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Abstract 

The differential geometry of helix curves and helix hypersurfaces in different spaces has important application areas in many 

disciplines. Also, the notion of weighted manifold is become to be a very popular topic for scientists in recent years. In this context, 

after defining the notions of weighted mean curvature (or 𝜑-mean curvature) and weighted Gaussian curvature (or 𝜑-Gaussian 

curvature) of an n-dimensional hypersurface on manifolds with density, lots of studies have been done by differential geometers in 

different spaces with different densities. So, in the present study, firstly we give the normal vector field, mean curvature and Gaussian 

curvature of a helix surface in three dimensional Euclidean space and after that, we obtain the weighted mean curvature and weighted 

Gaussian curvature of a helix surface generated by a unit speed planar curve in three dimensional Euclidean space with different three 

densities by stating the parametric equation of this surface. However, we know that a hypersurface is weighted minimal and weighted 

flat in Eucilidean 3-space with density if the weighted mean curvature and the weighted Gaussian curvature vanish, respectively. So, 

by using these definitions, we obtain the weighted minimal helix surfaces for these different densities and give some results for 

weighted flatness of the helix surfaces in Euclidean 3-space. We hope that, this study will bring a new viewpoint to differential 

geometers who are dealing with constant angle surfaces and in near future, one can handle these surfaces in different spaces with 

another densities. 

Keywords: Helix hypersurface, Weighted mean curvature, Space with density.   

Yoğunluklu Öklidyen 3-Uzayında Helis Yüzeyleri 

Öz 

Farklı uzaylarda helis eğrilerinin ve helis hiperyüzeylerinin diferensiyel geometrisi, birçok bilim dalında önemli uygulama alanlarına 

sahiptir. Ayrıca, ağırlıklı manifold kavramı son yıllarda bilim insanları için çok popular bir konu olmaya başlamıştır. Bu bağlamda, 

yoğunluklu manifoldlar üzerinde n-boyutlu bir hiperyüzeyin ağırlıklı ortalama eğriliği (veya 𝜑-ortalama eğriliği) ve ağırlıklı Gaussian 

eğriliği (veya 𝜑-Gaussian eğriliği) kavramları tanımlandıktan sonra, farklı yoğunluğa sahip değişik uzaylarda diferensiyel 

geometriciler tarafından pek çok çalışma yapılmaktadır. Bu sebeple, biz de bu çalışmada, ilk olarak Öklidyen 3-uzayında bir helis 

yüzeyinin normal vektör alanını, ortalama eğriliğini ve Gaussian eğriliğini verdik ve ardından üç farklı yoğunluğa sahip üç boyutlu 

Öklidyen uzayında birim hızlı bir düzlemsel eğri tarafından oluşturulan bir helis yüzeyinin, parametrik denklemini ifade ederek, 

ağırlıklı ortalama eğriliğini ve ağırlıklı Gaussian eğriliğini elde ettik. Bununla birlikte, biliyoruz ki yoğunluklu Öklidyen 3-uzayında 

bir hiperyüzey ağırlıklı minimal ve ağırlıklı flattır, eğer sırasıyla ağırlıklı ortalama eğriliği ve ağırlıklı Gaussian eğriliği sıfır oluyorsa. 

Dolayısıyla, bu tanımları kullanarak, Öklidyen 3-uzayında bu farklı yoğunluklar için ağırlıklı minimal helis yüzeyleri elde ettik ve bu 

yüzeylerin ağırlıklı flatlığı için bazı sonuçlar verdik. Umuyoruz ki, bu çalışma sabit açılı yüzeyler ile ilgilenen diferensiyel 

geometricilere yeni bir bakış açısı kazandıracak ve yakın gelecekte değişik yoğunluklara sahip farklı uzaylarda bu yüzeyler ele 

alınabilecektir. 

