where r(T) is the spectral radius of T" [8].
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(4) T belongs to class A if [T?| > |T)? [13].
Recently, I.LH. Jeon et al. in [11] have extended class A operators to quasi-class A operators.
An operator T' € B(H) belongs to quasi-class A if

T*(|T2| - |Ty2)T > 0.

For further generalization, Tanahashi et al. [27] introduced the class of k-quasi-class A
operators. T is said to be a k-quasi-class A operator if

(172~ 17 ) ¥ > 0,

where k is a positive integer. An operator S € B(H) is said to be k-quasi-paranormal
operator [24] if

1S5 < [[S%2ul ||| SPull,
for every u € H , k is a natural number.

A generalization of normal operators to the concept of n-normal operators has been

introduced and studied by A.A. Jibril [12] and S.A. Alzuraiqi et al. [3]. An operator T is
called n-normal if T"T™* = T*T". Very recently, several papers have appeared on n-normal
operators. We refer to [4,5, 18] for complete study.
An operator T' € B(H) is called (n, m)-power normal if 7"7T*™ —T*™T™ = 0 and it is said
to be (n, m)-power quasi-normal if (7T —T*™T™)T = 0 where n, m be two nonnegative
integers. We refer the reader to [1], [2] and [5] for complete details on these families of
operators.

Recall that an T' € B(H) have the single-valued extension property (SVEP) if for every
open subset U of C and any analytic function f : U — H for which (T"— \) f(A) =0 on
U, we have f(A\) =0 on U. T € B(H) has Bishop’s property (3) if, for every open subset
D of C and every sequence g, : D — H of analytic functions with (T'— u)g, (1) converges
uniformly to 0 in norm on compact subsets of D, and g, (u) converges uniformly to 0 in
norm on compact subsets of .

An operator T € B(H) is called scalar of order m s.t. 0 < m < oo if there exists a
continuous unital homomorphism of topological algebra 1 : CJ*(C) — B(H) for which
Y(z) =T, where CJ*(C) is the Fréchet space of all continuously differentiable functions of
order m with compact support. T is subscalar of order m if it is similar to the restriction
of a scalar operator of order m to an invariant subspace. An operator 7' € B(XH) is called
algebraic if there is a nonconstant polynomial ) € C[z] for which Q(T") = 0. An operator
T € B(H) is said to be isoloid [4] if every isolated point of o(T") belongs to the point
spectrum of 7. An operator T' € B(H) is called polaroid [7] if n(T) = {u € isoo(T)},
where isoo(T) is the set of isolated points of the spectrum of T" and 7(7T) is the set of
poles of the resolvent of T. An operator T' € B(H) is quasinilpotent if o(T") = {0}.

This paper is devoted to some class of operators on the Hilbert space which is a gen-
eralization of normal, n-normal and (n,m)-power normal operators. More precisely, we
introduce a new class of operators which is called the class of k-quasi-(n, m)-power normal
operators. It is proved in Example 2.4 that there is an operator which is k-quasi-(n, m)-
power normal, but not (n,m)-power normal for some positive integers n,m and k, and
thus, the proposed new class of operators contains the class of (n, m)-power normal oper-
ators as a proper subset. In Section 2 we characterize this class of operators in terms of
(n, m)-power normal operators on the subspace R(T*) (Lemma 2.5). Other characteriza-
tions are given in Propositions 2.6, 2.7, 2.11 and Theorem 2.13. In Section 3, we study
algebraically k-quasi-(n, m)-power normal operators. Using the operator matrix repre-
sentation of k-quasi-(n, m)-power normal operators which is related to the (n,m)-power
normal operators, we prove that in many cases the algebraically k-quasi-(n, m)-power nor-
mal operators are very close (even are equal in some cases) to power-scalar, nilpotent,
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polaroid, operator with Bishop’s property () and the so-called SVEP operator. Section
4 is devoted to the tensor product for k-quasi-(n,m)-power normal operators, and some
new results are obtained.

2. k-quasi-(n, m)-power normal operators

In this section, the family of k-quasi-(n, m)-power normal operators is introduced. In
addition, we study several properties of members from this family of operators.

Definition 2.1. We say that T € B(H) is k-quasi-(n, m)-power normal if
T+ <T”T*m - T*mT”> T* = 0. (2.1)
for some positive integers k, n and m.

Remark 2.2. (1) A 1-quasi-(n, m)-power normal operator is a quasi-(n, m)-power normal
operator.
(2) If n =m =k =1, then (2.1) coincides with (T*T)2 =T*2T2 ie., T is a class
(Q) operator.
(3) Every k-quasi-(n, m)-power normal operator is a (k + 1)-quasi-(n, m)-power normal
operator.

