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Abstract

In the present study, we introduce a new approach to interpolative mappings in fixed point theory by combining
the ideas of Nadler [1], Karapinar et. al.[2, 3], Jleli and Samet [4]. We introduce some fixed point theorems for
interpolative single and multi-valued Kannan type and Reich Rus Ciri¢ type 6-contractive mappings on complete
metric spaces and prove some fixed point results for these mappings. These results extend the main results of
many comparable results from the current literature. Also, we give an example to show that our main theorems
are applicable.
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1. Introduction

Banach [5] introduced a famous fundamental fixed point theorem, also known as the Banach contraction principle. There are
various extensions and generalizations of the Banach contraction principle in the literature see for example Kannan’s [6], Reich
[7] and see also Ciri¢’s [8].

In 1968, Kannan [6] proved a new fixed point theorem and considered the following contractive type:

d(Fn,Fo) <Ald(n,Fn)+d(o,Fo)] (1.1)

where A € [0, %) In [2], the notion of an interpolation Kannan type contractive was introduced. On the other hand, Reich, Rus
and Ciri¢ [7,9, 10, 11, 12, 13, 14] combined and improved both Banach and Kannan fixed point theorems. Recently, Karapinar
et. al., [3] proved interpolative Reich Rus Ciri¢ type contractive mappings on partial metric spaces.

In 1969, using Pompeiu-Hausdorff metric, Nadler [1] introduced the notion of multi-valued contraction mapping and proved
a multi-valued version of the well known Banach contraction principle. Denote by P(X) the family of all nonempty subsets of
X, C(X) the family of all nonempty, closed subsets of X, CB(X) the family of all nonempty, closed and bounded subsets of X
and K(X) the family of all nonempty compact subsets of X. It is clear that, K(X) C CB(X) C C(X) C P(X). It is well known
that, H : CB(X) x CB(X) — R is defined by, for every F,G € CB(X),

H(F,G) = maX{Supd(f,G),supd(&F)}
feF geG
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is a metric on CB(X), which is called the Pompeiu—Hausdorff metric induced by d, where D(f,G) = inf{d(f,g) : ¢ € G} and
D(F,G) = sup{D(f,G) : f € F}. Additionally, we will use the following lemma:

Lemma 1.1. Let (X,d) metric spaces and F compact subsets of X. Afterwards, for x € X, there exist f € F, such that
d(x,f) = D(x,F).

Lemma 1.2. []] Let F and G be nonempty closed and bounded subsets of a metric space. Therefore, for any f € F,

D(f,G) <H(F,G).

Lately, Jleli and Samet [4] introduced a new type of contractions called 8-contraction. They introduced the family of all
functions, 0 : (0,0) — (1,0) supplying the following particulars by ®:

(®1) 0 is nondecreasing;
(®,) For each sequence {s,} C (0,00), lim,_,0 0(s,) = 1 if and only if lim,,_,e 5, = 0T

. : 0(s)—1
(®3) There exist m € (0,1) and z € (0,0] such that lim,_,o+ (i,),t =z

In section 1, some basic definitions and theorem in the literature that will be used in the paper are given. In section 2,
by using the approach of Nadler [1], Jleli and Samet [4] and Karapinar et. al.[2, 3], we introduce the notion of extended
interpolative single and multi-valued Kannan type and Reich Rus Ciri¢ type 6-contractive mappings.

2. Main Results

Firstly, let us start with the definition of interpolative Kannan type 8-contractive mapping.

Definition 2.1. Let (X,d) be a complete metric space and 6 € ©. A mapping F : X — X is said to be an interpolative Kannan
type O-contractive mapping if 0 € © and there exist A € [0,1), a € (0, 1) such that

6(d(Fn,Fw)) < [0(d(n,Fn))]**6(d(e,F )~ 2.1
foralln,weX.

Theorem 2.2. Let (X,d) be a complete metric space and F : X — X be an interpolative Kannan type 0-contractive, then F
has a fixed point in X.

