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Abstract

The differential geometry of helix curves and helix hypersurfaces in different spaces has important application areas in many
disciplines. Also, the notion of weighted manifold is become to be a very popular topic for scientists in recent years. In this context,
after defining the notions of weighted mean curvature (or ¢-mean curvature) and weighted Gaussian curvature (or ¢-Gaussian
curvature) of an n-dimensional hypersurface on manifolds with density, lots of studies have been done by differential geometers in
different spaces with different densities. So, in the present study, firstly we give the normal vector field, mean curvature and Gaussian
curvature of a helix surface in three dimensional Euclidean space and after that, we obtain the weighted mean curvature and weighted
Gaussian curvature of a helix surface generated by a unit speed planar curve in three dimensional Euclidean space with different three
densities by stating the parametric equation of this surface. However, we know that a hypersurface is weighted minimal and weighted
flat in Eucilidean 3-space with density if the weighted mean curvature and the weighted Gaussian curvature vanish, respectively. So,
by using these definitions, we obtain the weighted minimal helix surfaces for these different densities and give some results for
weighted flatness of the helix surfaces in Euclidean 3-space. We hope that, this study will bring a new viewpoint to differential
geometers who are dealing with constant angle surfaces and in near future, one can handle these surfaces in different spaces with
another densities.
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Yogunluklu Oklidyen 3-Uzayinda Helis Yiizeyleri

Oz

Farkli uzaylarda helis egrilerinin ve helis hiperyiizeylerinin diferensiyel geometrisi, bircok bilim dalinda 6énemli uygulama alanlarina
sahiptir. Ayrica, agirlikli manifold kavrami son yillarda bilim insanlari i¢in ¢ok popular bir konu olmaya baglamistir. Bu baglamda,
yogunluklu manifoldlar {izerinde n-boyutlu bir hiperyiizeyin agirlikli ortalama egriligi (veya ¢-ortalama egriligi) ve agirlikli Gaussian
egriligi (veya ¢-Gaussian egriligi) kavramlart tanimlandiktan sonra, farkli yogunluga sahip degisik uzaylarda diferensiyel
geometriciler tarafindan pek ¢ok ¢alisma yapilmaktadir. Bu sebeple, biz de bu ¢alismada, ilk olarak Oklidyen 3-uzayinda bir helis
ylizeyinin normal vektor alanini, ortalama egriligini ve Gaussian egriligini verdik ve ardindan {i¢ farkli yogunluga sahip ii¢ boyutlu
Oklidyen uzayinda birim hizli bir diizlemsel egri tarafindan olusturulan bir helis yiizeyinin, parametrik denklemini ifade ederek,
agirlikli ortalama egriligini ve agirlikli Gaussian egriligini elde ettik. Bununla birlikte, biliyoruz ki yogunluklu Oklidyen 3-uzayinda
bir hiperyiizey agirlikli minimal ve agirlikli flattir, eger sirastyla agirlikli ortalama egriligi ve agirlikli Gaussian egriligi sifir oluyorsa.
Dolayistyla, bu tanimlar1 kullanarak, Oklidyen 3-uzayinda bu farkli yogunluklar igin agirlikli minimal helis yiizeyleri elde ettik ve bu
yiizeylerin agirlikli flatligi i¢in bazi sonuglar verdik. Umuyoruz ki, bu ¢alisma sabit agili yiizeyler ile ilgilenen diferensiyel
geometricilere yeni bir bakis acis1 kazandiracak ve yakin gelecekte degisik yogunluklara sahip farkli uzaylarda bu yiizeyler ele
almabilecektir.

Anahtar Kelimeler: Helis hiperyiizeyi, Agirlikli ortalama egrilik, Yogunluklu uzay.
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1. Introduction

It is known that, if the tangent space of a submanifold of
R™ makes a constant angle with a fixed direction &, then it is a
helix. So, ¥ is called a helix hypersurface with respect to a unit
vector field &€ = 0 in R", if for each q € M, the angle function
¢ € [0, ) between & and TgM is constant [7,10]. According to
this definition, lots of studies have been done by differential
geometers about helix hypersurfaces. For instance in [10], the
author has determined all helix surfaces with parallel mean
curvature vector field which are not minimal or pseudo-
umbilical in M™(c) X R, where M™(c) is a simply connected n-
manifold with constant sectional curvature c¢. In [20], some
special curves on helix hypersurfaces have been studied and in
[5], the authors have studied helix surfaces with parallel mean
curvature vector in Euclidean spaces. Minimal helix
submanifolds of any dimension and codimension immersed in
Euclidean space has been investigated and the result of "A ruled
minimal helix submanifold is a cylinder." has been proved in [8].
For further studies about helix hypersurfaces, we refer to
[9,15,18,21] and etc.