Remark 2.3. We give an example which is k-quasi-(n, m)-power normal, but not (n, m)-
power normal.

0 0 0

Example 2.4. Let T = | 1 0 0 | € B(C?). Then T is k-quasi-(2, 1)-power normal,
010

but not (2, 1)-power normal.

In fact, we have T?T* — T*T? # 0. Hence T is not (2,1)-power normal. However
T*(T?T* — T*T?)T* = 0 for k = 1,2,--- . Therefore T is a k-quasi-(2, 1)-power nor-
mal.

Lemma 2.5. T' € B(H) is k-quasi-(n, m)-power normal if and only if it is (n, m)-power

normal on R(Tk).

Proof.

T is a k—quasi—(n, m)—power normal < T (T”T*m — T*mT") " =0
& <T*k(T"T*m - T*mT">Tk:r |2y =0,VzeH

& <(T”T*m - T*mT”> Trz | TFz)y =0, VeeX

& T —T"T" =0, on TFH).
0

Proposition 2.6. If T € B(H), then T is k-quasi-(n, m)-power normal if and only if T
is k-quasi-(m,n)-power normal.

Proof. This assertion is obvious. We omit this proof. U

Proposition 2.7. Let T € B(H) be a k-quasi-(n, m)-power normal. If N(T**) c N(T),
then T* is a k-quasi- (m,n)-power normal.
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Proof. As T is a k-quasi-(n, m)-power normal,
Under the assumption N(7T**) € N(T'), we obtain
and hence
So,
T(TmT*” - T*"Tm> T* =0,

which implies

Thus T* is a k-quasi-(m, n)-power normal. ]

In the following theorem, we give a sufficient condition for a k-quasi-(n, m)-power normal
operator to be a g-quasi-(n, m)-power normal.

Theorem 2.8. Let T' be a k-quasi-(n, m)-power normal operator. If N(T*7) = N(T*(a+1)
for some 1 < q<k—1, then T is a q-quasi-(n, m)-power normal.

Proof. Under the assumption that N(7T7*9) = N(T*(1) we have N(T*7) = N(T**) V k €
N, k> 2. From the hypothesis, T" is a k-quasi-(n, m)-power normal, then
Tk <T”T*m — T*mT”> T" = 0.
Since N(T*) = N(T**), then a direct computation shows that
T+ (T"T*m — T*mT"> T =0,
which implies that 7" is a g-quasi-(n, m)-power normal as required. ]

Remark 2.9. In the following example, we show that Theorem 2.8 is not true in general
if N(T*9) # N(T*a+1),
0 1

0 0

Hilbert space C2. Then a direct calculation shows that T is a 2-quasi-(1, 1)-power normal
but it is not a quasi-(1, 1)-power normal. However N(T*) # N(T*2).

Example 2.10. Consider the operator T = ( > acting on the two dimensional

Proposition 2.11. Let T be a k-quasi-(n, m)-normal operator and let M be a closed
subspace of H which reduces T'. Then T‘M is a k-quasi-(n, m)-power normal.

Proof. Under the assumption that M is a reducing subspace of T', then

_(T1 O _ 1
T—( 0 T3> on H=MM-—.

From the fact that T is k-quasi-(n, m)-power normal, we have

T*k <TnT*m _ T*an> Tk =0.
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Hence
oo N /oo (T o N (T oo N/ o N\ (T 0\
0 1Tj 0 T3 0 1Tj 0 1Tj 0 T3 0 1Tj
=0.
Therefore
LRI =TT TE 00 _
0 v ) 7
for some operator V. This means that
TP — T T TE = 0.
Consequently, T = T'|M is k-quasi-(n, m)-power normal. O

Proposition 2.12 ([18]). Let T € B(H) be n-power normal. The following assertions
hold.
(1) T™(H) reduces T.

(2) T has the following matriz representation

_(Th O _ TR n
T—( 0 T2> on H =T7(H) & N(T*™),

where Ty = T|T™(H) is also n-power normal, Ty is nilpotent. Furthermore o(T) =
o(Ty) U{0}.

Now we give an equivalent condition for 7" to be k-quasi-(n, m)-power normal operator.
Using this result we obtained several important properties of this class of operators.

Theorem 2.13. Let T € B(H) such that TF(H) # H. The following properties are
equivalent.

(1) T is a k-quasi-(n, m)-power normal.

(2) T = ( 7(;1 ;2 ) on H = Tr(H) & N(T**), where Ty is an (n, m)-power normal
3

operator and T¥ = 0. Therefore o(T) = o(Ty) U {0}.

Proof. Since T*(3) S H is an closed invariant subspace of T, T' can be written as

T = < :I(;l % >, relative to H = T*(R) @ N(T*F).