Proof. Starting from 19 € X, consider {1, } given as 1, = Fn,_ for all positive integer n. If there is ng so that 1,0 = Nno+1
then 1, is a fixed point of F. Assume that 1,, # 1,4+ for all n > 0. Taking n = 1,,_ and ® = 1, in (2.1), one writes

9(d(77n, nn+1)) < [G(d(ﬂnfhTln))]m[9(d(77m nn+1))]x(1ia)' (22)
If

d(nnf] ) T’n) < d(nnv Mn+1 )7

then, from (2.2) we obtain

9(d(77mnn+1)) < [9(d(71n777n+1))]“]7°’+“) = [G(d(rlmTln-k—1>>]}L

which is a contradiction. Thus, for all n € N

0(d (M, 1)) < [O(d (M1, M) 2.3)
Using (2.3) we have

2

0(d(Nu, Mus1)) < [0(d(N—1,ma)))* < [0(d(Mu—2, 1)) < - < [B(d(mo,m))])* 2.4)

Letting n — o in (2.4) we obtain

lim G(d(rlnannJrl)) =1, (2.5)

n—soo
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From (®;) we get

Y}E;I:Od(nnv 77n+1) = 0+7
and from (@3), there exist a € (0,1) and b € (0, 0] such that

n=eo (d(Mny Mat1))*

—b. (2.6)

Suppose that b < oo. In this case, let S = % > 0. Using the definition of the limit, there exist ny € N such that

e(d(nna nn+1)) —1
(d(nnvnnﬂ))a

This implies that

e(d(nn; nn+1)) _
(d(nn7nn+l))a

—b| <S8, forall n>nyg.

1
>b—S5=S, forall n>nyg.

Then

n(d(M, Nn1))* < Rn[0(d (M, Mny1)) — 1],

for all n > ng where R = é Now suppose that b = oo and § > 0 be an arbitrary positive number. Using the definition the limit,
there exist ny € N such that

e(d(nna nn+1)) —1
(d(nnvnn+l))a

for all n > ng. This implies that

>S

b

n(d(M, 1)) < Rn[0(d (M, Mnt1)) = 1],

for all n > ng, where R = %
Therefore, in all cases, there exist R > 0 and ng € N such that

n(d (M, May1))* < Rn[0(d(Mn; Nuy1)) — 1],

for all n > ng. Using (2.4), we can write

n(d(nnynrﬁl))a < R”([e(d(noanl))]“ - 1)7 2.7

for all n > ng. Letting n — o in (2.7) we get

lim n(d(Nn, Mn+1))* = 0.

n—oo
Hence, there exist n; € N such that

1
d(Mn, Mut1) < —, forall n>n. (2.8)

1
na

For what follows, we shall prove that {1, } is a Cauchy sequence by employing standard tools, For any n,m € N with m > n > ny
we obtain

d(Mny M) <d(Ms Mnt1) +d (M1, Mag2) + - +d (M1, M)

m—1
<)
i=n 1

1

| =

=
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Since the last term of the above inequality tends to zero as n,m — oo, we have d(1,, ) — 0. As (X,d) is a complete metric
spaces, the sequence {1, } converges to some point # € X, that is,

lim 7, = u. 2.9)

n—soo

As a next step make evident that the limit 7] of the iterative sequence {1, } is a fixed point of the given mapping F. Suppose
that 1 # Fn, then d(n,Fn) > 0. By letting 1 =1, and ® = 1 in (2.1), we obtain that

d(Ms1,F7) = d(F 1, F) < [8(d (M0, F1,))*[8(d(n, F)) 0.

Letting n — o in the above inequality, we obtain, 1 = F'1). Thus the proof is completed.
O

Remark 2.3. Taking 0(t) = €' in inequality (2.1), then it turns to Kannan contraction mapping with Ao € [0,1) and

A(l—a) €10,4).

Definition 2.4. Let (X,d) be a complete metric space and 6 € ©. A mapping F : X — K(X) is said to be an interpolative
multi-valued Kannan type 8-contractive mapping if 0 € © and there exist A € [0,1), a € (0,1) such that

O0(H(Fn,Fw)) < [0(D(n,Fn))]**[0(D(w,Fw))*!'~% (2.10)
foralln,weX.

