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Department of Mathematics, Faculty of Science and Arts, Kırıkkale University, Kırıkkale, Turkey

Article Info

Keywords: Cauchy-Riemann operator,
Ring domain, Robin problem
2010 AMS: 30E25, 31A10
Received: 15 September 2020
Accepted: 27 November 2020
Available online: 15 December 2020

Abstract

This study is devoted to give solvability conditions and solutions of the Robin boundary
problem with constant coefficients for the homogeneous and the inhomogeneous Cauchy-
Riemann equation in an annular domain. In order to get results, known representations and
theorems in the literature are used. The representations for the solutions and solvability
conditions are given in explicit form and here only a special Robin problem is considered.
At the end of the paper, it is concluded that with some choices, boundary value problems for
the Cauchy-Riemann equation reduce to some basic boundary problems in the ring domain.

1. Introduction and preliminaries

Recently, some complex model partial differential equations, which have important applications in some areas of applied
sciences, were investigated in detail, especially for Robin problem see [1]-[7]. Also, the solvability and solutions of complex
partial differential equations with boundary conditions were considered by many mathematicians. [8]-[11].

The Robin problem, called as third boundary problem, is a mixed form of the Dirichlet and the Neumann problems, which are
basic boundary value problems in complex analysis.

The main aim of this paper is to give solvability conditions and solutions of Robin problem with real parameters for Cauchy-
Riemann operators in an annular domain R = {z ∈ C : 0 < r < |z|< 1}. The results in this paper are obtained by using some
integral representations in the annular domain [12]-[14], which are similar to ones in the unit disc. [15, 16].

For the convenience of the reader, we recall some relevant theorems without proofs:

Theorem 1.1 (The Complex Form of Gauss Theorem). [15] Let D⊂ C be a bounded domain with smooth boundary ∂D,
and the closure D = D∪∂D. Assume that w ∈C1(D;C)∩C(D;C). Then∫

D

wz(z)dxdy =
1
2i

∫
∂D

w(z)dz,
∫
D

wz(z)dxdy =− 1
2i

∫
∂D

w(z)dz,

where

∂z =
1
2

(
∂

∂x
− i

∂

∂y

)
, ∂z =

1
2

(
∂

∂x
+ i

∂

∂y

)
; z = x+ iy, x,y ∈ R.
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Theorem 1.2 (Cauchy Integral Formula). Let γ be a simply closed smooth curve and D be the inner domain, bounded by γ .
If w is an analytic function in D, continuous in D and z ∈ D, then

w(z) =
1

2πi

∫
γ

w(ζ )
dζ

ζ − z
. (1.1)

Theorem 1.3 (Cauchy-Pompeiu representation). [17] Under the assumptions of Theorem 1.1, we have for z ∈ D that

w(z) =
1

2πi

∫
∂D

w(ζ )
dζ

ζ − z
− 1

π

∫
D

w
ζ
(ζ )

dξ dη

ζ − z

where ζ = ξ + iη .

The Dirichlet boundary value problem for analytic functions in R is

wz = 0,w = γ on ∂R, (1.2)

for a given function γ ∈C(∂R,C).

The following theorem is proved in [14]:

Theorem 1.4. The Dirichlet problem (1.2) is solvable if and only if for z ∈ R

1
2πi

∫
∂R

γ(ζ )
zdζ

1− zζ
=

1
2πi

∫
∂R

γ(z)
zdζ

r2− zζ
= 0

in the class of analytic functions. Then the unique solution is given by the Cauchy type integral

w(z) =
1

2πi

∫
∂R

γ(ζ )
dζ

ζ − z
.

The normal derivative on the boundary of R is defined by

∂ν =

{
z∂z + z∂z, |z|= 1,
− z

r ∂z− z
r ∂z, |z|= r.

The Robin boundary value problem for analytic functions in R is

wz = 0,w+λ |z|∂νw = γ on ∂R, λ =

{
1, |z|= 1,
−1, |z|= r,

for a given function γ ∈C(∂R,C).

2. The Robin boundary value problem depending on parameters for analytic functions

In this section, in R we investigate for α,β ∈ R, and γ ∈C(∂R,C), the Robin boundary problem

wz = 0, z ∈ R, (2.1)
(α w+β λ |z|∂ν w) = γ, z ∈ ∂R. (2.2)

As a consequence of analyticity of w, the boundary condition (2.2) can be rewritten in the form

(αw+β zwz)|∂R = γ.