~

Assume that T is a k-quasi-(n, m)-power normal operator and let P = ( ! 8 > be the

o

projection onto T*(H), where I; = I|Tk(H). It follows that
and so that
Ty™ — Ty = 0.

Hence T; is an (n, m)-power normal operator.

On the other hand, let u = uy + up € H = Tk(H) @ N(T**). A simple computation shows
that

(T¥ug,us) = (T*(I — P)u, (I — P)u)
= ((I = P)u, T**(I — P)u) = 0.
So, Th = 0.
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In view of [16, Corollary 7], it follows that o(T)UV = o(T1) Uo(T3), where V is the union
of certain of the holes in o(7") which is a subset of o(T1) N o(73). Further o(73) = {0}
and o(11) No(T3) has no interior points. So we have by [16, Corollary 8]

o(T)=o0(T1)Uo(Ts) = o(T1) U{0}.

(2) = (1) Suppose that T = ( :I(;l ? ) onto H = R(T*) @ N(T**) , such that
3
A™(T) == TPT™ — Ty =0 and T4 = 0.
k-1 i
TV Ty Ty~
Since T" = jz:% 15273 we have
0 %

1—,1 T2 n Tl T2 *1M Tl
0 T3 0 173 0 T3 T3

(DD k
0 Ty
Tk 0
ko1 ZTJTT" 1-j
STy Tk x
3 2 3

Tl*m 0

(0

1
ZT*”’ iy TEm
7=0 0
Tl*m 0 n—1 L
m—1 i TITy Ty

ZTJT Tyt
DI S A P =0

X

k
=0 Ty

0
Tk 0 m k-l .
B b1 . ' y An (Tl) C y le; ZTfTQT:f*l*]
- Pl s ) =1
Z b B 0 0
n—1
Ty AT TF TrEAT(Ty) Y T ToTy
Jj=1
B n—1 ) N ¥ k—1 ) N\ * k—1 ) )
(Cnnr=) arart (Crnr) apm (L rn )
Jj=1 j=1 j=1

The condition A™(T}) = 0 implies that T** (T"T*m — T*mT") TF = 0. Hence T is a

k-quasi-(n, m)-power normal. O

Proposition 2.14. Let T' € B(H). The following properties hold.
(1) If T is k-quasi-(n, m)-power normal and k-quasi-(n + 1, m)-power normal, then T
is k-quasi-(n + 2, m)-power normal.
(2) If T is k-quasi-(n, m)-power normal and k-quasi-(n, m + 1)-power normal, then T
is k-quasi-(n, m + 2)-power normal.

Proof. (1) If T*(H) = H, then by Lemma 2.5, T' is (n, m)-power normal and (n + 1,m)-
power normal. From [1, Proposition 1.11] we deduce that 7" is (n 4 2, m)-power normal.
So, T is a k-quasi-(n + 2, m)-power normal operator.

If TF(H) # H, we can write T = < 1(;1 % )7 relative to 3 = T*(3) @ N(T**), where

= T|T*(H) is both (n,m)- and (n + 1, m)-power normal. Moreover 7§ = 0. In view
of [1, Proposition 1.11], T3 is (n + 2, m)-power normal. By applying Theorem 2.13, we
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deduce that T is k-quasi-(n + 2, m)-power normal.

(2) This proof is similar to the statement (1). So, we omit this proof. O

Corollary 2.15. Let T € B(K) be a k-quasi-(n, m)-power normal operator. Then T7 is
k-quasi- (1,1)-power normal, where j is the least common multiple (LCM) of n and m.

Proof. If T*(H) is dense then T is an (n, m)-power normal operator and therefore T 7

j = LCM(n,m), is normal by [4, Lemma 4.2]. Since 77 is normal it is (1,1)- power

normal and hence k-quasi-(1, 1)-power normal. Now assume that 7%(J) is not dense, by

Theorem 2.13 we have T' = ( 1(;1 ;2 ) on H = T(H) & N(T*), where T1 = T|T*(H) is
3

an (n, m)-power normal operator and T¥ = 0. We notice that

R ,
i | T LT
- r=0 . ’
0 Ty

where TV is a normal operator ([4, Lemma 4.2]) and (Tg )k = 0. Hence T7 is an k-quasi-
(1,1)-normal operator by Theorem 2.13. O

Recall that two operators T' € B(H) and S € B(H) are said to be similar if there exists
an operator Z € B(XH) which is invertible such that ZT = SZ, i.e, T = Z 'SZ or
S=2TZ"

Corollary 2.16. Let T € B(H) be a k-quasi-(n,m)-power normal operator such that
= ( 7(;1 ? > on H = R(TF) @ N(T**). If Ty is invertible, then T is similar to a direct
3

sum of an (n,m)-power normal and a nilpotent operator.