Theorem 2.5. Let (X,d) be a complete metric space and F : X — K(X) be an interpolative multi-valued Kannan type
O-contractive, then F has a fixed point in X.

Proof. Let 1g be an arbitrary point of X and choose a 171 € X such that 1; € Fng. Suppose that 1; € F'ny, thatis, 1y is a fixed
point of F. Then, let n; ¢ Fn;. Since F 1 is closed, we have D(1n1,Fn;) > 0 for all 1 € X. On the other hand, from

0 <D(m,Fm) <H(Fno,Fm),
so, from (2.10), and considering (@),
6(D(n1,Fi)) < O(H(Fo, Fmi)) < [0(D(no, o)) *[6(D(my, Frpa)) '~ @.11)

Since Fn; is compact, there exist 7, € Fn; such that d(1n9,1n1) = D(No, F1o) and d(n1,m2) = D(N1,Fn1). From (2.11), we
get

6(d(m,1m2)) < O(H(Fno, Fm)) < [6(d(no, 1) “[6(d(mi,m2)) ). (2.12)
Therefore, continuing recursively, we get 1, € X such that ), € F1n,—1, N1 € F1Np, and

0(d(May Ma1)) < [0(d(M—1,10))**[0(d(1s 1)) M=) (2.13)

If

d(Mu—1,Mn) <d(Mn, Mt 1),
then, from (2.13) we obtain
e(d(nnunn+l)) < [e(d(nmnn-&-l))]l(]iajLa) = [G(d(r'mnn+l))]}L

which is a contradiction. Thus, for all n € N

0(d(Mn, Mu+1)) < [6(d(Ma1,7))]* (2.14)

Denote

Hn = d(nn’ nn+1)7
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for all n € N. Then, u, > 0 and using (2.14) we have

2

0(1n) < [0(pa—1)]* < [O(a2)]* <--- < [B(10))*". (2.15)
Letting n — o in (2.15) we obtain

lim 6(i,) =1, (2.16)

n—soo

From (®;) we get

: —0nt
}E}I‘}o“n_o ’

and so from (®3), there exist a € (0,1) and b € (0,00 such that

lim Op) —1 _ b. (2.17)

nes ()"
Assume that b < oo. In this case, let S = g > 0. From the definition of the limit, there exist ng € N such that
‘ Q(Hn) -1
(M )?

This implies that

9(“n) -1
(L)

—b‘ <SS, forall n> ng.

>b—S§=S, forall n>nyg.

Thus

n(pn)* < Rn[6 () — 1],

for all n > ng where R = %

there exist ng € N such that

Now assume that b = oo and S > 0 be an arbitrary positive number. From the definition the limit,

e(ﬂn) -1
(L) =

for all n > ng. This implies that

)

n(pn)* < Rn[6 () — 1],

for all n > ng, where R = %

Therefore, in all cases, there exist R > 0 and ng € N such that

n(tn)* < Rn[6(u,) — 1],

for all n > ng. Using (2.15), we obtain

n(n)* < Rn([6/(o)]*

for all n > ngy. Letting n — oo in (2.18) we get

n

—), (2.18)

lim n(u,)? = 0.

n—soo
Therefore, there exist n; € N such that
1

T, forall n>ny. (2.19)
na

Hp <
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For what follows, we shall prove that {7, } is a Cauchy sequence by employing standard tools, For any n,m € N with m > n > ny
we obtain

d(Mny M) <A My My 1) +d (Mgt Mag2) + -+ +d (M1, M)
=Un+ Upt1+ -+ Un—1
m—1 1
<)Y T

i=n la

Since the last term of the above inequality tends to zero as n,m — oo, we have d(1,, ) — 0. As (X,d) is a complete metric
spaces, the sequence {1, } converges to some point u € X, that is,

lim 1, = u. (2.20)

n—soo

Case 1: There is a subsequence {1,, } such that Fn,, = Fu for all » € N. In this case,
D(u,Fu) = lim D(n,, ,,Fu) < lim H(Fn,,,Fu) = 0.
n—soo

n—yoo

Case 2: There is a natural number N such that F'n,, # Fu for all n > N. In this cases applying (2.10) for u =1, and ®© = u we
have