Furthermore, the notion of weighted manifold is become
to be a very popular topic for scientists in recent years. The
weighted mean curvature (or ¢-mean curvature) of an n-
dimensional hypersurface on manifolds with density e? has been
introduced by Gromov as

H,=H--—2%2 )

where V" is the normal vector field and H is the mean curvature
of the hypersurface [11]. Also, the notion of weighted Gaussian
curvature (or ¢-Gaussian curvature) of an n-dimensional
hypersurface on manifolds with density e® is introduced as

K,=K—-Ag, @)

where A is the Laplacian operator and K is the Gaussian
curvature of the hypersurface [6].

It is said that, a hypersurface is weighted minimal and
weighted flat if the weighted mean curvature and weighted
Gaussian curvature vanish, respectively. After defining these
notions, lots of studies have been done in different spaces with
different densities by giving important characterizations for
some types of curves and surfaces (for instance, [1-4,6,12-
14,16,17,19] and etc).

In the present study, firstly we give the parametric
expression of a helix surface generated by a unit speed planar
curve in Euclidean 3-space and get the mean and Gaussian
curvatures of it. After that, we find the weighted mean curvature
and weighted Gaussian curvature of this helix surface in E3 with
densities e*, e**¥ and e*“*Y**7” seperately and give some
characterizations for their minimality and flatness.

2. Helix Surfaces in E3

In this section, we’ll give the normal vector field, mean
curvature and Gaussian curvature of a helix surface in Euclidean
3-space E3.

We know that, if y:I c R — E3, s — y(s) is a unit
speed planar curve in E3, then
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Y:UcE?—E?

(s,v) > ¥(s,v) =y(s) + v(singp.N(s) + cos¢.B) (3)
is a helix surface with direction B. Here, ¢ is constant and the
binormal vector B is a constant vector which is vertical to plane
of the curve y [21]. Also, for the unit speed planar curve y(s) =
(r1(5), ¥2(5),0), we have

1N+ (rz(s)? =1 4
and

T(s) = (y1(s),v2(5),0),

N(s) = (=y2(5),v1(5),0), ®)

B(s) = (0,0,1),

where T, N and B are tangent vector, principal normal vector
and binormal vector of y, respectively.

Thus, using (5) in (3), the helix surface generated by unit speed
planar curve y(s) = (y1(s),v2(s),0) can be written as

P (s,v) = (r1(s) —vy;(s)sing, v, (s) + vyi(s)sing,vcosep). (6)
For this surface, from (4) and (6), we have
¥ X ¥, = ((r2(s) + vy1'(s)sing)cosg,

(vy3 (s)sing — vi(s))cosg,

sing + vsin®¢(y1' ($)y2(s) — vz ()) (7
and

! : "
_ n(s)-vsingy, (s)
1, x 9 | = OO, ®)

So, from (7) and (8), we obtain the normal vector field of the
helix surface (6) as
= T = (r3(S)cosp, —yi(s)cose, sing).  (9)
Also, from (4) and (6), we have the coefficients of first
fundamental form as

" 2
E=(w,v)=(1- vsin¢y;1,(‘;)) L F=(¥,%,)=0, G=(¥,¥)=1 (10)

and the coefficients of second fundamental form as
L= (W, N)= )z (S)cosp+vsingcosd (s (N° W, W) =0
- SS» - ’ - svr - ’

r1(s))?
N = (¥, V) = 0. (11)

Hence, from (10) and (11), we obtain the mean curvature and
Gaussian curvature of the helix surface generated by unit speed
planar curve y(s) = (y1(s),v2(s),0) as

_ GL-2FM+EN _ vz (s)cosd (12)
T O2(BG-F2)  2(yi(s)-vsingyh (s))
and
LN—M?
= EG-F2 0, (13)

respectively.