Proof. Since 0 ¢ o(T) and T3 is nilpotent, then o(T7) No(T5) = (). Then from [22] there
exists an operator S satisfying 115 — ST5 = 15 . Hence

(5 R)=(5 1) (3 2)(69)

Consequently, the desired result follows from Theorem 2.13. O

Proposition 2.17. Let T € B(H) be k-quasi-(2, m)-power normal and k-quasi-(3,m)-
power normal for some m € N, then T is k-quasi-(n, m)-power normal for all n > 4.

Proof. Indeed, under the assumptions that 7" is a (2, m)-power normal and a k-quasi-
(3, m)-power normal operator, we have the following two cases.

If TF(H) = K, then T is a (2, m)-power normal and (3, m)-power normal and hence

T is (n,m)-power normal by [25, Proposition 2.4]. If T*(3) # H, then T on H =
Tk(H) @ N(T**) may be written as a matrix T = ( 1(;1 ;2

3
normal and (3, m)-power normal. Hence T is (n, m)-power normal by [25, Proposition 2.4].
Moreover Tf = 0. Consequently, T" is k-quasi-(n, m)-power normal by Theorem 2.13. [

), where T} is (2, m)-power

Proposition 2.18. Let T be k-quasi-(n, 2)-power normal and k-quasi-(n, 3)-power normal
for some n € N. Then T is k-quasi-(n, m)-power normal for all integer m > 4.

Proof. We omit the proof since the techniques are similar to the proof of Proposition
2.17. O
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Theorem 2.19. Let T € B(H) such that T* does not have dense range. Assume that

Ty T
T= ( 01 T2 > is k-quasi-(n, m)-power normal for some positive integers n and m such
3

that n > m. If T{™ is a partial isometry, then T is k-quasi-(n + m, m)-power normal.

Proof. Since T is k-quasi-(n.m)-power normal, it follows from Theorem 2.13 that 77 =
T|Tk(H) is (m,n)-power normal and 7§ = 0. The assumption that 77" is a partial
isometry implies that T} is (n+m, m)-power normal operator by [25, Theorem 2.4]. Hence,
by Theorem 2.13, T' is k-quasi-(n + m, m)-power normal. O

Theorem 2.20. Let T € B(H) and S € B(H) be commuting k-quasi-(n, m)-power normal
operators, then TS is k-quasi-(j,p)-power normal for every p € N, where j is the least
common multiple of n and m.

Proof. (i) If Tk(H) = H = Sk(3(), then T and S are (n, m)-power normal operators. It
follows from [4, Theorem 4.4] that T'S is (j, p)-power normal for every p € N, where j is
the least common multiple of n and m. Hence, T'S is k-quasi-(j, p)-power normal.

(i) If T*(H) # H # S*(H), in view of Theorem 2.13, we have

(T T> =y wk
T= ( 0 T ) on H = T#(H) @ N(T™)
with 7} = T|T*(H) is (n, m)-power normal and T§ = 0.

Similarly,

S S o N
S:< 0 Si) on 3 = S(30) & N(5*)

where S1 = S[S¥(H) is (n, m)-power normal and S§ = 0.
By observing that 71|(ST)*(H) and S1|(ST)*(H) are (n, m)-power normal operators, it

follows from [4, Theorem 4.4] that 7157 is (j, p)-power normal. Moreover, (T353)% = 0.
Hence we have for the decomposition

I AAT  TONETRR *k
TS — < A ) on K = (TS)F(H) & N((TS)™),
1181 |(ST)*(H) is (j,p)-power normal and (7355)% = 0. Therefore T'S is a k-quasi-(j, p)-
power normal operator by Theorem 2.13.

(iii) If T*(H) = H # Sk(H), we can write

N T 0 o S1 S _ Qk(U) *k
T—(O 0) and S—(O 53) on H = Sk(FH) @ N(S™),

where T is (n, m)-power normal and S; is (n, m)-power normal on S¥(H). Clearly, T'S =
TS, TS,

( 0 0

(ii) we can see that T'S is k-quasi-(n, m)-power normal.

) and moreover T'S1 is (n,m)-power normal. By a similar argument as in

(iv) We omit the case when T*(H) # H = S*(H) because the proof is similar to the one
given in (iii) since ST =T'S. O

Theorem 2.21. If T € B(H) is k-quasi-(n, m)-power normal, then T has Bishop’s prop-
erty (B).

Proof. We consider two cases:
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(1) If T*(H) is dense, then T is an (n, m)-power normal operator and hence T is decom-
posable (by [4, Lemma 4.2]. So, T" has Bishop’s property (3).