0(D(Mus1,Fu)) < O(H(FNy, Fu)) < [6(D(My, Fu))/*“[8(D(u, Fu)) 7). (2.21)
Then assume that

D(Nn, F1a) < D(u, Fu),
letting n — oo in (2.21) we obtain,

0(D(u,Fu)) < [6(D(u,Fu))]*
which is a contradiction. Then we obtain

D(u,Fu) < D(1, F1n),
S0, we get

0(D(u, Fu)) < [6(D(1n, F1))]*. (2.22)
Since Fn, is compact, there exist 1,1 € Fnj, such that d(1,, My+1) = D(N,, FNy). Since (2.22), we get

0(D(u, Fu)) < [0(D (1, 1)) (2.23)
letting n — oo in (2.23) we obtain, u € Fu. Thus the proof is completed.

Hanger et al. [15], showed that we can take "CB(X)” instead of K (X)”, by adding the condition (64) on 6 : (0,00) — (1,e0),

as follows:

(64) O(infM) =infO(M) for all M C (0,0) with infM > 0.

Take in the consideration if 6 is right continuous and satisfies (6; ), in that case (64) founds. Let E be the family of all functions
0 satisfying (0;) — (64).

Corollary 2.6. Let (X,d) be a complete metric space and F : X — CB(X) be a mapping. Given that there are 8 € E, A € [0,1)
and a € (0,1) such that

0(H(Fn,Fw)) < [0(D(n,Fn))**[6(D(,F )"~ (2.24)

forallm,® € X then F has a fixed point in X.
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Proof. Let no be an arbitrary point of X and choose a 17; € X such that 17; € F1. Assume that 71 € Fnj, that is, 1; is a fixed
point of F. Then, let n; ¢ Fn;. As Fn is closed, we obtain D(n;,Fn;) > 0 for all n € X. So, from (2.24), and considering
(©1),

O(D(n1,Fm1)) < O(H(Fno,Fny)) < [0(D(10,Fno))**[0(D(ny, Fp)) M=) (2.25)

Considering condition (64), we obtain 6(D(n1,F 1)) = inf.cry, 6(d(M1,z)). Then we have

zeig,fh 0(d(n1,2)) < [0(D(10, FNo))**[6(D(n1, Fny))) 1~

< [6(D(no, F1o)) /114 [0(D(my, Fpy )10, (2.26)

where A; € (A, 1). Then, from (2.26), there exist n; € Fno and 1, € F7; such that

6(d(n1,1m2)) < [B(d(no,m)) (6 (m1,m2) )11 (. 227)
The rest of the proof can be completed as in the proof of Theorem 2.5. O

Definition 2.7. Ler (X,d) be a complete metric space and 0 € ®. A mapping F : X — X is said to be an interpolative Reich
Rus Cirié type 0-contractive mapping if 0 € ©® and there exist A € [0,1), B,0 € (0,1) with B+ o < 1 such that

6(d(Fn,Fw)) < [0(d(n,®))]*P[0(d(n,Fn)**[6(d(w, Fa)) P~ (2.28)
foralln, e X.

Theorem 2.8. Ler (X,d) be a complete metric space and F : X — X be an interpolative Reich Rus Cirié type O-contractive,
then F has a fixed point in X.