Introducing a new function

ϕ = αw+β zwz,
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the boundary problem (2.1)-(2.2) turns out as the Dirichlet problem

ϕz = 0 in R, ϕ = γ on ∂R. (2.3)

On account of Theorem 1.4, boundary problem (2.3) can be uniquely solved if and only if for z ∈ R, the function γ satisfies that

1
2πi

∫
∂R

γ(ζ )
zdζ

1− zζ
=

1
2πi

∫
∂R

γ(z)
zdζ

r2− zζ
= 0. (2.4)

Then the unique solution of the problem (2.3) is obtained as

ϕ(z) =
1

2πi

∫
∂R

γ(ζ )
dζ

ζ − z
. (2.5)

We note that as an analytic function in R, w(z) has a unique representation by a Laurent series

w(z) =
∞

∑
n=−∞

cnzn

which converges in R.

Then, we have

ϕ(z) = αw(z)+β zwz(z)

= α

∞

∑
n=−∞

cnzn +β

∞

∑
n=−∞

ncnzn

=
∞

∑
n=−∞

(α +nβ )cnzn.

Considering (2.5), it yields

∞

∑
n=−∞

(α +nβ )cnzn =
1

2πi

∫
∂R

γ(ζ )
dζ

ζ − z

=
∞

∑
n=0

1
2πi

∫
|ζ |=1

γ(ζ )
dζ

ζ n+1 zn +
−1

∑
n=−∞

1
2πi

∫
|ζ |=r

γ(ζ )
dζ

ζ n+1 zn. (2.6)

Comparing coefficients of both sides of (2.6), we have as long as α +nβ 6= 0,

cn =
1

α +nβ

1
2πi

∫
|ζ |=1

γ(ζ )
dζ

ζ n+1 , n = 0,1,2, ...;

cn =
1

α +nβ

1
2πi

∫
|ζ |=r

γ(ζ )
dζ

ζ n+1 , n = ...,−2,−1.

Therefore, we can assert that

w(z) =
∞

∑
n=0

1
α +nβ

 1
2πi

∫
|ζ |=1

γ(ζ )
dζ

ζ n+1

zn +
−1

∑
n=−∞

1
α +nβ

 1
2πi

∫
|ζ |=r

γ(ζ )
dζ

ζ n+1

zn. (2.7)

Theorem 2.1. For α,β ∈ R, and γ ∈ C(∂R,C), Robin boundary value problem (2.1)-(2.2) in R is solvable if and only if
condition (2.4) is satisfied. In this case, solution of the problem if α +nβ 6= 0 for all n ∈ Z is given by (2.7).
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3. The Robin boundary value problem depending on parameters for inhomogeneous Cauchy-
Riemann equation

In this section, we deal for α,β ∈ R, γ ∈C(∂R,C) and f ∈Ca(R;C), 0 < a < 1, with the Robin boundary problem

wz = f , z ∈ R, (3.1)
(α w+β λ |z|∂ν w) = γ, z ∈ ∂R. (3.2)

Solutions of equation wz = f have the form

w(z) = ϕ(z)− 1
π

∫
R

f (ζ )
ζ − z

dξ dη ,

where ϕ(z) is any analytic function in R, see [17].

By differentiating with respect to z implies

wz = ϕz−
1
π

∫
R

f (ζ )
(ζ − z)2 dξ dη .

We note that the latter derivative is taken in distributional sense, see [15].

By introducing the new function

ϕ = w+
1
π

∫
R

f (ζ )
ζ − z

dξ dη , (3.3)

and using wz = f , the problem (3.1)-(3.2) is reduced to

ϕz = 0, in R, (3.4)

(αϕ +β zϕz) =

γ +
1
π

∫
R

[
β z

(ζ − z)2 −
α

z−ζ

]
f (ζ )dξ dη−β z f

 := γ̂, on ∂R, (3.5)

the Robin problem in the previous section. By Theorem 2.1, (3.4)-(3.5) is solvable if and only if

1
2πi

∫
∂R

γ̂(ζ )
zdζ

1− zζ
=

1
2πi

∫
∂R

γ̂(z)
zdζ

r2− zζ
= 0. (3.6)

In this case, solution of the problem if α +nβ 6= 0 for all n ∈ Z is given by

ϕ(z) =
∞

∑
n=0

1
α +nβ

 1
2πi

∫
|ζ |=1

γ̂(ζ )
dζ

ζ n+1

zn +
−1

∑
n=−∞

1
α +nβ

 1
2πi

∫
|ζ |=r

γ̂(ζ )
dζ

ζ n+1

zn. (3.7)

It is clear that (3.5) for z ∈ ∂R is equal to

γ̂(z) = γ(z)+
1
π

∫
R

[
β z

(ζ − z)2 −
α

z−ζ

]
f (ζ )dξ dη−β z f (z). (3.8)

So, by (3.8), the first boundary integral in (3.6) for t = t1 + it2 can be written as

1
2πi

∫
∂R

γ̂(ζ )
zdζ

1− zζ
=

1
2πi

∫
∂R

γ(ζ )+
1
π

∫
R

[
βζ

(ζ − t)2 −
α

ζ − t

]
f (t)dt1dt2−βζ f (ζ )

 zdζ

1− zζ
.