Remark 1. We note that, the author has found the normal vector
field, mean curvature and Gaussian curvature of helix surface
(3) as

N = —cos¢pN + sinpB, H = l(M), K =0,

2 \1-kqvsing
respectively [21]. Obtaining the first curvature of unit speed
planar curve y(s) = (y1(s),v2(s),0), one can see that these
equations are equivalent to (9), (12) and (13) which have been
obtained by us for the parametric expression of a helix surface
stated by (6).
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3. Main Results

In this section, we’ll give some characterizations for helix
surface (6) in Euclidean 3-space with different densities.
Throughout this section, we suppose that, ¢; € R, (i = 1,2,3, ...).

3.1. Helix Surfaces in E3 with Different Densities
Firstly, let we assume that the density is e*.

In this case, from (1), (9) and (12), the weighted mean
curvature of helix surface (6) generated by unit speed planar
curve y(s) = (¥1(s),v(s),0) is obtained as

1
Hy = H~3(Vo,N)

_ L{yé’(s) + y3(s)(y1(s) — vy (s)sing)}. (14)

T 204 () -vvy ()sing)

So, we have
Theorem 1. If
- s
)¢ = 5 or
i) y1(s) = xs + ¢; and y,(s) = ¢, or
! ! n
, Y1(8)Y2()+v2 (5)\,_
i) ¢ = At tR2 2 )(=constant),
)¢ arcsm( vy ()vs () )( )

then the helix surface (6) generated by unit speed planar curve
¥(s) = (y1(5),72(5),0) is weighted minimal in E3 with density
e”.

Proof. When the above assumptions (i), (ii) and (iii) satisfy, we
get H, = 0 in the equation (14). Since a surface is weighted
minimal if weighted mean curvature vanishes, the proof
completes. m

Hence, using these assumptions in the parametric
expression of the helix surface (6), we can state the following
corollary:

Corollary 1. Weighted minimal helix surfaces generated by unit
speed planar curve y(s) = (y1(s),72(s),0) in Euclidean 3-
space with density e* can be parametrized by

Y(s,v) = (y1(s) — vyz(s),v2(s) + vyi(s),0), or (15)

Y(s,v) = (£s + ¢y, tvsing + ¢y, vcosp), ¢ qt% or (16)

Y1(8)y2(s) +v7'(s)

Y2 (s)
A+ )

Y(s,v) = (r:1(s) -

v2(s) + Y5(9)y3 (s) ’
L ()Y}()+7S )\
1— (Bl ), 17
v\/ ( vy ()ys (s) ) ) 1n

Also, from (2) and (13), the weighted Gaussian curvature
of helix surface (6) generated by unit speed planar curve y(s) =
(71(5),v2(5),0) in Euclidean 3-space with density e* is

Ko=K-Ap=K=0. (18)

Since a surface is weighted flat if weighted Gaussian
curvature vanishes, it is obvious that,

Corollary 2. The helix surface (6) generated by unit speed
planar curve y(s) = (y1(s),v2(s),0) is weighted flat in
Euclidean 3-space with density e*.

e-ISSN: 2148-2683

The following figures show the weighted minimal helix
surfaces (15), (16) and (17), respectively, for y;(s) = s, y,(s) =

52,c1=3,02=1and¢=g.

Figure 1
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Now, let we assume that the density is e**Y.

In this case, from (1), (9) and (12), the weighted mean
curvature of helix surface (6) generated by unit speed planar
curve y(s) = (¥1(5),v2(s),0) is obtained as

- cosd (. u ' ot ' _
H(p - Z(Y{(S)—UYZH(S)SL'TI(P) {YZ (S) + (]/2(5) V1 (5))()/1(5)
vy, (s)sind))}. (19
Thus, we have
Theorem 2. If
)¢ = 5 or

N

i) y1(s) = £ 5+ c5 and y,(s) = £ =+ ¢, o

F1())%-¥3 (9)-11(9)Y3 ()
w3 (5)(r1 (5)-¥3(s)

iii) ¢ = arcsin( ) (=constant),
then the helix surface (6) generated by unit speed planar curve

y(s) = (y1(5),72(5),0) is weighted minimal in E3 with density
ex+y.