Proof. Starting from 19 € X, consider {n,} given as 1,, = F'n,_; for all positive integer n. If there is ng so that 1,0 = Mu0+1
then 7,0 is a fixed point of F. Assume that 1,, # 1,1 for all n > 0. Taking n = 1,—; and @ = 7, in (2.28), one writes

0(d(Ms Mnr1)) < [0(d(Mn1,Ma)*P[0(d (M1, 70))**[O(d (1, Ny )P, (2.29)
If

d(nnf]ann) < d(nnvnnJrl)v
then, from (2.29) we obtain

0(d(N, Mus1)) < [0(d(My 1)) PFEH=0P) = [0(d (Mg, Mir)]*
which is a contradiction. Thus, for all n € N

0(d (M, 1)) < [0(d (M1, M) (2.30)
From (2.30) we have

2

0(d (M, 1)) < [0(d(Ma—1, M)]* < [0(d(My2, M-I < -+ < [O(d (Mo, m))]™" (2.31)

Then, it can be seen that the {7, } is a Cauchy with similar operations in Theorem 2.2. As (X,d) is a complete metric spaces,
the sequence {7, } converges to some point u € X, that is,

1im d (1, Tesr) = u (2.32)

As a next step make evident that the limit 1 of the iterative sequence {1, } is a fixed point of the given mapping F. Suppose
that n # Fn, then d(n,Fn) > 0. By letting n = 1, and @ = 7 in (2.28), we obtain that

A1, F1) = d(FR,,F) < 6, m)*P[0(d (s o)) 0, F) o).

Letting n — oo in the above inequality, we obtain, 1 = F'1. Thus the proof is completed.
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Remark 2.9. Tuking 6(t) = ¢’ in inequality (2.28), then it turns to Reich-Rus-Ciri¢ contraction mapping with a,b,c € (0,1)
suchthat AB =a, Ad =bandc=1—-F—a,0<a+b+c< 1.

Definition 2.10. Let (X,d) be a complete metric space and 6 € ©. A mapping F : X — K(X) is said to be an interpolative
multi-valued Reich Rus Ciri¢ type 0-contractive mapping if 0 € ® and there exist A € [0,1), B, € (0,1) with B+ o < 1 such
that

0(H(Fn,Fo)) < [6(d(n,0))*P[6(D(n,Fn))**[6(D(e, Fa))' P~ (2.33)
foralln,weX.

Theorem 2.11. Let (X,d) be a complete metric space and F : X — K(X) be an interpolative multi-valued Reich Rus Ciri¢
type O-contractive, then F has a fixed point in X.

Proof. Let 1y € X. Since F1 is nonempty for all g € X, we can chose a 171 € X. Assume that 171 € Fny, that is, 11 is a fixed
point of F. Now, let n; ¢ Fn;. As Fn is closed, we obtain D(n;,F1;) > 0 for all n € X. Moreover, as

0 <d(m,Fm) <H(Fno,Fm),
from (2.33) and considering (®1), we can write that

0(d(ni,Fm)) <6(H(Fno,Fm))
<[6(d(no,m))I*P[6(d (M0, Fo))]**[6(d(m1, Fi )M 1B~ (2.34)

As Fn; is compact, there exist 12 € Fn; such that d(1o, 1) = d(no, Fno) and d(n;,1n2) =d (N1, Fn). From (2.34), we obtain

0(d(m,m2)) <O(H(Fno,Fni))

<[0(d(no,m))I*P16(d(no,m))**[0(d(n1,m2)) P, (2.35)
Therefore, continue recursively, we get 1, € X such that ), € Fn,—1, Nnt1 € F 1y, and
0(d (M Ns1)) < [0(d(Mn—1,1))1*P [(d(M1,1)) 12 (0(d (1, M) P, (2.36)

Suppose that

d(nn—hnn) < d(nnann+1)7
then from (2.36) we obtain

0(d(Mn, Mus1)) < [0(d (s 1)) PFEH=0D) = [0(d (1, M 1))
which is a contradiction. Therefore for all n € N

0(d(M, Mnr1)) < [0(d(Ma1,m)))*. (2.37)
Let

M = d(Nn, Mnt1),
for all n € N. Thus, y, > 0 and handling (2.37) we get

0 (1) < [0(ttn1)]* < [0(ky2)]* < -+ < [B(u0)*". (2.38)

