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Abstract

We introduce logarithmic summability in intuitionistic fuzzy normed spaces(IFNS) and give
some Tauberian conditions for which logarithmic summability yields convergence in IFNS.
Besides, we define the concept of slow oscillation with respect to logarithmic summability
in IFNS, investigate its relation with the concept of q-boundedness and give Tauberian
theorems by means of q-boundedness and slow oscillation with respect to logarithmic
summability. A comparison theorem between Cesàro summability method and logarithmic
summability method in IFNS is also proved in the paper.

1. Introduction and preliminaries

Fuzzy sets are put forward by Zadeh [1] in 1965 as a generalization of classical sets and have been studied by many
mathematicians from varied branches. In classical sets, elements in the universal set are divided crisply into two groups
as members and nonmembers, and partial membership is not allowed. Unlike the classical sets, fuzzy sets allow partial
membership and take every elements in the universe into account by assigning degrees of membership between 1 and 0. Owing
to the power in handling unclassifiable data, fuzzy sets are utilized in many real-world scenarios to cope with problems of
uncertainty and indefiniteness. In 1983, inspired by fuzzy sets, Atanassov [2, 3] considered also partial non-membership and
extended fuzzy sets to intuitionistic fuzzy sets. Following Atanassov’s introduction, concepts of intuitionistic fuzzy metric [4]
and intuitionistic fuzzy norm (IF-norm) [5,6] are defined and related topics are studied. In particular, convergence of sequences
in IFNS is investigated and different types of convergence(e.g., statistical convergence and ideal convergence) are applied to
sequences in IFNS to grasp the convergence [7–11].

Recently Talo and Yavuz [12] introduced Cesàro summability of sequences in IFNS and gave Tauberian theorems for Cesàro
summability method in IFNS, by which they initiated summability theory and Tauberian theory in IFNS. In their study,
they also defined the concept of slow oscillation in IFNS and gave related theorems. Following their study, we now define
logarithmic summability of sequences in IFNS and prove a Tauberian theorem for logarithmic summability method. In the
sequel, we define the notion of slow oscillation with respect to logarithmic summability in IFNS and give slowly oscillating
type Tauberian conditions for which logarithmic summability yields convergence in IFNS. Besides, we compare Cesàro
summability and logarithmic summability in IFNS. Before continuing with main results we now give some preliminaries.

Definition 1.1. [6] The triplicate (N,µ,ν) is said to be an IFNS if N is a real vector space, and µ,ν are fuzzy sets on N×R
satisfying the following conditions for every u,w ∈ N and t,s ∈ R:

(a) µ(u, t) = 0 for t ≤ 0,
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(b) µ(u, t) = 1 for all t ∈ R+ if and only if u = θ

(c) µ(cu, t) = µ

(
u, t
|c|

)
for all t ∈ R+ and c 6= 0,

(d) µ(u+w, t + s)≥min{µ(u, t),µ(w,s)},
(e) limt→∞ µ(u, t) = 1 and limt→0 µ(u, t) = 0,
(f) ν(u, t) = 1 for t ≤ 0,
(g) ν(u, t) = 0 for all t ∈ R+ if and only if u = θ

(h) ν(cu, t) = ν

(
u, t
|c|

)
for all t ∈ R+ and c 6= 0,

(i) max{ν(u, t),ν(w,s)} ≥ ν(u+w, t + s),
(j) limt→∞ ν(u, t) = 0 and limt→0 ν(u, t) = 1.

We call (µ,ν) an IF−norm on N.

Example 1.2. Let (N,‖ · ‖) be a normed space and µ0, ν0 be fuzzy sets on N×R defined by

µ0(u, t) =

{
0, t ≤ 0,

t
t+‖u‖ , t > 0,

ν0(u, t) =

{
1, t ≤ 0,
‖u‖

t+‖u‖ , t > 0.

Then (µ0,ν0) is IF−norm on N.

Throughout the paper (N,µ,ν) will denote an IFNS.

