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Abstract

Bin packing problem is one of the most important optimization problems from the literature. In this work, we propose a novel
pool-based evolutionary algorithm for solving the one-dimensional bin packing problem. The algorithm uses the pool-based
crossover operator that aims to increase the search space of the problem and combine and remap method as a local search
technique that aims to improve the quality of the solution by considering underutilized bins in the offspring. In our experimental
study, the performance of the proposed method is compared with six algorithms from the literature using medium and hard
instances in the benchmark problem sets. As a result, the proposed study performs better than the algorithms in the literature
in 13% of medium instances and 80% of hard instances.

Keywords: Bin packing problem, evolutionary algorithms, crossover operator, problem specific operator design.

Oz

Kutu paketleme problemi literatiirdeki en 6nemli optimizasyon problemlerinden biridir. Bu ¢alismada, tek boyutlu kutu
paketleme probleminin ¢dziimii i¢in havuz tabanli evrimsel algoritma &neriyoruz. Algoritma, problemin arama alanini
arttirmay1 amaglayan havuz tabanli bir caprazlama operatdriinden ve yavru ¢éziimdeki tamamen kullanilmayan kutular: dikkate
alarak ¢6ziimiin kalitesini iyilestirmeyi amaclayan birlestirmeyi ve tekrar atamayi saglayan yerel bir arama tekniginden
yararlanmaktadir. Deneysel ¢caligmamizda 6nerdigimiz yontemin performansi, literatiirde bulunan alt1 algoritma ile kiyaslama
problem setlerinde bulunan orta ve zor Ornekler kullanilarak karsilagtirilmistir. Sonug olarak Onerdigimiz g¢alisma, orta
orneklerin %13’iinde ve zor 6rneklerin %80’inde literatiirdeki algoritmalardan daha iyi performans gostermektedir.

Anahtar Kelimeler: Kutu paketleme problemi, evrimsel algoritmalar, ¢aprazlama operatorii, probleme 6zgii operator tasarimi.

I. INTRODUCTION

Bin packing problem is a well-known optimization problem which can be applied to many real-life problems
including industrial and logistic applications, multiprocessor scheduling and cloud computing. Given a set of items
with different weights and an unlimited number of bins with fixed bin capacity, the objective of the problem is to
pack these items to minimum number of bins such that the total weight of the items assigned to a bin does not
exceed the capacity of the bin. Bin packing problem has various versions such as one-dimensional packing, two-
dimensional packing, three-dimensional packing, regular or irregular packing, packing by cost or packing by
weight. In this study, we consider one dimensional packing by weight and our objective is to minimize the total
number of bins used.

Bin-packing is an NP-Complete [1] problem and many heuristics and meta-heuristics have been proposed for the
solution of the problem. The First Fit algorithm [2], the Best Fit algorithm [3], the Next Fit algorithm [2] and
graph-based algorithm [4] are examples for the heuristic solutions of the problem. A variety of meta heuristics
such as ant colony optimization [5, 6], cuckoo search algorithm [7, 8], firefly algorithm [9] and whale optimization
algorithm [10], genetic algorithms [11, 12], simulated annealing [13] have also been used to solve the problem.