 

Anahtar Kelimeler: Helis hiperyüzeyi, Ağırlıklı ortalama eğrilik, Yoğunluklu uzay. 
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1. Introduction     

          It is known that, if the tangent space of a submanifold of 

ℝ𝑛 makes a constant angle with a fixed direction 𝜉, then it is a 

helix. So, 𝛹 is called a helix hypersurface with respect to a unit 

vector field 𝜉 ≠ 0 in ℝ𝑛, if for each 𝑞 ∈ 𝑀, the angle function 

𝜙 ∈ [0, 𝜋) between 𝜉 and 𝑇𝑞𝑀 is constant [7,10]. According to 

this definition, lots of studies have been done by differential 

geometers about helix hypersurfaces. For instance in [10], the 

author has determined all helix surfaces with parallel mean 

curvature vector field which are not minimal or pseudo-

umbilical in 𝑀𝑛(𝑐) × ℝ, where 𝑀𝑛(𝑐) is a simply connected n-

manifold with constant sectional curvature 𝑐. In [20], some 

special curves on helix hypersurfaces have been studied and in 

[5], the authors have studied helix surfaces with parallel mean 

curvature vector in Euclidean spaces. Minimal helix 

submanifolds of any dimension and codimension immersed in 

Euclidean space has been investigated and the result of "A ruled 

minimal helix submanifold is a cylinder." has been proved in [8]. 

For further studies about helix hypersurfaces, we refer to 

[9,15,18,21] and etc. 

          Furthermore, the notion of weighted manifold is become 

to be a very popular topic for scientists in recent years. The 

weighted mean curvature (or 𝜑-mean curvature) of an n-

dimensional hypersurface on manifolds with density 𝑒𝜑 has been 

introduced by Gromov as 

                                     𝐻𝜑 = 𝐻 −
1

𝑛−1

𝑑𝜑

𝑑𝒩
,                                 (1) 

where 𝒩 is the normal vector field and H is the mean curvature 

of the hypersurface [11]. Also, the notion of weighted Gaussian 

curvature (or 𝜑-Gaussian curvature) of an n-dimensional 

hypersurface on manifolds with density eφ is introduced as 

                                      𝐾𝜑 = 𝐾 −△ 𝜑,                                    (2) 

where △ is the Laplacian operator and K is the Gaussian 

curvature of the hypersurface [6].  

          It is said that, a hypersurface is weighted minimal and 

weighted flat if the weighted mean curvature and weighted 

Gaussian curvature vanish, respectively. After defining these 

notions, lots of studies have been done in different spaces with 

different densities by giving important characterizations for 

some types of curves and surfaces (for instance, [1-4,6,12-

14,16,17,19] and etc). 

          In the present study, firstly we give the parametric 

expression of a helix surface generated by a unit speed planar 

curve in Euclidean 3-space and get the mean and Gaussian 

curvatures of it. After that, we find the weighted mean curvature 

and weighted Gaussian curvature of this helix surface in E3 with 

densities 𝑒𝑥 , 𝑒𝑥+𝑦 and 𝑒𝑥2+𝑦2+𝑧2
 seperately and give some 

characterizations for their minimality and flatness. 

2. Helix Surfaces in 𝑬𝟑 

          In this section, we’ll give the normal vector field, mean 

curvature and Gaussian curvature of a helix surface in Euclidean 

3-space 𝐸3. 

          We know that, if 𝛾: 𝐼 ⊂ ℝ ⟶ 𝐸3, 𝑠 ⟶ 𝛾(𝑠) is a unit 

speed planar curve in 𝐸3, then 

𝛹: 𝑈 ⊂ 𝐸2 ⟶ 𝐸3 

        (𝑠, 𝑣) ⟶ 𝛹(𝑠, 𝑣) = 𝛾(𝑠) + 𝑣(𝑠𝑖𝑛𝜙. 𝑁(𝑠) + 𝑐𝑜𝑠𝜙. 𝐵)   (3) 

is a helix surface with direction B. Here, 𝜙 is constant and the 

binormal vector 𝐵 is a constant vector which is vertical to plane 

of the curve 𝛾 [21]. Also, for the unit speed planar curve 𝛾(𝑠) =
(𝛾1(𝑠), 𝛾2(𝑠),0), we have 

                               (𝛾1
′(𝑠))2 + (𝛾2

′ (𝑠))2 = 1                            (4) 

and  

                               𝑇(𝑠) = (𝛾1
′(𝑠), 𝛾2

′ (𝑠),0), 

                               𝑁(𝑠) = (−𝛾2
′ (𝑠), 𝛾1

′(𝑠),0),                         (5) 

                               𝐵(𝑠) = (0,0,1), 

where 𝑇, 𝑁 and 𝐵 are tangent vector, principal normal vector 

and binormal vector of 𝛾, respectively. 

