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Abstract
Some estimations in below for the deviations conducted by the Zygmund means and by the
Abel-Poisson sums in the weighted Lebesgue spaces with variable exponent are obtained.
In the classical Lebesgue spaces these estimations were proved by M. F. Timan. The
considered weight functions satisfy the well known Muckenhout condition. For the proofs
of main results some estimations obtained in the classical weighted Lebesgue spaces and
also an extrapolation theorem proved in the weighted variable exponent Lebesgue spaces
are used. Main results are new even in the nonweighted variable exponent Lebesgue spaces.
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1. Introduction
Let T := [0, 2π] and let p (·) : T → [1, ∞) be a Lebesgue measurable 2π periodic func-

tion. The variable exponent Lebesgue space Lp(·) (T) is defined as the set of all Lebesgue
measurable 2π periodic functions f such that ρp(·) (f) :=

∫ 2π
0 |f (x)|p(x) dx < ∞.

We consider the class P0 (T) of exponents p (·) satisfying the conditions:

1 < p− := ess infx∈T p (x) ≤ ess supx∈T p (x) := p+ < ∞,
|p (x) − p (y)| ln (1/ |x − y|) ≤ c, x, y ∈ T, 0 < |x − y| ≤ 1/2.

The space Lp(·) (T) is a Banach space with the norm ∥f∥p(·) = inf{λ > 0 : ρp(·) (f /λ) ≤
1}.

Let ω be a weight, i.e. an almost everywhere positive, 2π periodic integrable function.
For a given ω we define the weighted variable exponent Lebesgue space L

p(·)
ω (T) as the

set of all Lebesgue measurable 2π periodic functions f such that fω ∈ Lp(·)(T). Note
that, when 1 ≤ p+ < ∞ the space L

p(·)
ω (T) is a Banach space with respect to the norm

∥f∥p(·),ω := ∥fω∥p(·).
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Variable exponent Lebesgue space was introduced by Orlicz in [19]. Interest in vari-
able exponent Lebesgue spaces has increased since 1990s, because of their use in differ-
ent application problems in mechanic, especially in fluid dynamic for the modelling of
electrorheological fluids and also in the study of image processing and various physical
problems (see, for example the monographs [4, 5, 20] and the references cited therein).
There are sufficiently investigations, where the fundamental problems of these spaces are
investigated in view of potential theory, maximal and singular integral operator theory,
especially. Widely presentations of corresponding results can be found in the monographs,
cited above. In these spaces there were also investigated some fundamental problems of
approximation theory. In particular under some restrictions on variable exponent function
p(·) was proved the completeness of polynomials in these spaces and also were constructed
different modulus of smoothness, which plays an important role for investigations of quan-
titative problems of approximation theory (detailed information can be found in the mono-
graph [21]). Later using the results on the boundedness of singular and maximal operators
in variable exponent spaces obtained in [7] (see also: [4, 5]), there were proved direct and
inverse theorems of approximation theory and also different quantitative estimations re-
lating to the approximation properties of different summation methods in nonweighted
and weighted variable exponent Lebesgue spaces [1–3,8–10,12–15,18,22–24,27].

Let’s give some definitions needed to formulate the main results obtained in this work.
Let A = {λν,r := λν (r)}, ν = 0, 1, ..., r; r = 0, 1, 2, ..., be a triangular matrix with the

entries λν,r, satisfying the conditions: λ0 (r) = 1, λν (r) = 0 for ν > r.
For a given f ∈ L

p(·)
ω (T), p (·) ≥ 1, with the Fourier coefficients

aν := 1
π

π∫
−π

f(t) cos νtdt, and bν := 1
π

π∫
−π

f(t) sin νtdt, ν = 0, 1, 2, ... .

we generate the series Ur (f, x, λ) :=
∞∑

ν=0
λν (r) Aν (f, x), where A0 (f, x) := a0/2 and

Aν (f, x) := aν cos νx + bν sin νx.
If

λν (r) : =

 1 −
(

ν
r+1

)k
, 0 ≤ ν ≤ r,

0, ν > r

for a natural number k ≥ 1, where r = 0, 1, 2, ... , then the series Ur (f, x, λ) reduce to the
Zygmund means Z

(k)
r (f, x). In the case of k = 1 the Zygmund means Z

(1)
r (f, x) reduce to

the Fejér means Fr (f, x).
If 0 ≤ r < 1, then for the sequence {λ∗

ν (r)}, λ∗
ν (r) := rν , ν = 0, 1, 2, ..., the series

Ur (f, x, λ∗) reduce to the Abel-Poisson sums of f ∈ L
p(·)
ω (T). Hence we have

Z(k)
r (f, x) =

r∑
ν=0

[
1 −

(
ν

r + 1

)k
]

Aν (f, x) ,

Ur (f, x, λ∗) =
∞∑

ν=0
rνAν (f, x) , 0 ≤ r < 1.