Then, it can be seen that the {n,} is a Cauchy with similar operations in Theorem 2.5.
Since (X,d) is a complete metric spaces, the sequence {7, } converges to some point u € X, that is,

lim 1, = u. (2.39)

n—soo

Case 1: There is a subsequence {1,, } such that Fn,, = Fu for all » € N. Therefore,

D(u,Fu) :r}i_IEOD(n,,M,Fu) < ,}EQOH(F”””FM) =0.
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Case 2: There is a natural number N such that F'1,, # Fu for all n > N. In this cases applying (2.33) for u =1, and ® = u we
have

0(D(Nn+1,Fu)) <O(H(Fny,Fu))
<[6(D(1a,u)))*P [0 (D(10, F 1)) [6(D(t, Fu)) P, (2.40)

Hence, suppose that

D(Nn, F1a) < D(u, Fu),
letting n — o< in (2.40) we get,

0(D(u,Fu)) < [8(D(u, Fu))]*1=P)
which is a contradiction. So we obtain

D(u,Fu) < D(1, F1n),
then, we get

0(D(u, Fu)) < [(D(1y, F1,)) [P @41
As F1, is compact, there exist N,+1 € F1, such that d(1M,, Mnt1) = D(Nu, FNy). From (2.41), we obtain

6(D(u, Fu)) < [8(D(1, 1))~ (242)

letting n — oo in (2.42) we get, u € Fu. Therefore the proof is completed.
O

Example 2.12. Let X = [0,00) and define d(n,®) = |n — @|, forall n,o € X. (X,d) is a complete metric space. Also defined
F : X — K(X) a mapping, where

{0} ifnelo)
F”{ (1}, if el

Let A = %, B= % a= % and 6(m) = €™ pertain to ©. Without loss of generality, we may assume that 1 > ®. Thus, through
a series of standard calculations, we can proved that
0(H(Fn,Fo)) < [6(D(n,0))*P[6(D(n,Fn))**([6(D(0,Fo)) P~

forall M, € X. So, this is satisfying the condition of Theorem 2.11. F has fixed points. Since similar process are performed,
the condition of Theorem 2.5 is satisfied.

Corollary 2.13. Let (X,d) be a complete metric space and F : X — CB(X) be a mapping. Suppose that there are 0 € &,
A €[0,1) and B,a € (0,1) with B + o < 1 such that

0(H(Fn,Fw)) < [6(d(n,®))I*P[6(d(n,Fn))**[6(d(0,Fe))* P~ (2:43)
forallm,® € X then F has a fixed point in X.

Proof. Let 1o be an arbitrary point of X and choose a 171 € X such that 17; € Fng. Assume that 1y € Fn, thatis, 1; is a fixed
point of F. Therefore, let 11; ¢ F1;. Since F1; is closed, we obtain D(1;,Fn;) > 0 for all n € X. Hence, from (2.43), and
considering (®1), we can write

0(D(m,Fm)) <6(H(Fno,Fm))
<[6(d(10,m))|*[6(d(10,F o)) *[6(d(my, F1p )P, (24)
Considering condition (64), we get 6(D(n1,Fn)) = inf,cpy, 0(d(N1,z2)). Thus, we have

inf 0(d(n1.2)) <[8(d(n0,m)*P [6(d(no. Fo)) /" (B(d(my. Py 1P~

zeFM
<[6(d(no,m))|"P[6(d(n0, F10)) [ “[0(d (11, F 1)) |1 (1P~ ) (2.45)
where A1 € (A, 1). Then, from (2.45), there exist 1 € Fno and 1 € Fn; such that
6(d(m1,m2)) < [6(d(10, )P [6.(cd(110, 1)) *[6/(d (1, m2)) 111 P =0, (2.46)

The rest of the proof can be completed as in the proof of Theorem 2.11. O
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3. Conclusion

We aimed to present new some results to the fixed point theory by combining the ideas of Nadler, Karapinar et. al., Jleli and
Samet. We introduce the concept of interpolative single and multi-valued Kannan type and Reich Rus Ciri¢ type 0-contractive
mappings metric spaces and prove some fixed point results for such mappings.
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