Thus, using (5) in (3), the helix surface generated by unit speed 

planar curve 𝛾(𝑠) = (𝛾1(𝑠), 𝛾2(𝑠),0) can be written as 

𝛹(𝑠, 𝑣) = (𝛾1(𝑠) − 𝑣𝛾2
′ (𝑠)𝑠𝑖𝑛𝜙, 𝛾2(𝑠) + 𝑣𝛾1

′(𝑠)𝑠𝑖𝑛𝜙, 𝑣𝑐𝑜𝑠𝜙).   (6) 

For this surface, from (4) and (6), we have  

𝛹𝑠 × 𝛹𝑣 = ((𝛾2
′ (𝑠) + 𝑣𝛾1

′′(𝑠)𝑠𝑖𝑛𝜙)𝑐𝑜𝑠𝜙, 

                    (𝑣𝛾2
′′(𝑠)𝑠𝑖𝑛𝜙 − 𝛾1

′(𝑠))𝑐𝑜𝑠𝜙, 

                    𝑠𝑖𝑛𝜙 + 𝑣𝑠𝑖𝑛2𝜙(𝛾1
′′(𝑠)𝛾2

′ (𝑠) − 𝛾1
′(𝑠)𝛾2

′′(𝑠)))       (7) 

and 

                          ‖𝛹𝑠 × 𝛹𝑣‖ =
𝛾1

′(𝑠)−𝑣𝑠𝑖𝑛𝜙𝛾2
′′(𝑠)

𝛾1
′(𝑠)

.                          (8) 

So, from (7) and (8), we obtain the normal vector field of the 

helix surface (6) as 

             𝒩 =
𝛹𝑠×𝛹𝑣

‖𝛹𝑠×𝛹𝑣‖
= (𝛾2

′ (𝑠)𝑐𝑜𝑠𝜙, −𝛾1
′(𝑠)𝑐𝑜𝑠𝜙, 𝑠𝑖𝑛𝜙).      (9) 

          Also, from (4) and (6), we have the coefficients of first 

fundamental form as 

𝐸 = ⟨𝛹𝑠, 𝛹𝑠⟩ = (1 − 𝑣𝑠𝑖𝑛𝜙
𝛾2

′′(𝑠)

𝛾1
′(𝑠)

)
2

, 𝐹 = ⟨𝛹𝑠, 𝛹𝑣⟩ = 0, 𝐺 = ⟨𝛹𝑣, 𝛹𝑣⟩ = 1  (10) 

and the coefficients of second fundamental form as 

𝐿 = ⟨𝛹𝑠𝑠 , 𝒩⟩ =
−𝛾1

′(𝑠)𝛾2
′′(𝑠)𝑐𝑜𝑠𝜙+𝑣𝑠𝑖𝑛𝜙𝑐𝑜𝑠𝜙(𝛾2

′′(𝑠))2

(𝛾1
′(𝑠))2 ,   𝑀 = ⟨𝛹𝑠𝑣, 𝒩⟩ = 0,

𝑁 = ⟨𝛹𝑣𝑣 , 𝒩⟩ = 0.                                                                      (11) 

Hence, from (10) and (11), we obtain the mean curvature and 

Gaussian curvature of the helix surface generated by unit speed 

planar curve 𝛾(𝑠) = (𝛾1(𝑠), 𝛾2(𝑠),0) as 

                     𝐻 =
𝐺𝐿−2𝐹𝑀+𝐸𝑁

2(𝐸𝐺−𝐹2)
= −

𝛾2
′′(𝑠)𝑐𝑜𝑠𝜙

2(𝛾1
′(𝑠)−𝑣𝑠𝑖𝑛𝜙𝛾2

′′(𝑠))
             (12) 

and 

                                      𝐾 =
𝐿𝑁−𝑀2

𝐸𝐺−𝐹2 = 0,                                 (13) 

respectively. 