Definition 1.1. We say that ω ∈ Ap(·) if the inequality

sup
I

|I|−1 ∥ωχI ∥p(·)

∥∥∥ω−1χI

∥∥∥
p′ (·)

< ∞, 1/p (·) + 1/p
′ (·) = 1

holds. Here the supremum is taken over all intervals I ⊂ R : = (−∞, ∞) with the charac-
teristic functions χI and |I| is the Lebesgue measure of I.

Let
En (f)p(·),ω := inf

{
∥f − Tn∥p(·),ω : Tn ∈ Πn

}
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be the best approximation number of f in the space L
p(·)
ω (T), where Πn is the class of

trigonometric polynomials of degree not exceeding n.
In this work some estimations in below for the deviations∥∥∥f − Z(k)

r (f)
∥∥∥

p(·),ω
and ∥f − Ur (f, λ∗)∥p(·),ω

in the weighted variable exponent Lebesgue Spaces L
p(·)
ω (T) are obtained.

Our main results are following.

Theorem 1.2. Let p (·) ∈ P0 (T) , ω (·) ∈ Ap(·). If f ∈ L
p(·)
ω (T), then there exists a

positive constant c(p, k) such that for every r = 0, 1, 2, ... , the inequality

1
(r + 1)k

[
r∑

ν=0
(ν + 1)kβ−1 Eβ

ν (f)p(·),ω

]1/β

≤ c(p, k)
∥∥∥f − Z(k)

r (f)
∥∥∥

p(·),ω

holds, where k ≥ 1 and β := max {2, p+}.

In particular, for the Fejér means Fr (f, x) we have

Corollary 1.3. Let p (·) ∈ P0 (T) , ω (·) ∈ Ap(·). If f ∈ L
p(·)
ω (T), then there exists a

positive constant c(p) such that for every r = 0, 1, 2, ..., the inequality

1
(r + 1)

[
r∑

ν=0
(ν + 1)β−1 Eβ

ν (f)p(·),ω

]1/β

≤ c (p) ∥f − Fr (f)∥p(·),ω

holds, where β := max {2, p+}.

Theorem 1.4. Let p (·) ∈ P0 (T) , ω (·) ∈ Ap(·). If f ∈ L
p(·)
ω (T), then there exists a

positive constant c(p) such that for every r ∈ [0, 1) the inequality

(1 − r)
[ ∞∑

k=0
rk (k + 1)β−1 Eβ

k (f)p(·),ω

]1/β

≤ c(p) ∥f − Ur (f, λ∗)∥p(·),ω

holds, where β := max {2, p+}

Note that appropriate estimates from above under more restrictive conditions than the
condition ω (·) ∈ Ap(·), namely when ω−p0 ∈ A(p(·)/p0)′ , for some p0 ∈ (1, p−) were obtained
in [13].

Combining Theorems 1.2 and 1.4 with the estimations, obtained in [13] we have

Corollary 1.5. Let f ∈ L
p(·)
ω (T), p (·) ∈ P0 (T) , ω−p0 ∈ A(p(·)/p0)′ for some p0 ∈ (1, p−)

and let γ := min {2, p−}, β := max {2, p+}. Then
i) there exist the constants c(p, k) and C(p, k) such that for every r = 0, 1, 2, ...

1
(r + 1)k

[
r∑

ν=0
(ν + 1)kβ−1 Eβ

ν (f)p(·),ω

]1/β

≤ c(p, k)
∥∥∥f − Z(k)

r (f)
∥∥∥

p(·),ω

≤ C(p, k) 1
(r + 1)k

[
r∑

ν=0
(ν + 1)kγ−1 Eγ

ν (f)p(·),ω

]1/γ

,

and
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ii) there exist the positive constants c̃(p) and C̃(p) such that for every r ∈ (0, 1)

(1 − r)
[ ∞∑

k=0
rk (k + 1)β−1 Eγ

k (f)p(·),ω

]1/β

≤ c̃ ∥f − Ur (f, λ∗)∥p(·),ω ≤ C̃(p) (1 − r)
[ ∞∑

k=0
rk (k + 1)γ−1 Eγ

k (f)p(·),ω

]1/γ

.