Firefly colony optimization algorithm (FCQO) [5] is a greedy metaheuristic using positive feedback to avoid
convergence to low quality solutions. Ant system algorithm (AS) [6] combines ant colony algorithm with a local
search technique. Adaptive Cuckoo Search Algorithm (ACS) [7] combines cuckoo search algorithm with Ranked-
Order-Value (ROV) technique as a decoding mechanism to obtain discrete solutions. Quantum Inspired Cuckoo
Search Algorithm (QICS) [8] defines the solutions using quantum representation based on qubit representation
and uses a novel hybrid quantum measure operation inspired by the first fit heuristic. Firefly algorithm (FA) [9]
uses L'evy flights as a search strategy which enables the algorithm to converge quickly. Improved Lévy-based
whale optimization algorithm (ILWOA) [10] uses Lévy flight for whale movements to improve the exploration
capabilities of whale optimization algorithm. It also uses a logistic chaotic map to switch between exploration and
exploitation. These algorithms are the reference studies used in the experiments.
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Evolutionary algorithms are heuristic approaches that
can be used to find solutions to NP-Complete problems.
Basically evolutionary algorithms mimic the nature and
are based on the idea of the survival of the fittest. In this
study, we propose a pool-based evolutionary algorithm
(PBEA) for the solution of bin packing problem using
a problem-specific crossover operator and a local
search technique. The main contributions of this study
are: (1) the pool-based crossover operator that aims to
increase the diversity of the solution; (2) the combine
and remap local search technique that aims to increase
the utilization of the bins; (3) intelligent packing by
rearranging items in underutilized bins, therefore
increase performance and decrease bin usage. Our
experimental study indicates that it outperforms related
studies from the literature for medium and hard class
instances.

Our paper is organized as follows: Bin Packing
problem is defined in the next section. In Section I,
the details of the proposed algorithm are given using
convenient examples. The performance of our
algorithm and its comparison with six algorithms from
the literature are shown in Section IV. Finally, we
discuss our contributions and give future directions for
the problem in Section V.

I1. PROBLEM DEFINITION

Given n items having different weights, and bin
capacities, the objective of the bin packing problem is
to assign all items to the minimum number of bins in
which the total weight of items assigned to a bin does
not exceed the capacity of the bin. The problem can be
formulated as follows:

n
minimize z(y) = Zyi

1)
i=1
Subject to constraints:
n
xl-]-=1,j=1..n (2)
i=1
n
ZwixijSCj,j=1..n (3)
i=1
y; €{0,1},i=1..n “)
x;€{01}i=1.nj =1.n )

The variable y; is used to indicate whether bins are used.
If bin j is used, y; is equal to 1, but if it is empty, y; is
set to 0. If item i is placed to bin j, xjj is set to 1,
otherwise 0. The objective of the problem as
represented in Eq.1 is to minimize the total number of
bins used. The first constraint guarantees that each
items is placed to only one bin as shown in Eq.2. The
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second constraint ensures that the total weight of the
items assigned to a bin cannot exceed the bin capacity
(Eq.3). In the proposed work, we assume that all bins
have the same capacity C.

I11. POOL-BASED EVOLUTIONARY

ALGORITHM

In bin packing problem, an infinite number of bins
having the same capacity and a number of items having
different weights are given. In our study, the grouping
method [14] is used to represent each individual as S;
where S; = {By, By,..., Bk}. Each partition B; includes
the set of items assigned to the bin b;; and k the number
of bins used.

Our evolutionary algorithm starts by generating the
initial population which includes candidate solutions
for the bin packing problem as presented in Algorithm
1 and continues for a predefined number of iterations.
At each iteration, two individuals referred as parentl
and parent2 are selected randomly from the population.
The pool-based crossover operator and the combine and
remap local search technique are applied to these
parents to obtain a new offspring. The crossover
operator tries to increase the search space of the
solution by mixing the items assigned to the bins of the
parents. The local search technique tries to decrease the
total number of bins used in the offspring, so it keeps
the utilized bins and combines and remaps the
underutilized bins. When the local search technique is
completed, the fitness value of the offspring is set to the
total number of bins occupied by the offspring. If the
fitness value of the offspring is better than its parents,
the parent having the worst fitness value is selected for
replacement.