Remark 1. We note that, the author has found the normal vector 

field, mean curvature and Gaussian curvature of helix surface 

(3) as 

       𝒩 = −𝑐𝑜𝑠𝜙𝑁 + 𝑠𝑖𝑛𝜙𝐵, 𝐻 =
1

2
(

𝑘1𝑐𝑜𝑠𝜙

1−𝑘1𝑣𝑠𝑖𝑛𝜙
) , 𝐾 = 0, 

respectively [21]. Obtaining the first curvature of unit speed 

planar curve 𝛾(𝑠) = (𝛾1(𝑠), 𝛾2(𝑠),0), one can see that these 

equations are equivalent to (9), (12) and (13) which have been 

obtained by us for the parametric expression of a helix surface 

stated by (6).  
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3. Main Results 

          In this section, we’ll give some characterizations for helix 

surface (6) in Euclidean 3-space with different densities. 

Throughout this section, we suppose that, 𝑐𝑖 ∈ ℝ, (𝑖 = 1,2,3, … ). 

3.1. Helix Surfaces in 𝐄𝟑 with Different Densities 

          Firstly, let we assume that the density is 𝑒𝑥. 

          In this case, from (1), (9) and (12), the weighted mean 

curvature of helix surface (6) generated by unit speed planar 

curve 𝛾(𝑠) = (𝛾1(𝑠), 𝛾2(𝑠),0) is obtained as 

𝐻𝜑 = 𝐻 −
1

2
〈𝛻𝜑, 𝒩〉        

   = −
𝑐𝑜𝑠𝜙

2(𝛾1
′(𝑠)−𝑣𝛾2

′′(𝑠)𝑠𝑖𝑛𝜙)
{𝛾2

′′(𝑠) +  𝛾2
′ (𝑠)(𝛾1

′ (𝑠) − 𝑣𝛾2
′′(𝑠)𝑠𝑖𝑛𝜙)}.  (14) 

So, we have 

Theorem 1. If 

i) 𝜙 =
𝜋

2
  or 

ii) 𝛾1(𝑠) = ±𝑠 + 𝑐1 and  𝛾2(𝑠) = 𝑐2  or 

iii) 𝜙 = 𝑎𝑟𝑐𝑠𝑖𝑛 (
𝛾1

′(𝑠)𝛾2
′(𝑠)+𝛾2

′′(𝑠)

𝑣𝛾2
′(𝑠)𝛾2

′′(𝑠)
)(=constant), 

then the helix surface (6) generated by unit speed planar curve 

𝛾(𝑠) = (𝛾1(𝑠), 𝛾2(𝑠),0) is weighted minimal in 𝐸3 with density 

𝑒𝑥.  

Proof. When the above assumptions (i), (ii) and (iii) satisfy, we 

get 𝐻𝜑 = 0 in the equation (14). Since a surface is weighted 

minimal if weighted mean curvature vanishes, the proof 

completes.  ∎ 

          Hence, using these assumptions in the parametric 

expression of the helix surface (6), we can state the following 

corollary:  

Corollary 1. Weighted minimal helix surfaces generated by unit 

speed planar curve 𝛾(𝑠) = (𝛾1(𝑠), 𝛾2(𝑠),0) in Euclidean 3-

space with density 𝑒𝑥 can be parametrized by  

𝛹(𝑠, 𝑣) = (𝛾1(𝑠) − 𝑣𝛾2
′ (𝑠), 𝛾2(𝑠) + 𝑣𝛾1

′(𝑠), 0),  or               (15) 

𝛹(𝑠, 𝑣) = (±𝑠 + 𝑐1, ±𝑣𝑠𝑖𝑛𝜙 + 𝑐2, 𝑣𝑐𝑜𝑠𝜙), 𝜙 ≠
𝜋

2
   or         (16) 