In the case of p = constant these estimates in nonweighted Lebesgue spaces were ob-
tained by M. F. Timan in [26] (see also, [25]). It should be pointed out that Theorems 1.2
and 1.4 are new even in the nonweighted variable exponent Lebesgue spaces Lp(·) (T).

2. Auxiliary results
We shall use c(·), c(·, ·),..., to denote constants depending in general, only on parameters

given in the brackets and non depending of n.
The following extrapolation theorem is a particular case of the more general result

proved in [6, Theorem 2.7 and comments in p.1214]:

Theorem 2.1. Suppose that for some p0, 1 < p0 < ∞, and every weight ω ∈ Ap0 an
operator T (which is not linear in general) is bounded in Lp0

ω (T), i.e.
∥T (f)∥p0,ω ≤ c(p0) ∥f∥p0,ω

for some constant c(p0) > 0. Then for any pair (p (·) , ω), where p (·) ∈ P0 (T) and
ω ∈ Ap(·) it is bounded in L

p(·)
ω (T) and there exists a positive constant c(p) such that for

every f ∈ L
p(·)
ω (T) the inequality

∥T (f)∥p(·),ω ≤ c(p) ∥f∥p(·),ω

holds.

Let Sn (f) (x) : =
n∑

k=0
Ak (f, x) , n = 1, 2, ..., where A0 (f, x) := a0/2 and Ak (f, x) :=

ak cos kx + bk sin kx, be the nth partial sums of Fourier series of f .

Lemma 2.2 ([11]). Let f ∈ L
p(·)
ω (T), p (·) ∈ P0 (T). If ω (·) ∈ Ap(·), then there exists a

positive constant c(p) such that the inequality
∥Sn (f)∥p(·),ω ≤ c(p) ∥f∥p(·),ω , n = 1, 2, ...

holds.

Lemma 2.3. Let f ∈ L
p(·)
ω (T), p (·) ∈ P0(T), ω ∈ Ap(·). Then there exist the constants

ci(p), i = 1, 2, such that

c1(p) ∥f∥p(·),ω ≤

∥∥∥∥∥∥∥
 ∞∑

µ=0
|∆µ|2

1/2
∥∥∥∥∥∥∥

p(·),ω

≤ c2(p) ∥f∥p(·),ω ,

where ∆µ (x) :=
2µ−1∑

k=2µ−1
Ak (f, x) and A2−1 (f, x) := 0.

Proof. In classical weighted Lebesgue spaces, namely when p (·) := p is a constant, and
ω ∈ Ap, 1 < p < ∞, Lemma 2.3 was proved in [17, Theorem 1 and Theorem 2]. If we

consider the operator T :f →
(

∞∑
µ=0

|∆µ|2
)1/2

, which is bounded by [17, Theorem 1 and

Theorem 2] in Lp
ω (T), then by Theorem 2.1 it is bounded also in L

p(·)
ω (T), p (·) ∈ P0(T),

ω ∈ Ap(·). Hence the second inequality of Lemma 2.3 is established. The proof of the first
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inequality goes similarly. Indeed, if we define the operator T −1:
(

∞∑
µ=0

|∆µ|2
)1/2

→ f , then

by [17, Theorem 1 and Theorem 2] it is bounded in Lp
ω (T) and again applying Theorem

2.1 we have that T −1 is bounded in L
p(·)
ω (T), p (·) ∈ P0(T), ω ∈ Ap(·). Thus we obtain the

first inequality of Lemma 2.3. �
The following lemma in the weighted Lebesgue spaces was proved in [17, Theorem 1

and Theorem 2]. In the spaces L
p(·)
ω (T), p (·) ∈ P0(T), ω ∈ Ap(·) it can be proved like

Lemma 2.3 by using Theorem 2.1

Lemma 2.4. Let {fn} (n = 1, 2, 3, ...) be a sequence of functions fn ∈ L
p(·)
ω (T) and

letSn,kn (fn) be the kth partial sum of fn with positive integer k = kn. Then for any
pair (p (·) , ω), where p (·) ∈ P0 (T) and ω ∈ Ap(·) there exists a positive constant c(p) such
that ∥∥∥∥∥∥

( ∞∑
n=1

|Sn,kn (fn)|2
)1/2

∥∥∥∥∥∥
p(·),ω

≤ c(p)

∥∥∥∥∥∥
( ∞∑

n=1
|fn|2

)1/2
∥∥∥∥∥∥

p(·),ω

.