Definition 1.3. [6] A sequence (un) in (N,µ,ν) is said to be convergent to a ∈ N and denoted by un→ a if for every ε > 0
and t > 0 there exists n0 ∈ N such that µ(un−a, t)> 1− ε and ν(un−a, t)< ε for all n≥ n0.

Definition 1.4. [6] A sequence (un) in (N,µ,ν) is said to be Cauchy if for every ε > 0 and t > 0 there exists n0 ∈ N such
that µ(uk−un, t)> 1− ε and ν(uk−un, t)< ε for all k,n≥ n0.

Every convergent sequence is Cauchy in IFNS.

Definition 1.5. [13] A sequence (un) in (N,µ,ν) is called q-bounded if limt→∞ infn∈N µ(un, t)= 1 and limt→∞ supn∈N ν(un, t)=
0.

2. Main results

Now we introduce logarithmic summability in IFNS and prove corresponding Tauberian theorems. For some other studies
concerning logarithmic summability and convergence methods in fuzzy setting see [14–26].

Definition 2.1. Let sequence (un) be in (N,µ,ν). Logarithmic mean τn of (un) is defined by

τn =
1
`n

n

∑
k=1

uk

k
where `n =

n

∑
k=1

1
k
·

(un) is said to be logarithmic summable to a ∈ N if

lim
n→∞

τn = a.

Following theorem shows that convergence yields logarithmic summability in IFNS.

Theorem 2.2. Let sequence (un) be in (N,µ,ν). If (un) is convergent to a ∈ N, then (un) is logarithmic summable to a.

Proof. Let sequence (un) converge to a ∈ N. Fix t > 0. For ε > 0

• There exists n0 ∈ N such that µ
(
un−a, t

2

)
> 1− ε and ν

(
un−a, t

2

)
< ε for n > n0.

• There exists n1 ∈ N such that

µ

(
n0

∑
k=1

uk−a
k

,
`nt
2

)
> 1− ε and ν

(
n0

∑
k=1

uk−a
k

,
`nt
2

)
< ε

for n > n1, since we have

lim
n→∞

µ

(
n0

∑
k=1

uk−a
k

,
`nt
2

)
= 1 and lim

n→∞
ν

(
n0

∑
k=1

uk−a
k

,
`nt
2

)
= 0.



Fundamental Journal of Mathematics and Applications 103

Hence we get

µ

(
1
`n

n

∑
k=1

uk

k
−a, t

)
= µ

(
1
`n

n

∑
k=1

uk−a
k

, t

)
= µ

(
n

∑
k=1

uk−a
k

, `nt

)

≥ min

{
µ

(
n0

∑
k=1

uk−a
k

,
`nt
2

)
,µ

(
n

∑
k=n0+1

uk−a
k

,
`nt
2

)}

≥ min

{
µ

(
n0

∑
k=1

uk−a
k

,
`nt
2

)
,µ

(
n

∑
k=n0+1

uk−a
k

,
(`n− `n0)t

2

)}

≥ min

{
µ

(
n0

∑
k=1

uk−a
k

,
`nt
2

)
,µ

(
un0+1−a

n0 +1
,

t
2(n0 +1)

)
, · · · ,µ

(
un−a

n
,

t
2n

)}

= min

{
µ

(
n0

∑
k=1

uk−a
k

,
`nt
2

)
,µ
(

un0+1−a,
t
2

)
, · · · ,µ

(
un−a,

t
2

)}
> 1− ε

and

ν

(
1
`n

n

∑
k=1

uk

k
−a, t

)
< max

{
ν

(
n0

∑
k=1

uk−a
k

,
`nt
2

)
,ν
(

un0+1−a,
t
2

)
, · · · ,ν

(
un−a,

t
2

)}
< ε

whenever n > max{n0,n1}, which completes the proof.

Logarithmic summability does not imply convergence in IFNS by the next example.