𝛹(𝑠, 𝑣) = (𝛾1(𝑠) −
𝛾1

′(𝑠)𝛾2
′ (𝑠) + 𝛾2

′′(𝑠)

𝛾2
′′(𝑠)

, 

                     𝛾2(𝑠) +
(𝛾1

′(𝑠))2𝛾2
′(𝑠)+𝛾1

′(𝑠)𝛾2
′′(𝑠)

𝛾2
′(𝑠)𝛾2

′′(𝑠)
, 

                  𝑣√1 − (
𝛾1

′(𝑠)𝛾2
′(𝑠)+𝛾2

′′(𝑠)

𝑣𝛾2
′(𝑠)𝛾2

′′(𝑠)
)

2

).                                   (17) 

          Also, from (2) and (13), the weighted Gaussian curvature 

of helix surface (6) generated by unit speed planar curve 𝛾(𝑠) =
(𝛾1(𝑠), 𝛾2(𝑠),0) in Euclidean 3-space with density 𝑒𝑥 is  

                               𝐾𝜑 = 𝐾 −△ 𝜑 = 𝐾 = 0.                          (18) 

          Since a surface is weighted flat if weighted Gaussian 

curvature vanishes, it is obvious that, 

Corollary 2. The helix surface (6) generated by unit speed 

planar curve 𝛾(𝑠) = (𝛾1(𝑠), 𝛾2(𝑠),0) is weighted flat in 

Euclidean 3-space with density 𝑒𝑥.  

          The following figures show the weighted minimal helix 

surfaces (15), (16) and (17), respectively, for 𝛾1(𝑠) = 𝑠, 𝛾2(𝑠) =

𝑠2, 𝑐1 = 3, 𝑐2 = 1 and 𝜙 =
𝜋

6
. 

 
Figure 1 

          Now, let we assume that the density is 𝑒𝑥+𝑦. 

          In this case, from (1), (9) and (12), the weighted mean 

curvature of helix surface (6) generated by unit speed planar 

curve 𝛾(𝑠) = (𝛾1(𝑠), 𝛾2(𝑠),0) is obtained as 

 𝐻𝜑 = −
𝑐𝑜𝑠𝜙

2(𝛾1
′(𝑠)−𝑣𝛾2

′′(𝑠)𝑠𝑖𝑛𝜙)
{𝛾2

′′(𝑠) + (𝛾2
′ (𝑠) − 𝛾1

′(𝑠))(𝛾1
′(𝑠) −

                                                    𝑣𝛾2
′′(𝑠)𝑠𝑖𝑛𝜙)}.                           (19) 

Thus, we have 

Theorem 2. If 

i) 𝜙 =
𝜋

2
  or 

ii) 𝛾1(𝑠) = ±
𝑠

√2
+ 𝑐3 and 𝛾2(𝑠) = ±

𝑠

√2
+ 𝑐4 or 

iii) 𝜙 = 𝑎𝑟𝑐𝑠𝑖𝑛 (
(𝛾1

′(𝑠))2−𝛾2
′′(𝑠)−𝛾1

′(𝑠)𝛾2
′(𝑠)

𝑣𝛾2
′′(𝑠)(𝛾1

′(𝑠)−𝛾2
′(𝑠))

) (=constant), 

then the helix surface (6) generated by unit speed planar curve 

𝛾(𝑠) = (𝛾1(𝑠), 𝛾2(𝑠),0) is weighted minimal in 𝐸3 with density 

𝑒𝑥+𝑦 .  

Proof. If the above assumptions (i), (ii) and (iii) satisfy, we get 

𝐻𝜑 = 0 in the equation (19). From the definition of weighted 

minimal surface, the proof completes.  ∎ 

          Therefore, from Theorem 2, we get 

Corollary 3. Weighted minimal helix surfaces generated by unit 

speed planar curve 𝛾(𝑠) = (𝛾1(𝑠), 𝛾2(𝑠),0) in Euclidean 3-

space with density 𝑒𝑥+𝑦 can be parametrized by  

𝛹(𝑠, 𝑣) = (𝛾1(𝑠) − 𝑣𝛾2
′ (𝑠), 𝛾2(𝑠) + 𝑣𝛾1

′(𝑠), 0)  or                (20) 