By applying Fubini’s theorem when changing the order of integrations, we obtain
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1
2πi

∫
∂R

γ̂(ζ )
zdζ

1− zζ
=

1
2πi

∫
∂R

γ(ζ )
zdζ

1− zζ
+

1
π

∫
R

f (t)

 1
2πi

∫
∂R

[
βζ

(ζ − t)2 −
α

ζ − t

]
zdζ

1− zζ

dt1dt2

− 1
2πi

∫
∂R

βζ f (ζ )
zdζ

1− zζ
.

By aid of the Cauchy integral formula (1.1),

1
2πi

∫
∂R

βζ

(ζ − t)2
dζ

1− zζ
=

1
2πi

∫
|ζ |=1

βζ

(ζ − t)2
dζ

1− zζ
− 1

2πi

∫
|ζ |=r

βζ

(ζ − t)2
dζ

1− zζ
=

β

(1− zt)2

and

1
2πi

∫
∂R

α

ζ − t
dζ

1− zζ
=

1
2πi

∫
|ζ |=1

α

ζ − t
dζ

1− zζ
− 1

2πi

∫
|ζ |=r

α

ζ − t
dζ

1− zζ
=

α

1− zt
,

hence it can be shown that

1
2πi

∫
∂R

γ̂(ζ )
zdζ

1− zζ
=

1
2πi

∫
∂R

[
γ(ζ )−βζ f (ζ )

] zdζ

1− zζ
+

1
π

∫
R

z f (ζ )
β −α +αzζ

(1− zζ )2 dξ dη = 0.

With similar calculations, for the second boundary integral in (3.6), we obtain

1
2πi

∫
∂R

γ̂(ζ )
zdζ

r2− zζ
=

1
2πi

∫
∂R

[
γ(ζ )−βζ f (ζ )

] zdζ

r2− zζ
+

1
π

∫
R

z f (ζ )
r2(β −α)+αzζ

(r2− zζ )2 dξ dη = 0.

If the value of (3.8) is substituted in (3.7), we can get for α

β
/∈ Z,

ϕ(z) =
∞

∑
n=0

1
α +nβ

 1
2πi

∫
|ζ |=1

γ(ζ )+
1
π

∫
R

[
βζ

(ζ − t)2 −
α

ζ − t

]
f (t)dt1dt2−βζ f (ζ )

 dζ

ζ n+1

zn

+
−1

∑
n=−∞

1
α +nβ

 1
2πi

∫
|ζ |=r

γ(ζ )+
1
π

∫
R

[
βζ

(ζ − t)2 −
α

ζ − t

]
f (t)dt1dt2−βζ f (ζ )

 dζ

ζ n+1

zn.

or equivalently

ϕ(z) =
∞

∑
n=0

1
α +nβ

 1
2πi

∫
|ζ |=1

γ(ζ )
dζ

ζ n+1 +
1

2πi

∫
|ζ |=1

 1
π

∫
R

f (t)
[

βζ

(ζ − t)2 −
α

ζ − t

]
dt1dt2

 dζ

ζ n+1

− 1
2πi

∫
|ζ |=1

βζ f (ζ )
dζ

ζ n+1

zn

+
−1

∑
n=−∞

1
α +nβ

 1
2πi

∫
|ζ |=r

γ(ζ )
dζ

ζ n+1 +
1

2πi

∫
|ζ |=r

 1
π

∫
R

f (t)
[

βζ

(ζ − t)2 −
α

ζ − t

]
dt1dt2

 dζ

ζ n+1

− 1
2πi

∫
|ζ |=r

βζ f (ζ )
dζ

ζ n+1

zn.