Proof. This Lemma in the case of p (·) = p = constant was proved in [17, Theorem 1 and
Theorem 2]. Applying the same method used in the proof of Lemma 2.3 it can be proved
also in variable exponent cases. �
Lemma 2.5. Let {λµ} be a sequence of real numbers λµ such that for all µ = 1, 2, ... and
m = 1, 2, ...

|λµ| ≤ M and
2m−1∑

µ=2m−1

|λµ − λµ+1| ≤ M

with some constant M not dependent of µ and m. Let also f ∈ L
p(·)
ω (T) , p (·) ∈ P0 (T),

ω (·) ∈ Ap(·). Then there is a function F ∈ L
p(·)
ω (T) such that the series

λ0A0 (f, x) +
∞∑

k=1
λkAk (f, x)

is the Fourier series of F and
∥F∥p(·),ω ≤ c(p) ∥f∥p(·),ω .

Proof. Since A0 (f, x) := a0/2 and then ∥A0 (f, ·)∥p(·),ω ≤ c(p) ∥f∥p(·),ω, without loss of
generality we may suppose that a0 = 0. Let for µ = 1, 2, 3, ... and 2µ−1 ≤ k ≤ 2µ − 1

∆µ (x) : =
2µ−1∑

k=2µ−1

Ak (f, x) , ∆µ,k (x) :=
k∑

j=2µ−1

Ak (f, x)

and ∆∗
µ (x) : =

2µ−1∑
k=2µ−1

λkAk (f, x) .

Then using the inequality [28, Vol.II, p.232]∣∣∣∆∗
µ (x)

∣∣∣2 ≤ 2M

 2µ−1∑
s=2µ−1

|∆µ,s (x)|2 |λs − λs+1| + |∆µ (x)|2 |λ2µ |


and Lemma 2.4 we have that

ρp(·)


 ∞∑

µ=1

∣∣∣∆∗
µ (x)

∣∣∣2
1/2

ω

 =
2π∫
0

 ∞∑
µ=1

∣∣∣∆∗
µ (x)

∣∣∣2
p(x)/2

ωp(x)dx
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≤
2π∫
0

 ∞∑
µ=1

2M


2µ−1∑

s=2µ−1

|∆µ,s (x)|2 |λs − λs+1| + |∆µ (x)|2 |λ2µ−1 |


p(x)/2

ωp(x)dx

≤
2π∫
0

(2M)p(x)/2

 ∞∑
µ=1

|∆µ (x)|2


2µ−1∑
s=2µ−1

|λs − λs+1| + |λ2µ−1 |


p(x)/2

ωp(x)dx

≤
2π∫
0

(2M)p(x)

 ∞∑
µ=1

|∆µ (x)|2
p(x)/2

ωp(x)dx

≤ c(p)
2π∫
0

 ∞∑
µ=1

|∆µ (x)|2
p(x)/2

ωp(x)dx = c (p) ρp(·)


 ∞∑

µ=1
|∆µ (x)|2

1/2

ω

 ,

which implies the inequality∥∥∥∥∥∥∥
 ∞∑

µ=1

∣∣∣∆∗
µ (x)

∣∣∣2
1/2

∥∥∥∥∥∥∥
p(·),ω

≤ c (p)

∥∥∥∥∥∥∥
 ∞∑

µ=1
|∆µ (x)|2

1/2
∥∥∥∥∥∥∥

p(·),ω

.

Now denoting F (x) :=
∞∑

k=1
λkAk (f, x) and applying Lemma 2.3 we get

∥F∥p(·),ω ≤ c(p)

∥∥∥∥∥∥∥
 ∞∑

µ=1

∣∣∣∆∗
µ (x)

∣∣∣2
1/2

∥∥∥∥∥∥∥
p(·),ω

≤ c(p)

∥∥∥∥∥∥∥
 ∞∑

µ=1
|∆µ (x)|2

1/2
∥∥∥∥∥∥∥

p(·),ω

≤ c(p) ∥f∥p(·),ω

�

Lemma 2.6. If f ∈ L
p(·)
ω (T) , p (·) ∈ P0 (T), ω (·) ∈ Ap(·), then there exists a constant

c(p) such that
∥f − Sn (f)∥p(·),ω ≤ c(p)En (f)p(·),ω , n = 1, 2, 3, ... .