𝛹(𝑠, 𝑣) = (±
𝑠

√2
∓

𝑣

√2
𝑠𝑖𝑛𝜙 + 𝑐3, ±

𝑠

√2
±

𝑣

√2
𝑠𝑖𝑛𝜙 + 𝑐4, 𝑣𝑐𝑜𝑠𝜙), 𝜙 ≠

𝜋

2
 or   (21) 

 𝛹(𝑠, 𝑣) = (𝛾1(𝑠) −
(𝛾1

′(𝑠))2𝛾2
′(𝑠)−𝛾2

′(𝑠)𝛾2
′′(𝑠)−𝛾1

′(𝑠)(𝛾2
′(𝑠))2

𝛾2
′′(𝑠)(𝛾1

′(𝑠)−𝛾2
′(𝑠))

, 

                      𝛾2(𝑠) +
(𝛾1

′(𝑠))3−𝛾1
′(𝑠)𝛾2

′′(𝑠)−(𝛾1
′(𝑠))2𝛾2

′(𝑠)

𝛾2
′′(𝑠)(𝛾1

′(𝑠)−𝛾2
′(𝑠))

,              

                      𝑣√1 − (
(𝛾1

′(𝑠))2−𝛾2
′′(𝑠)−𝛾1

′(𝑠)𝛾2
′(𝑠)

𝑣𝛾2
′′(𝑠)(𝛾1

′(𝑠)−𝛾2
′(𝑠))

)
2

).                             (22) 

          From (2) and (13), the weighted Gaussian curvature of 

helix surface (6) generated by unit speed planar curve 𝛾(𝑠) =
(𝛾1(𝑠), 𝛾2(𝑠),0) in Euclidean 3-space with density 𝑒𝑥+𝑦 is 

𝐾𝜑 = 𝐾 = 0. 

Thus,  

Corollary 4. The helix surface (6) generated by unit speed 

planar curve 𝛾(𝑠) = (𝛾1(𝑠), 𝛾2(𝑠),0) is weighted flat in 

Euclidean 3-space with density 𝑒𝑥+𝑦 .  
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  Finally, let we assume that the density is 𝑒𝑥2+𝑦2+𝑧2
. 

          In this case, from (1), (9) and (12), the weighted mean 

curvature of helix surface (6) generated by unit speed planar 

curve 𝛾(𝑠) = (𝛾1(𝑠), 𝛾2(𝑠),0) is obtained as 

𝐻𝜑 = −
𝑐𝑜𝑠𝜙

2(𝛾1
′(𝑠)−𝑣𝛾2

′′(𝑠)𝑠𝑖𝑛𝜙)
{𝛾2

′′(𝑠) + 2(𝛾1
′(𝑠) −

                               𝑣𝛾2
′′(𝑠)𝑠𝑖𝑛𝜙)(𝛾1(𝑠)𝛾2

′ (𝑠) −  𝛾1
′(𝑠)𝛾2(𝑠))}. (23) 

So, we have 

Theorem 3. If 

i) 𝜙 =
𝜋

2
  or 

ii) 𝛾1(𝑠) = 𝑐5𝑠 + 𝑐6  and  𝛾2(𝑠) = 𝑐7𝑠 + 𝑐8,                             
where (𝑐5)2 + (𝑐7)2 = 1, 𝑐6𝑐7 = 𝑐5𝑐8  or 

iii) 𝜙 = 𝑎𝑟𝑐𝑠𝑖𝑛 (
𝛾2

′′(𝑠)+2𝛾1(𝑠)𝛾1
′(𝑠)𝛾2

′(𝑠)−2(𝛾1
′(𝑠))2𝛾2(𝑠)

2𝑣𝛾2
′′(𝑠)(𝛾1(𝑠)𝛾2

′(𝑠)−𝛾1
′(𝑠)𝛾2(𝑠))

)(=constant), 

then the helix surface (6) generated by unit speed planar curve 

𝛾(𝑠) = (𝛾1(𝑠), 𝛾2(𝑠),0) is weighted minimal in 𝐸3 with density 

𝑒𝑥2+𝑦2+𝑧2
.  