Example 2.3. Take (un) = ((−1)n) in IF−normed space (R,µ0,ν0) where µ0 and ν0 are as in Example 1.2. Sequence (un)
is logarithmic summable to 0 in view of Theorem 2.13 and [12, Example 3.3], but it is not convergent.

We now give some Tauberian conditions for which logarithmic summability yields convergence in IFNS.

Theorem 2.4. Let sequence (un) be in (N,µ,ν). If (un) is logarithmic summable to a ∈ N, then it converges to a if and only if
for each t > 0

sup
λ>1

liminf
n→∞

µ

 1
`bnλ c− `n

bnλ c

∑
k=n+1

uk−un

k
, t

= 1 (2.1)

and

inf
λ>1

limsup
n→∞

ν

 1
`bnλ c− `n

bnλ c

∑
k=n+1

uk−un

k
, t

= 0. (2.2)

Proof. Necessity. Let (un) converge to a. For all λ > 1 and large enough n, that is when bnλ c> n, we can write(see [27, Lemma
5.5(i)])

un− τn =
`bnλ c

`bnλ c− `n

(
τbnλ c− τn

)
− 1

`bnλ c− `n

bnλ c

∑
k=n+1

uk−un

k
· (2.3)

Since (τn) is Cauchy, for each t > 0 we have

lim
n→∞

µ

(
τbnλ c− τn, t

)
= 1 and lim

n→∞
ν

(
τbnλ c− τn, t

)
= 0.

Hence, for sufficiently large n such that
`bnλ c

`bnλ c−`n
≤ 2λ

λ−1 is satisfied, we have

µ

(
`bnλ c

`bnλ c− `n

(
τbnλ c− τn

)
, t

)
= µ

τbnλ c− τn,
t

`bnλ c
`bnλ c−`n

≥ µ

(
τbnλ c− τn,

t
2λ

λ−1

)
→ 1 (n→ ∞)
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and

ν

(
`bnλ c

`bnλ c− `n

(
τbnλ c− τn

)
, t

)
= ν

τbnλ c− τn,
t

`bnλ c
`bnλ c−`n

≤ µ

(
τbnλ c− τn,

t
2λ

λ−1

)
→ 0 (n→ ∞)

revealing that
`bnλ c

`bnλ c−`n

(
τbnλ c− τn

)
→ 0. So, by equation (2.3), we conclude

lim
n→∞

µ

 1
`bnλ c− `n

bnλ c

∑
k=n+1

uk−un

k
, t

= 1 and lim
n→∞

ν

 1
`bnλ c− `n

bnλ c

∑
k=n+1

uk−un

k
, t

= 0,

which means that (2.1) and (2.2) are satisfied.

Sufficiency. Let conditions (2.1) and (2.2) be satisfied. Let t > 0 be fixed. For ε > 0 we have:

• There exist λ > 1 and n0 ∈ N such that

µ

 1
`bnλ c− `n

bnλ c

∑
k=n+1

uk−un

k
,

t
3

> 1− ε and µ

 1
`bnλ c− `n

bnλ c

∑
k=n+1

uk−un

k
,

t
3

< ε

for n > n0.
• There exists n1 ∈ N such that µ

(
τn−a, t

3

)
> 1− ε and ν

(
τn−a, t

3

)
< ε for n > n1.

• There exists n2 ∈ N such that

µ

(
`bnλ c

`bnλ c− `n

(
τbnλ c− τn

)
,

t
3

)
> 1− ε and ν

(
`bnλ c

`bnλ c− `n

(
τbnλ c− τn

)
,

t
3

)
< ε,

for n > n2, since
`bnλ c

`bnλ c−`n

(
τbnλ c− τn

)
→ 0.