(2) If T*(3H) is not dense, by Theorem 2.13, we write T on 3 = T*(H) @N(T**) as follows:
(T T>
= ( 0 T3 )
with T} is an (n, m)-power normal operator on T%(H) and T¥ = 0.

Let g (1) be analytic on D C C with (7" — p)gr () — 0 uniformly on each compact K of
D. Then

( Ti—p T ) ( Ik, (1) ) ( (T1 — 1) gry (1) + Togr, (1) )
= — 0.
0 T3 —p Ik (1) (T3 — 1) Gp ()

Since T3 is nilpotent, T3 satisfies Bishop’s property (5). Thus, gk, (1) — 0 uniformly on
each compact K of D. Therefore, (71 —p) gk, (1) — 0 as k; — oo. Since T} satisfies Bishop’s
property, it follows that g, (1) — 0 and so T has Bishop’s property (3) as required. [0

Corollary 2.22. Let T € B(H) be k-quasi-(n, m)-power normal, then T' has SVEP.

In [18], it was proved that if T is quasinilpotent n-normal operator, then 7" is nilpotent
and in [4] it was proved that a quasinilpotent (n, m)-normal operator is nilpotent. In the
following theorem, we extend this result to k-quasi-(n, m)-power normal operators.

Theorem 2.23. If T € B(H) is k-quasi-(n, m)-power normal and quasinilpotent, then T
is nilpotent, and hence subscalar.

Proof. Assume that Tk(3H) = H, then T is (n, m)-power normal. By [4, Theorem 4.3], T
is nilpotent. Therefore T is algebraic and hence T is subscalar by [15]. So we may assume
that Tk(H) # H. Hence by Theorem 2.13, we write

(T T _ TR «k
T = < 0 T ) on H = TF(H) @ N(T™*),
with T} is an (n,m)-power normal operator, T = 0 and o(T) = o(7T1) U {0}.

Since o(T1) # 0 and o(T) = {0}, we see that o(T1) = {0}. Therefore T} is quasinilpotent
(n, m)-power normal. Hence T} is nilpotent. Then 7} = 0, for some positive integer g.
An easy computation yields

k
k+q _ papk 0 U 1w v —
T TT(O T3q><0 ') =0
Consequently, T is nilpotent and hence algebraic. So, T" is subscalar ([15]). O

Recall that an operator X € B(H) satisfying X ~1(0) = {0} and X (3) = H is called

quasiaffinity. Let TS € B(H). S is said to be a quasiaffine transform of 7" if there is a
quasiaffinity X such that XS = TX. Furthermore, S and T are quasisimilar if there are
quasi-affinities X and Y such that XS =TX and SY =YT .
A B
0 C
normal operator and C* = 0 for some integer k € N, then T is similar to a k-quasi-
(n, m)-power normal operator.

Proof. Under the conditions A(H) = H and C'is nilpotent, we have o5(A)No,(C) = 0. In
view of the statement (c) in [17, Theorem 3.5.1], it follows that there exists some operator
R € B(H) for which AR — RC = B. Since

(or)(0e)=(5e)(ar)

Theorem 2.24. Let T = ( ) € B(Hao H). If Ais a surjective (n,m)-power
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it easy to see that T is similar to S = ( 61 g, ) .

From the assumptions that A is (n, m)-power normal and C*F =0, we get

S*k <SnS*m o S*msn) Sk
(A0 A" 0 A0\ A0 A0
o 0 C** 0o Ccn o o 0o o™ 0o cn
y Ak 0
0 C*

B A*k (AnA*m _ A*mAn)Ak 0
o 0 0
= 0.

Thus T is similar to a k-quasi-(n, m)-power normal operator. ]
Question 2.25. If A, B and C € B(H) are such that A is an (n, m)-power normal operator

A B)GB(H@%)&

and C¥ = 0 for some k € N, then is the operator matrix 7' = < 0 C

k-quasi-(n, m)-power normal operator?

The following example gives a negative answer to the Question 2.25.

Example 2.26. Let T = ( é é ) € B(H @ H). Obviously, A = I is (n,m)-power
normal and C* = 0¥ = 0. On the other hand, we observe that 79 = ( é é ) for all

g > 1 and easy calculation shows that

I 1
*k nrpoxm pkmen k _
T(TT TT)T-(II>7EO.
Therefore, T is not a k-quasi-(n, m)-power normal operator for all positive integers n,m
and k.

It was observed in [6, Lemma 4.1] that quasisimilar normal operators are unitarily
equivalent. Therefore quasisimilar normal operators have equal spectra and essential
spectra. The following theorem extended these properties to k-quasi-(n,m)-power nor-
mal operators.