Proof. Let T ∗
n (n =, 1, 2, ...) be the best approximation trigonometric polynomial of f ∈

L
p(·)
ω (T). By Lemma 2.2 we have

∥f − Sn (f)∥p(·),ω ≤ ∥f − T ∗
n∥p(·),ω + ∥T ∗

n − Sn (f)∥p(·),ω

≤ ∥f − T ∗
n∥p(·),ω + ∥Sn (T ∗

n − f)∥p(·),ω

≤ (c3(p) + 1) ∥f − T ∗
n∥p(·),ω = c(p)En (f)p(·),ω .

�

For proofs of Theorems 1.2 and 1.4 we use also the following Lemma, which in the more
general space, namely in the Musielak-Orlicz space, was proved in [16, Proposition 4].

Lemma 2.7. Let {fi}n
i=1 be a finite system of nonnegative functions fi ∈ L

p(·)
ω (T) where

p (·) ≤ q ė. on T, for some positive constant q. Then there exists a positive constant c(p)
such that (

n∑
i=1

∥fi∥q
p(·),ω

)1/q

≤ c(p)

∥∥∥∥∥∥
(

n∑
i=1

f q
i

)1/q
∥∥∥∥∥∥

p(·),ω

.
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3. Proofs of main results
Proof of Theorem 1.2. Let r ∈ N, β := max {2, p+} and let

σβ
r :=

r∑
ν=1

(ν + 1)kβ−1

(r + 1)kβ
Eβ

ν (f)p(·),ω .

Let also 2m ≤ r < 2m+1. Via monotonicity property of {Eν (f)p(·),ω} and Lemma 2.3 we
have

σβ
r ≤

m+1∑
ν=0

2ν+1−1∑
µ=2ν

µkβ−1

(r + 1)kβ
Eβ

µ (f)p(·),ω

≤ c4 (p, k)
m+1∑
ν=0

2νkβ

(r + 1)kβ
Eβ

2ν (f)p(·),ω

≤ c4 (p, k)
m+1∑
ν=0

2νkβ

(r + 1)kβ

∥∥∥∥∥∥f −
2ν−1∑
µ=0

Aµ (f)

∥∥∥∥∥∥
β

p(·),ω

= c4 (p, k)
m+1∑
ν=0

2νkβ

(r + 1)kβ

∥∥∥∥∥∥
∞∑

µ=2ν

Aµ (f)

∥∥∥∥∥∥
β

p(·),ω

= c4 (p, k)
m+1∑
ν=0

2νkβ

(r + 1)kβ

∥∥∥∥∥∥
∞∑

µ=ν

2µ+1−1∑
l=2µ

Al (f)

∥∥∥∥∥∥
β

p(·),ω

≤ c5 (p, k)
m+1∑
ν=0

2νkβ

(r + 1)kβ

∥∥∥∥∥∥
( ∞∑

µ=ν

∆2
µ+1

)1/2
∥∥∥∥∥∥

β

p(·),ω

= c5 (p, k)
m+1∑
ν=0

∥∥∥∥∥∥
(

22νk

(r + 1)2k

∞∑
µ=ν

∆2
µ+1

)1/2
∥∥∥∥∥∥

β

p(·),ω

.

Then by Lemma 2.7 we get

σr ≤ c6 (p, k)


m+1∑
ν=0

∥∥∥∥∥∥
(

22νk

(r + 1)2k

∞∑
µ=ν

∆2
µ+1

)1/2
∥∥∥∥∥∥

β

p(·),ω


1/β

≤ c7 (p, k)


∥∥∥∥∥∥∥
m+1∑

ν=0

(
22νk

(r + 1)2k

∞∑
µ=ν

∆2
µ+1

)β/2
1/β

∥∥∥∥∥∥∥
p(·),ω

 . (3.1)

Hence, if β = 2, then

σr ≤ c7 (p, k)

∥∥∥∥∥∥
[

m+1∑
ν=0

(
22νk

(r + 1)2k

∞∑
µ=ν

∆2
µ+1

)]1/2∥∥∥∥∥∥
p(·),ω

, (3.2)

and if β = max {2, p+} = p+ > 2, then β/2 > 1 and using the inequality (a1)β/2+(a2)β/2+
... + (an)β/2 ≤ (a1 + a2 + ... + an)β/2 in (3.1) we again arrive to the same inequality (3.2).
So we conclude that for β =: max {2, p+} the inequality (3.2) holds.
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Since β =: max {2, p+} > 1, applying the Abel transformation [28, p.1] and the in-
equality (a1 + a2 + ... + an)1/2 ≤ (a1)1/2 + (a2)1/2 + ... + (an)1/2 and also the Minkowski
inequality we have ∥∥∥∥∥∥