Proof. If the above assumptions (i), (ii) and (iii) satisfy, we get
H, =0 in the equation (19). From the definition of weighted
minimal surface, the proof completes. m

Therefore, from Theorem 2, we get

Corollary 3. Weighted minimal helix surfaces generated by unit
speed planar curve y(s) = (y1(s),v2(s),0) in Euclidean 3-
space with density e**Y can be parametrized by

¥(s,v) = (r1(s) —vy2(5), v2(s) + vy1(s),0) or (20)
Y(s,v) = (i% ¥ %sinqﬁ +c3, i% + %sin¢ + ¢4, vCOSP), P * % or (21)

W(s,v) = (yy(s) - (Y{(5))21’2’(5,)’—1’2’(5,)1’5’(5),—1’{(5)(1’2’(5))2
v @)
(AR AN AORAQNRAC)
v &) ©-1©)

]

y2(s) +

)

(O ©O)VONE)
vj 1= ( O ACEO) ) (22)
From (2) and (13), the weighted Gaussian curvature of
helix surface (6) generated by unit speed planar curve y(s) =
(71(5),72(s),0) in Euclidean 3-space with density e**? is
K, =K =0.
Thus,

Corollary 4. The helix surface (6) generated by unit speed
planar curve y(s) = (y1(5),v2(s),0) is weighted flat in
Euclidean 3-space with density e**?.
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Finally, let we assume that the density is e***+Y*+2”,

In this case, from (1), (9) and (12), the weighted mean
curvature of helix surface (6) generated by unit speed planar
curve y(s) = (¥1(5),v2(s),0) is obtained as

cos¢p " ’
H(p = - 2071 () vyl (s)sing) {VZ (S) + 2()/1(5) -
VY7 (8)sing) (y1(s)v2(s) — v1(s)y2(s))}- (23)
So, we have

Theorem 3. If

)¢ =7 or

il) y1(s) = css + ¢ and y,(s) = ¢;s + cg,
Where (Cs)z + (C7)2 = 1, C6C7 = C5C8 or

Y2 (9)+2v1()¥1 ()2 () =211 () V2 (s)
2013 () (1()¥2(8) -1 (5)¥2(5))

i) ¢ = arcsin( )(:constant),

then the helix surface (6) generated by unit speed planar curve
¥(s) = (y1(5),72(5),0) is weighted minimal in E3 with density
ex2+y2+zz_
Proof. If the assumptions (i), (ii) and (iii) satisfy, then we get
H, = 0 in the equation (23). So, the helix surface is weighted
minimal if these assumptions satisfy. =

Hence, from Theorem 3, we get

Corollary 5. Weighted minimal helix surfaces generated by unit
speed planar curve y(s) = (y1(s),v2(s),0) in Euclidean 3-

space with density e*”+¥*+2* can be parametrized by
Y(s,v) = (y1(s) — vy3(5),v2(s) + vyi(s),0) or (24)
Y(s,v) = (c5S — cyvsing + ¢4, €75 + csvsing + cg, vcosp), ¢ * g or (25)
72(8)72 (5) + 21 (Y1) 72 (s))* — 21 () *r2(S)v2(s)
275" () (r1()y2(5) = 71 ()72 (s)) '
Yi(®)y2 (5) + 271 () 1(5))*r2(5) = 2(¥1(5))*v2(s5)
AGAGIAORSHAOIAG)

2
" ’ ! _ ! 2
v \/ 1- (yz (211 OV OV -201 () n(s)) ), (26)

¥Y(s,v) = (1i(s) -

v2(s) +

20/ &) (1 VOV ©r2())
where (¢c5)? + (¢;)? = 1, cg¢y = C5Cg.

From (2) and (13), the weighted Gaussian curvature of
helix surface (6) generated by unit speed planar curve y(s) =
(71(5),7,(s),0) in Euclidean 3-space with density e*”+¥*+js

K, = —6.
Thus,

Corollary 6. The helix surface (6) generated by unit speed
planar curve y(s) = (y1(s),v2(s),0) has constant weighted

Gaussian curvature (—6) in Euclidean 3-space with density
ex2+y2+zz_

We note that, the obtained above surfaces can be drawn with
similar or different assumptions in Figure 1.

4. Conclusion and Future Work

In the present study, weighted minimal helix surfaces
generated by unit speed planar curve have been given in
Euclidean 3-space with different densities and some results have
been stated for weighted flatness of these surfaces. We hope that,
this study will bring a new viewpoint to differential geometers
who are dealing with constant angle surfaces and in near future,
one can handle these surfaces in different spaces with another
densities.
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