Theorem 2.27. Let T € B(H) and S € B(H) be quasisimilar k-quasi-(n, m)-power
normal operators, then o(T) = o(S) and oo(T) = 0(S).

Proof. In view of Theorem 2.21, we have that 7" and S satisfy the Bishop’s property (53).
The proof follows from [21]. O

Definition 2.28 ([18]). Let T € B(H).

(1) The ascent of T is the smallest nonnegative integer p = p(7T') such that N(7?) =
N(TP+Y). If such integer does not exist, then we put p(T) = co.

(2) The descent of T' is defined as the smallest nonnegative integer ¢ = ¢(7") such that
T9(H) = T9TH(H). If such integer does not exist, then we put ¢(T') = oo.

If p(T") and ¢(T") are both finite then p(T") = ¢(T) by [9, Proposition 38.6].

Recall that for ;1 € isoo(T), the Riesz idempotent (spectral projection) P, of T relative

1 _

to u is given by P, = %in / (z=1T) 1dz, where D is a closed disk with center at u and
1T J oD

radius small such that DN o (T) = {u}.
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Theorem 2.29. Let T' € B(H) be k-quasi-(n, m)-power normal for some integers n,m
and k € N. Let 0 # A\ € isoa(T') and Py, the Riesz idempotent for N\g. Then \g € 7(T)
and

Py = N(T — Mol).
Therefore Ao € op(T).

Proof. If the range T*(H) is dense, then T is an (n, m)-power normal operator and the

theorem holds by Theorem 3.6 in [5]. Assume that T%(H) # H. Let

AT By «k
T-( 0 T3> on H = TF(H) & N(T™).

Theorem 2.13 implies that T} is (n, m)-power normal on T*(H) and o(T) = o(T1) U {0}.
If 0 # N\p € iso0(T), then \g € isoo(T). Therefore )\ is a simple pole of the resolvent of
T} and T} has the representation

T, = ( Ao 0 ) OHWZN(TI_)\OI)@W’

where \g ¢ o(5). Therefore,

0 0 Toy 0 A
T-x=[0 S—r Tm |= ( 0 ) on H = N(Ti—MoT)@R(T1 = Ag)ON(T™),
0 0 Ty

WhereB:<S_)\0 Ty >

0 T3 — )Xo

Since B is an invertible operator on R(T} — \g) @ N(T**), a direct calculation shows that
p(T — Xo) = q(T — Ag) = 1. Thus \g is a simple pole of the resolvent of T'. By observing
that Py, is the Riesz idempotent of 7" relative to A\g we have

Py, = N(T — \o).
]

Following [5, Corollary 4.3], it was observed that if T' € B(H) is (n, m)-power normal,
then T is isoloid and polaroid.

Corollary 2.30. Let T € B(H) be k-quasi-(n, m)-power normal. If 0 ¢ isoo(T'), then T
is isoloid.
Proof. Assume that 0 # A\ € isoo(T'). In view of Theorem 2.29, we have

P\H =N(T — \) # {0}, for Py # 0.

Therefore A € 0,(T"). Hence, every nonzero isolated point of T" is an eigenvalue of 7.
Therefore T is isoloid. O

3. Algebraically k-quasi-(n, m)-power normal operators

An operator T' € B(H) is said to be algebraically (n, m)-power normal if there exists a
nonconstant polynomial @ € C[z] such that Q(T') is an (n, m)-power normal operator.
In general, the following implications hold:

normal = n-normal = (n, m)-power normal = algebraically (n, m)-power normal.

Lemma 3.1. Let T € B(H) be (n,m)-power normal and i € C. If o(T) = {p}, then there
exists a positive integer j such that T7 = /1.
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Proof. We consider two cases:

(i) p = 0. Under the assumption that 7" is (n,m)-power normal, it follows that T/ is
normal where j is the least common multiple of n and m. Hence T7 is normaloid. Hence

T = 0.

(ii) u # 0. Obviously, T is invertible, and (n, m)-power normal. So T~! is also (n,m)-

power normal. Therefore T~/ is normaloid. Moreover, o(T77) = {j} Hence
.

L 1
T2 = 1wl 5 =1

In view of [19, Lemma 3], we deduce that T7 is convexoid, so W(T7) = {4/}, where
W (T7) is the numerical range of T7. Therefore 77 = /1. g

Lemma 3.2. If T € B(H) is quasinilpotent algebraically (n, m)-power normal, then T is
nilpotent.