Hence, by equation (2.3), we get

µ(un−a, t) = µ (un− τn + τn−a, t)

= µ

 `bnλ c
`bnλ c− `n

(
τbnλ c− τn

)
− 1

`bnλ c− `n

bnλ c

∑
k=n+1

uk−un

k
+ τn−a, t


≥ min

µ

(
`bnλ c

`bnλ c− `n

(
τbnλ c− τn

)
,

t
3

)
,µ

 1
`bnλ c− `n

bnλ c

∑
k=n+1

uk−un

k
,

t
3

 ,µ
(

τn−a,
t
3

)
> 1− ε

and

ν(un−a, t) < max

ν

(
`bnλ c

`bnλ c− `n

(
τbnλ c− τn

)
,

t
3

)
,ν

 1
`bnλ c− `n

bnλ c

∑
k=n+1

uk−un

k
,

t
3

 ,ν
(

τn−a,
t
3

)
< ε

for n > max{n0,n1,n2}, which completes the proof.

Theorem 2.5. Let sequence (un) be in (N,µ,ν). If (un) is logarithmic summable to a ∈ N, then it converges to a if and only if
for each t > 0

sup
0<λ<1

liminf
n→∞

µ

 1
`n− `bnλ c

n

∑
k=bnλ c+1

un−uk

k
, t

= 1

and

inf
0<λ<1

limsup
n→∞

ν

 1
`n− `bnλ c

n

∑
k=bnλ c+1

un−uk

k
, t

= 0.
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Proof. The proof is done similarly to that of Theorem 2.4 by using equation(see [27, Lemma 5.5(ii)])

un− τn =
`bnλ c

`n− `bnλ c

(
τn− τbnλ c

)
+

1
`n− `bnλ c

n

∑
k=bnλ c+1

un−uk

k
(0 < λ < 1)

instead of (2.3).

Now we introduce the concept of slow oscillation with respect to logarithmic summability in IFNS.

Definition 2.6. (un) in (N,µ,ν) is said to be slowly oscillating with respect to logarithmic summability if

sup
λ>1

liminf
n→∞

min
n<k≤bnλ c

µ(uk−un, t) = 1 (2.4)

and

inf
λ>1

limsup
n→∞

max
n<k≤bnλ c

ν(uk−un, t) = 0, (2.5)

for each t > 0. “supλ>1” in (2.4) and “infλ>1” in (2.5) can be replaced by “limλ→1+”.

A sequence (un) in (N,µ,ν) is slowly oscillating with respect to logarithmic summability if for each t > 0 and for all ε > 0
there exist λ > 1 and n0 ∈ N such that

µ(uk−un, t)> 1− ε and ν(uk−un, t)< ε

whenever n0 ≤ n < k ≤ bnλ c.

The proof of next theorem is analogous to that of Theorem 4.2 in [12] and hence omitted.

Theorem 2.7. Let sequence (un) be in (N,µ,ν). For t > 0, conditions (2.4) and (2.5) are equivalent to

sup
0<λ<1

liminf
n→∞

min
bnλ c<k≤n

µ(uk−un, t) = 1 (2.6)

and

inf
0<λ<1

limsup
n→∞

max
bnλ c<k≤n

ν(uk−un, t) = 0, (2.7)

respectively. “sup0<λ<1” in (2.6) and “inf0<λ<1” in (2.7) can be replaced by “limλ→1−”.

Example 2.8. Consider IF−normed space (R,µ0,ν0) where µ0 and ν0 are as in Example 1.2. un = ∑
n
j=1

1
j ln j is slowly

oscillating with respect to logarithmic summability by the calculations below:

Fix t > 0. For ε > 0 take λ = e
tε

1−ε . Then for 1 < n < k ≤ bnλ c we have

µ0(uk−un, t) =
t

t + |uk−un|
>

t
t + tε

1−ε

= 1− ε

and

ν0(uk−un, t) =
|uk−un|
|uk−un|+ t

<
tε

1−ε

tε
1−ε

+ t
= ε,

since |uk−un|= ∑
k
j=n+1

1
j ln j <

k∫
n

du
u lnu ≤ ln

( lnk
lnn

)
≤ lnλ = tε

1−ε
·

Theorem 2.9. Let sequence (un) be in (N,µ,ν). If (un) is slowly oscillating with respect to logarithmic summability then
(2.1) and (2.2) are satisfied.