Because of

1
2πi

∫
|ζ |=1

 1
π

∫
R

f (t)
[

βζ

(ζ − t)2 −
α

ζ − t

]
dt1dt2

 dζ

ζ n+1 = 0, for n = 0,1, ..
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and

1
2πi

∫
|ζ |=r

 1
π

∫
R

f (t)
[

βζ

(ζ − t)2 −
α

ζ − t

]
dt1dt2

 dζ

ζ n+1 = 0, for n = ...,−2,−1,

we get

ϕ(z) =
∞

∑
n=0

1
α +nβ

 1
2πi

∫
|ζ |=1

(
γ(ζ )−βζ f (ζ )

) dζ

ζ n+1

zn

+
−1

∑
n=−∞

1
α +nβ

 1
2πi

∫
|ζ |=r

(
γ(ζ )−βζ f (ζ )

) dζ

ζ n+1

zn.

By using (3.3), solution of the problem (3.1)-(3.2) can be found as

w(z) =
∞

∑
n=0

1
α +nβ

 1
2πi

∫
|ζ |=1

(
γ(ζ )−βζ f (ζ )

) dζ

ζ n+1

zn

+
−1

∑
n=−∞

1
α +nβ

 1
2πi

∫
|ζ |=r

(
γ(ζ )−βζ f (ζ )

) dζ

ζ n+1

zn

+
1
π

∫
R

1
z−ζ

f (ζ )dξ dη .

Finally, we have just proved the following:

Theorem 3.1. For α,β ∈ R, f ∈Ca(R;C),0 < a < 1,γ ∈C(∂R;C), the Robin problem

wz = f in R, αw+βλ |z|∂ν w = γ on ∂R

is solvable if and only if for all z ∈ R

1
2πi

∫
∂R

[
γ(ζ )−βζ f (ζ )

] zdζ

1− zζ
+

1
π

∫
R

z f (ζ )
β −α +αzζ

(1− zζ )2 dξ dη = 0,

and

1
2πi

∫
∂R

[
γ(ζ )−βζ f (ζ )

] zdζ

r2− zζ
+

1
π

∫
R

z f (ζ )
r2(β −α)+αzζ

(r2− zζ )2 dξ dη = 0.

Then, the solution of the problem if α +nβ 6= 0 for all n ∈ Z is represented by

w(z) =
∞

∑
n=0

1
α +nβ

 1
2πi

∫
|ζ |=1

(
γ(ζ )−βζ f (ζ )

) dζ

ζ n+1

zn

+
−1

∑
n=−∞

1
α +nβ

 1
2πi

∫
|ζ |=r

(
γ(ζ )−βζ f (ζ )

) dζ

ζ n+1

zn

+
1
π

∫
R

1
z−ζ

f (ζ )dξ dη .
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4. Conclusion

In this paper, a special kind of Robin problem for analytic functions (Theorem 2.1) and more generally for the inhomogeneous
Cauchy–Riemann equation (Theorem 3.1) are investigated in a concentric ring domain. The representations of the solutions
and solvability conditions are aimed for in explicit form.

Let us reconsider the Robin boundary condition

(αw+βλ |z|∂ν w) = γ on R. (4.1)

Under above boundary condition (4.1), with some special cases of α and β , the following results can be obtained:

i.) By choosing α = β = 1, we have (w+λ |z|∂ν w) = γ on R. In this case, in (2.7), the coefficient of z−1, c−1 may take
arbitrary values from C. Hence, for solvability of the problem, the condition 1

2πi
∫
|ζ |=r

γ(ζ )dζ = 0 is needed. Furthermore,

with an additional condition z0w(z0) = c, for some fixed point z0 ∈ R,c ∈ C, the problem is uniquely solvable. This
problem is another special kind of Robin problem and appears as Theorem 2.2.14 (for analytic functions) in [14]. As is the
analytic case, by applying similar arguments, in the inhomogeneous case, the conditions 1

2πi
∫
|ζ |=r

(
γ(ζ )−ζ f (ζ )

)
dζ = 0

(for solvability) and z0w(z0) = c, for some fixed point z0 ∈ R,c ∈ C (for uniqueness of the solution) are needed. [14,
Theorem 2.3.18 ]

ii.) By choosing α = 1 and β = 0, we have w = γ on ∂R. Hence, these problems are reduced to the Dirichlet problems for
analytic functions and the inhomogeneous Cauchy-Riemann equation, respectively, in [14, Theorem 2.2.12 and Theorem
2.3.16].

iii.) By choosing α = 0, and β = 1, we have (λ |z|∂ν w) = γ on R. Hence, these problems are reduced to the Neumann
problems for analytic functions and the inhomogeneous Cauchy-Riemann equation, respectively in [14, Theorem 2.2.13
and Theorem 2.3.17], with additional conditions.
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