Proof. Suppose that Q(T') is (n, m)-power normal for some nonconstant polynomial Q.
From the fact that o(Q(T)) = ( (T)) = {Q(0)}, by Lemma 3.1 there exists a positive

integer j such that Q(T)7 — Q(0)7 = 0. Set P(z) = Q(2)’ — Q(0)7.
We observe that P(0) =0 and P(T") = 0. Hence

P(T) = aT(T — m)(T = p2) -+ (T = ) = Q(T) = Q(0)’ = 0 (where k > 1).
By observing that T' — ju is invertible for each s # 0 , we must have 7% = 0. O

Theorem 3.3. Let T € B(H) be an algebraically (n, m)-power normal operator. If T —
is an algebraically (n, m)-power normal operator for u € isoo(T'), then T is isoloid.

1 _
Proof. Assume that p € isoo(T') and consider P, := —/ (A=T) Ldx
201 JoD(p,r)-
the Riesz idempotent of T" associated to u, where D(u, )~ is a closed disk centered at p

which contains no other point of o(T"). Then, T can be written as

T = ( 181 % ) with o(T1) = {u} and o(T) = o(T) — {u}.

By the assumption that 7" is algebraically (n, m)-power normal operator, it follows that
there exists a nonconstant polynomial @ for which Q(T') is (n, m)-power normal. From
the equality o(T1) = {u}, we have

o(Q(T1)) = Qo (T1)) = {Q(w)}-

Hence Q(T1) — Q(u) is quasinilpotent. Since Q(77) is (n, m)-power normal, it follows from
Lemma 3.1 that there exists a positive integer j for which

Q1) = Qu) =0.
Put q(2) := Q(2)—Q(p)?. Then ¢(T1) = 0, and so T} is algebraically (n, m)-power normal.
By observing that 77 — p is quasinilpotent and algebraically (n, m)-power normal, we have

from Lemma 3.2 that 77 — p is nilpotent. Consequently, u € w(77), and hence p € 7(T).
This means that T is isoloid. O

An operator T € B(H) is called algebraically k-quasi-(n,m)-power normal, if there
exists a nonconstant polynomial @) € C[z] such that Q(T) is k-quasi-(n, m)-power normal.

Proposition 3.4. Let T' € B(H) be a quasinilpotent algebraically k-quasi-(n, m)-power
normal. Then T is nilpotent.
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Proof. Since T is an algebraically k-quasi-(n, m)-power normal operator, there exists a

nonconstant polynomial @ for which Q(T) is k-quasi-(n, m)-power normal. If (Q(T))k

has dense range, then Q(T) is an (n, m)-power normal operator. Hence T is algebraically
(n, m)-power normal and it follows from Lemma 3.2 that T is nilpotent. So we assume that

R(Q(T))k is not dense. From Theorem 2.13 we can write Q(T') on the upper triangular
matrix from

S R STAT X
A = (5 1) on % =R@IP) o N@I)™),
where S := Q(T)|R(Q(T))¥) is an (n, m)-power normal operator and o(Q(T) = o(S)U{0}.
Since T is quasinilpotent we have from spectral mapping theorem that
o(Q(T)) = Q(o(T)) ={Q(0)}.
Therefore Q(T") — Q(0) is quasinilpotent. Moreover o(S)U{0} = {Q(0)} implies Q(0) = 0.
Hence Q(T) is quasinilpotent. However Q(T') is a k-quasi-(n, m)-power normal operator,

by Theorem 2.23, Q(T) is nilpotent.
On the other hand, by Q(0) = 0, we have

Q) = a2 (z = M) - (2= A",
where A, # A for r # s. Consequently,
0= (Q(T))" = aPTP(T — M) (T = A)"".
Since o(T) = {0} , (T — 1), (T —A2),- -+, (T —),) are invertible, we have TP = (. Hence
T is nilpotent. 0

Proposition 3.5. Let T' € B(H) be an algebraically k-quasi-(n, m)-power normal opera-
tor. If T'— p is an algebraically k-quasi-(n, m)-power normal operator for u € isoo(T),
then T is polaroid and isoloid.

Proof. Since T is algebraically k-quasi-(n, m)-power normal operator, there exists a non-
constant polynomial @ such that Q(T') is a k-quasi-(n, m)-power normal operator. Let
p € isoo(T) and consider the spectral projection,

1 -1
P=— A—1T) "t
" 2ir /am(m (=)

where D(p, )~ is a closed disk of center p such that D(p, )~ No(T) = {u}, we can write T'

as the direct sum 7' = ( {)1 792 ) , with 0(T1) = {M1} and 0(T3) = o(T') — {u}. We have
_( QM) O : :
QT = 0 Q(Ty) and by the fact that Q(7T) is a k-quasi-(n, m)-power normal

operator, it follows that Q(T}) is a k-quasi-(n, m)-power normal operator, i.e., T} is an
algebraically k-quasi-(n, m)-power normal operator, so is 71 — u. Since o(T1 — p) = {0},
it follows that T} — p is quasinilpotent and hence nilpotent (from Proposition 3.4). This
means that 77 — p has finite ascent and descent.