Proof. Suppose that (un) is slowly oscillating with respect to logarithmic summability. Fix t > 0. For ε > 0 there exist λ > 1
and n0 ∈ N such that

µ(uk−un, t)> 1− ε and ν(uk−un, t)< ε
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whenever n0 ≤ n < k ≤ bnλ c. Hence, we have

µ

 1
`bnλ c− `n

bnλ c

∑
k=n+1

uk−un

k
, t

 = µ

 bnλ c

∑
k=n+1

uk−un

k
,(`bnλ c− `n)t


≥ min

{
µ

(
un+1−un

n+1
,

t
n+1

)
, . . . ,µ

(ubnλ c−un

bnλ c
,

t
bnλ c

)}
= min

{
µ(un+1−un, t), . . . ,µ(ubnλ c−un, t)

}
> 1− ε

and

ν

 1
`bnλ c− `n

bnλ c

∑
k=n+1

uk−un

k
, t

 ≤ max
{

ν(un+1−un, t), . . . ,ν(ubnλ c−un, t)
}

< ε

for n≥ n0 and this completes the proof.

In view of Theorem 2.4 and Theorem 2.9 we give the following Tauberian theorem.

Theorem 2.10. Let sequence (un) be in (N,µ,ν). If (un) is logarithmic summable to a ∈ N and slowly oscillating with respect
to logarithmic summability, then (un) converges to a.

Theorem 2.11. Let sequence (un) be in (N,µ,ν). If {n lnn(un− un−1)} is q-bounded, then (un) is slowly oscillating with
respect to logarithmic summability.

Proof. Let {n lnn(un−un−1)} be q-bounded. In view of Definition 1.5, for given ε > 0 there exists Mε > 0 so that

t > Mε ⇒ inf
n∈N

µ(n lnn(un−un−1), t)> 1− ε and sup
n∈N

ν(n lnn(un−un−1), t)< ε.

For every t > 0 choose λ < 1+ t
Mε

. Then for n0 < n < k ≤ bnλ c we have

µ(uk−un, t) = µ

(
k

∑
j=n+1

(u j−u j−1), t

)

≥ min
n+1≤ j≤k

µ

(
u j−u j−1,

t
j(`k− `n)

)
= min

n+1≤ j≤k
µ

(
j ln j(u j−u j−1),

t ln j
`k− `n

)
≥ min

n+1≤ j≤k
µ

(
j ln j(u j−u j−1),

t lnn
`k− `n

)
≥ min

n+1≤ j≤k
µ

(
j ln j(u j−u j−1),

t
lnk
lnn −1

)

≥ min
n+1≤ j≤k

µ

(
j ln j(u j−u j−1),

t
λ −1

)
≥ inf

n∈N
µ

(
n lnn(un−un−1),

t
λ −1

)
> 1− ε

and

ν(uk−un, t)< sup
n∈N

ν

(
n lnn(un−un−1),

t
λ −1

)
< ε.

Hence, (un) is slowly oscillating with respect to logarithmic summability.

By Theorem 2.10 and Theorem 2.11, we conclude following Tauberian theorem.
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Theorem 2.12. Let sequence (un) be in (N,µ,ν). If (un) is logarithmic summable to a ∈ N and {n lnn(un− un−1)} is
q-bounded, then (un) converges to a.

Now we prove a comparison theorem.

Theorem 2.13. Let sequence (un) be in (N,µ,ν). If (un) is Cesàro summable to a ∈ N, then (un) is logarithmic summable to
a.

Proof. Let (un) be Cesàro summable to a ∈ N. Then, Cesàro means σn =
1
n ∑

n
k=1 uk converges to a and 1

`n
∑

n
k=1

σk−1
k → a by

Theorem 2.2 with the agreement σ0 = 0.

Fix t > 0. For ε > 0

• There exists n0 ∈ N such that µ
(
σn−a, t

2

)
> 1− ε and ν

(
σn−a, t

2

)
< ε whenever n > n0.