Proof. If the assumptions (i), (ii) and (iii) satisfy, then we get 

𝐻𝜑 = 0 in the equation (23). So, the helix surface is weighted 

minimal if these assumptions satisfy.   ∎ 

          Hence, from Theorem 3, we get 

Corollary 5. Weighted minimal helix surfaces generated by unit 

speed planar curve 𝛾(𝑠) = (𝛾1(𝑠), 𝛾2(𝑠),0) in Euclidean 3-

space with density 𝑒𝑥2+𝑦2+𝑧2
 can be parametrized by  

𝛹(𝑠, 𝑣) = (𝛾1(𝑠) − 𝑣𝛾2
′ (𝑠), 𝛾2(𝑠) + 𝑣𝛾1

′(𝑠), 0)  or                (24) 

𝛹(𝑠, 𝑣) = (𝑐5𝑠 − 𝑐7𝑣𝑠𝑖𝑛𝜙 + 𝑐6, 𝑐7𝑠 + 𝑐5𝑣𝑠𝑖𝑛𝜙 + 𝑐8, 𝑣𝑐𝑜𝑠𝜙), 𝜙 ≠
𝜋

2
  or  (25) 

𝛹(𝑠, 𝑣) = (𝛾1(𝑠) −
𝛾2

′ (𝑠)𝛾2
′′(𝑠) + 2𝛾1(𝑠)𝛾1

′(𝑠)(𝛾2
′ (𝑠))2 − 2(𝛾1

′(𝑠))2𝛾2(𝑠)𝛾2
′ (𝑠)

2𝛾2
′′(𝑠)(𝛾1(𝑠)𝛾2

′(𝑠) − 𝛾1
′(𝑠)𝛾2(𝑠))

, 

                     𝛾2(𝑠) +
𝛾1

′ (𝑠)𝛾2
′′(𝑠) + 2𝛾1(𝑠)(𝛾1

′(𝑠))2𝛾2
′ (𝑠) − 2(𝛾1

′(𝑠))3𝛾2(𝑠)

2𝛾2
′′(𝑠)(𝛾1(𝑠)𝛾2

′(𝑠) − 𝛾1
′(𝑠)𝛾2(𝑠))

, 

𝑣√1 − (
𝛾2

′′(𝑠)+2𝛾1(𝑠)𝛾1
′(𝑠)𝛾2

′(𝑠)−2(𝛾1
′(𝑠))2𝛾2(𝑠)

2𝑣𝛾2
′′(𝑠)(𝛾1(𝑠)𝛾2

′(𝑠)−𝛾1
′(𝑠)𝛾2(𝑠))

)

2

),                         (26) 

where (𝑐5)2 + (𝑐7)2 = 1, 𝑐6𝑐7 = 𝑐5𝑐8.  

          From (2) and (13), the weighted Gaussian curvature of 

helix surface (6) generated by unit speed planar curve 𝛾(𝑠) =

(𝛾1(𝑠), 𝛾2(𝑠),0) in Euclidean 3-space with density 𝑒𝑥2+𝑦2+𝑧2
is 

𝐾𝜑 = −6. 

Thus, 

Corollary 6. The helix surface (6) generated by unit speed 

planar curve 𝛾(𝑠) = (𝛾1(𝑠), 𝛾2(𝑠),0) has constant weighted 

Gaussian curvature (−6) in Euclidean 3-space with density 

𝑒𝑥2+𝑦2+𝑧2
.  

We note that, the obtained above surfaces can be drawn with 

similar or different assumptions in Figure 1. 

4. Conclusion and Future Work 

          In the present study, weighted minimal helix surfaces 

generated by unit speed planar curve have been given in 

Euclidean 3-space with different densities and some results have 

been stated for weighted flatness of these surfaces. We hope that, 

this study will bring a new viewpoint to differential geometers 

who are dealing with constant angle surfaces and in near future, 

one can handle these surfaces in different spaces with another 

densities. 
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