Since Th — p is invertible, clearly it has finite ascent and descent. Hence T — i has finite
ascent and descent, and hence p is a pole of the resolvent of T. Thus p € isoo(T) =
p € m(T), and so isoo(T') C o(T). Hence T is polaroid. O

Proposition 3.6. Let T € B(H) be an algebraically k-quasi-(n, m)-power normal opera-
tor. Then T has Bishop’s property (3).

Proof. Since T is algebraically k-quasi-(n, m)-power normal, Q(T) is k-quasi-(n,m)-
power normal for some nonconstant polynomial (), and so it follows from Theorem 2.21
that Q(7T) has Bishop’s property (5). Therefore T' has Bishop’s property () from [17,
Theorem 3.3.9]. O
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Corollary 3.7. Let T € B(H) be algebraically k-quasi-(n, m)-power normal. Then T has
SVEP.

4. Tensor product for k-quasi-(n, m)-power normal operators

Given T' € B(H) and S € B(H) with T"# 0 and S # 0, let T ® S be the tensor
product on 7" and S. It is known that T® S € B(H ® H). In [26] it was shown that
the tensor product of 7" and S is normal if and only if 7" and S are normal and in [23] it
was observed that the tensor product of two normaloid operators is normaloid. However
there exist paranormal operators such that their tensor product is not paranormal (see
[8]). The study of tensor products of members of the class A, class A(k), and *-class A
operators was considered in [10,11,14]. Panayappan et al. [20] proved that T, S € Ay if
and only if T ® S € Ay operators.

In this section, we prove an analogues property for k-quasi-(n,m)-power normal oper-
ators.

Tensor product of two non-zero operators 7" and S satisfies the following identities:

() (T®S) (TeS)=TT®S*S.
2) (T®S)" =Tk Sk keN.

Proposition 4.1 ([26, Proposition 2.1]). Let Aj € B(H) and Bj € B(H) for j =1,2 are
nonzero operators, then Ay @ By = Ay ® By if and only if there exists ¢ € C\{0} such that
Ay = cA, and By = ¢ ' B;.

Theorem 4.2. Let S € B(H) and T € B(H) such that S,T #0. Then T ® S is k-quasi-
(n, m)-power normal if and only if one of the following conditions holds:

(i) T and S are k-quasi-(n, m)-power normal operators.
(ii) There exists a constant ¢ € C\{0} such that

prepEm Tk — pprktmpktm
{ gk gn gxm gk _ %S*k+msk+m.
Proof. A direct calculation shows that
(T®S)™* [(T ©85)" (TeS)™ - (Tos) ™ (Tes)"|(Tes)
= TrkpprmTk g grkgngrmgk _ prhprmpnpk o grk grm gn gk

Hence, if either (i) or (ii) hold, clearly T'® S is k-quasi-(n, m)-power normal.
Conversely, assume that 7' ® S is a k-quasi-(n, m)-power normal operator. From the
above equality

T*k—i—mTk—i—mS*k—l—mSk‘-l—m‘

In view of Proposition 4.1 there is a constant ¢ # 0 for which

{ T*anT*mTk — CT*kerTker,

S*k’sns*msk — ls*k—i-msk—&—m‘

If ¢ =1, then T and S are k-quasi-(n, m)-normal operators and if ¢ # 1, then T" and S
satisfy the condition (7). O

Lemma 4.3. If T € B(H), then T is a k-quasi-(n, m)-power normal operator if and only
if T®I (or I ®T) is k-quasi-(n, m)-power normal.
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Theorem 4.4. Let T € B(H) and S € B(H) be k-quasi-(n, m)-power normal operators.
Then T ® S is k-quasi-(j, p)-power normal for every p € N, where j = LCM(n, m).

Proof. 1t is well known that
TeS=TeH(IeS)=I®5)(T®I).

Since T" and S are k-quasi-(n, m)-power normal, we deduce from Lemma 4.3 that T'® [
and I ® S are k-quasi-(n, m)-power normal operators. Applying Theorem 2.20 it follows
that T'® S is a k-quasi-(j, p)-power normal operator. O

Corollary 4.5. Let T' € B(3) and S € B(H) be k-quasi-(n, m)-power normal operators.
Then TV ® S7 is k-quasi-(1,1)-power normal, where j is the least common multiple of n
and m.

Proof. From Corollary 2.15, it is known that T7 and S’ are k-quasi-(1, 1)-power normal,
where j = LCM(n,m). Hence T7 ® S’ is a k-quasi-(1,1)-power normal operators by
Theorem 4.4. ]
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