• There exists n1 ∈ N such that

µ

(
1
`n

n

∑
k=1

σk−1

k
−a,

t
2

)
> 1− ε and ν

(
1
`n

n

∑
k=1

σk−1

k
−a,

t
2

)
< ε

whenever n > n1.
• There exists n2 ∈N such that µ

(
a, (`n−1)t

2

)
> 1−ε and ν

(
a, (`n−1)t

2

)
< ε whenever n> n2, since limn→∞ µ

(
a, (`n−1)t

2

)
=

1 and limn→∞ ν

(
a, (`n−1)t

2

)
= 0.

Then, we have(see [28])

µ (τn−a, t) = µ

(
σn

`n
+

1
`n

n

∑
k=1

σk−1

k
−a, t

)

≥ min

{
µ

(
σn

`n
,

t
2

)
,µ

(
1
`n

n

∑
k=1

σk−1

k
−a,

t
2

)}

= min

{
µ

(
σn,

`nt
2

)
,µ

(
1
`n

n

∑
k=1

σk−1

k
−a,

t
2

)}

≥ min

{
µ

(
σn−a,

t
2

)
,µ

(
a,

(`n−1)t
2

)
,µ

(
1
`n

n

∑
k=1

σk−1

k
−a,

t
2

)}
> 1− ε

and

ν (τn−a, t)≤max

{
ν

(
σn−a,

t
2

)
,ν

(
a,

(`n−1)t
2

)
,ν

(
1
`n

n

∑
k=1

σk−1

k
−a,

t
2

)}
< ε

whenever n > max{n0,n1,n2}, which completes the proof.

Logarithmic summability does not imply Cesàro summability in IFNS by the next example.

Example 2.14. Consider sequence (un) = ((−1)nn) in IF−normed space (R,µ0,ν0) where µ0 and ν0 are as in Example 1.2.
Since

lim
n→∞

µ0 (τ2n+1, t) = lim
n→∞

µ0

(
− 1
`2n+1

, t
)
= lim

n→∞

t

t +
∣∣∣− 1

`2n+1

∣∣∣ = 1

lim
n→∞

ν0 (τ2n+1, t) = lim
n→∞

ν0

(
− 1
`2n+1

, t
)
= lim

n→∞

∣∣∣− 1
`2n+1

∣∣∣∣∣∣− 1
`2n+1

∣∣∣+ t
= 0

we have τ2n+1→ 0, and since

lim
n→∞

µ0 (τ2n, t) = lim
n→∞

µ0 (0, t) = lim
n→∞

t
t +0

= 1, lim
n→∞

ν0 (τ2n, t) = lim
n→∞

ν0 (0, t) = lim
n→∞

0
0+ t

= 0

we have τ2n→ 0 which yields that limn→∞ τn = 0. So, (un) is logarithmic summable to 0. But, sequence (un) is not Cesàro
summable.
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We note that converse of Theorem 2.13 is true under the condition lnn(τn−a)→ 0, which can be seen by the following:

µ (σn−a, t) = µ

(
`n (τn−a)− 1

n

n−1

∑
k=1

`k (τk−a) , t

)

≥ min

{
µ

(
`n (τn−a) ,

t
2

)
,µ

(
1
n

n−1

∑
k=1

`k (τk−a) ,
t
2

)}
→ 1 as n→ ∞

and

ν (σn−a, t)≤max

{
ν

(
`n (τn−a) ,

t
2

)
,ν

(
1
n

n−1

∑
k=1

`k (τk−a) ,
t
2

)}
→ 0 as n→ ∞.

By Theorem 2.13 and Example 2.14, we see that logarithmic summability method is stronger than Cesàro summability method
in summing up sequences in IFNS.
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[26] Ü. Totur, İ. Çanak, Tauberian theorems for (N̄; p;q) summable double sequences of fuzzy numbers, Soft Comput., 24 (2020), 2301–2310.
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