[
m+1∑
ν=0

(
22νk

(r + 1)2k

∞∑
µ=ν

∆2
µ+1

)]1/2∥∥∥∥∥∥
p(·),ω

≤ c8(p)

∥∥∥∥∥∥∥
 m∑

ν=0

22νk

(r + 1)2k
∆2

ν+1 + 22(m+1)k

(r + 1)2k

∞∑
µ=m+1

∆2
µ+1

1/2
∥∥∥∥∥∥∥

p(·),ω

≤ c8(p)

∥∥∥∥∥∥
[

m∑
ν=0

22νk

(r + 1)2k
∆2

ν+1

]1/2
∥∥∥∥∥∥

p(·),ω

+c8(p)

∥∥∥∥∥∥∥
2(m+1)k

(r + 1)k

 ∞∑
µ=m+1

∆2
µ+1

1/2
∥∥∥∥∥∥∥

p(·),ω

=: I1 + I2. (3.3)
Since 2m ≤ r < 2m+1 and (a1 + a2 + ... + an)1/2 ≤ (a1)1/2 + (a2)1/2 + ... + (an)1/2, by
Lemmas 2.3 and 2.6 we have

I2 ≤ c9(p, k)

∥∥∥∥∥∥∥
 ∞∑

µ=m+1
∆2

µ+1

1/2
∥∥∥∥∥∥∥

p(·),ω

≤ c10(p, k)

∥∥∥∥∥∥
∞∑

µ=2m+1

Aµ (f)

∥∥∥∥∥∥
p(·),ω

= c10(p, k)

∥∥∥∥∥∥f −
2m+1−1∑

µ=0
Aµ (f)

∥∥∥∥∥∥
p(·),ω

≤ c11(p, k)Er (f)p(·),ω

≤ c11(p, k)
∥∥∥f − Z(k)

r (f)
∥∥∥

p(·),ω
. (3.4)

Now we consider the system of multipliers {hµ} for ν = 1, 2, ..., 2m+1 − 1

hµ: =
{

2νk

µk , 2ν ≤ µ ≤ 2ν+1 − 1, ν = 0, 1, ..., m

0, µ ≥ 2m+1,

which satisfies the conditions of Lemma 2.5. By the inequality (a1 + a2 + ... + an)1/2 ≤
(a1)1/2 + (a2)1/2 +... + (an)1/2 and by Lemma 2.5 we get

I1 = c8(p)

∥∥∥∥∥∥
[

m∑
ν=0

22νk

(r + 1)2k
∆2

ν+1

]1/2
∥∥∥∥∥∥

p(·),ω

≤ c8(p)
∥∥∥∥∥

m∑
ν=0

2νk

(r + 1)k
∆ν+1

∥∥∥∥∥
p(·),ω

= c8(p)

∥∥∥∥∥∥
m∑

ν=0

2ν+1−1∑
µ=2ν

2νk

µk

µk

(r + 1)k
Aµ (f)

∥∥∥∥∥∥
p(·),ω

≤ c9(p)

∥∥∥∥∥∥
r∑

µ=1

µk

(r + 1)k
Aµ (f)

∥∥∥∥∥∥
p(·),ω

= c9(p)
∥∥∥Sr (f) − Z(k)

r (f)
∥∥∥

p(·),ω
.
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Since by Lemma 2.6∥∥∥Sr (f) − Z(k)
r (f)

∥∥∥
p(·),ω

≤ ∥Sr (f) − f∥p(·),ω +
∥∥∥f − Z(k)

r (f)
∥∥∥

p(·),ω

≤ c(p)Er (f)p(·),ω +
∥∥∥f − Z(k)

r (f)
∥∥∥

p(·),ω
≤ c10(p)

∥∥∥f − Z(k)
r (f)

∥∥∥
p(·),ω

,

for I1 we have the estimation

I1 ≤ c11(p)
∥∥∥f − Z(k)

r (f)
∥∥∥

p(·),ω
. (3.5)

Now, combining the relations (3.1)−(3.5) we obtain that

σr ≤ c12(p)
∥∥∥f − Z(k)

r (f)
∥∥∥

p(·),ω
,

that is for β = max {2, p+}

1
(r + 1)k

[
r∑

ν=0
(ν + 1)kβ−1 Eβ

ν (f)p(·),ω

]1/β

≤ c(p, k)
∥∥∥f − Z(k)

r (f)
∥∥∥

p(·),ω
,

which proves the desired inequality in Theorem 1.2. �
The proof of Theorem 1.4 goes by similar way.
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