Algorithm 1: Main scheme of the proposed Pool-
based evolutionary algorithm

Input: Items i, number of iterations iteration, population
size pop_size, bin capacity ¢

Output: Updated population P

P < initialize population (s, i, C)
For i=0 to iteration do
Select two parents Siand Sz from P randomly
Sc « crossover_operation (S, S2)
Simproved «— local_search (Sc)
P « update pop ()
End

NoohswhE

3.1. Initial Population Generation

The initial population includes a predefined number of
candidate solutions for the bin packing problem. At the
beginning of initial population generation, all
individuals are initialized to contain one bin with a
given capacity. Before each individual is created, the
items are shuffled and are placed to a list. Items are
selected one-by-one from this list and are placed to the
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first bin of the corresponding individual having enough
capacity. If no such bin exists, then a new bin is created,
and the item is placed to this bin. The available space
of each bin is updated as new items are inserted to the
bins. Once a predefined number of solutions are
obtained, the initial population generation is completed.

3.2. Pool-based Crossover Operator

In this work, we use the Pool-Based Crossover (PBC)
[15,16] that increases the search space while generating
the bins of the offspring. It also includes a pool which
contains the items that has not been assigned to any bin
yet due to size constraints. The details of our crossover
operator are given in Algorithm 2.

Algorithm 2: Pool-based crossover operator.

Input: First parent S1 = {B1!, B2%, ..., B«'}, second parent Sz = {B1?, B2, ..., B’}
Output: An offspring So= {Bu, Bz, .., Bk}

1. Create an empty pool Pool := Q

2. i=0

3. While there are unselected bins in S1 or Sz do

4. Create it" bin of So Bi: Bi :=

5 Set available_space(Bi) := Capacity of bins

6 Select an unselected bin from S1: Byt

7 Select an unselected bin from Sz: By?

8. Set Bx! and By? as selected

9. Remove items in Bx! and By? from Szand Sz

10. Combine and shuffle items in Bx! and By? with the items in Pool
11. While there are items in Pool do

12. Select item | from Pool

13. For j=0to i do

14. If weight(l) <= available_space(B;) then

15. Remove item | from Pool

16. Place item | to B;j

17. Update Available Space of Bj: available_space(B;) = available_space(B;) — weight(l)
18. break

19. End

20. End

21. Update item I: | := the next item in Pool

22. End

23. Increment i: i:=i +1

24. End

25. =i

26.  While there are items in Pool do

217. Select item | from Pool

28. ItemPlaced=false

29. For jtoido

30. If weight(l) <= available_space(B;) then

31 Remove item | from Pool

32. Place item | to B;

33. Update Available Space of Bj: available_space(B;) = available_space(B;j) — weight(l)
34. ItemPlaced=true

35. break

36. End

37. End

38. If not ItemPlaced then

39. Create i bin of So Bi: Bi :=

40. Set available_space(Bi) := Capacity of bins

41. Remove item | from Pool

42. Place item | to B;

43. Update Available Space of Bj: available_space(B;) = available_space(Bj) — weight(l)
44, Increment i: i:=1i +1

45. End

46. Update item I: | := the next item in Pool

47. End

48. Return offspring So
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Assume that two randomly selected parents represented
as 51 = {Bll, le, ey Bkl} and Sz = {Blz, Bzz, ey Bkz}
with k bins are the inputs. Since parents have k
partitions, the crossover operation will continue for at
most k steps. The total number of bins in S; and S, does
not have to be equal, and the operator will continue
until it selects all items from both parents. Initially, the
offspring with only one bin having an initial free space
equal to the bin capacity and an empty pool is created.

At each step, one bin from S; and one bin from S; are
selected randomly. These bins and the items in these
bins are assigned as selected and will not be used by the
crossover operator again. All the items that are present
in the selected bins are combined with the items in the
pool and are shuffled to increase the diversity of the
solutions. The items in the pool are then placed into the
bins of the offspring one by one. For each item x, there
is a back-search operation which visits the bins
currently available in the offspring one by one. Starting
from the first bin Bg to Bi.y, if there is any bin Bj which
has free space that is equal to or greater than the weight
of the item x, than this item is deleted from the pool and
is placed to B;. If no such bin can be found, item x is
placed (if there is enough space) to B; that is generated
in the offspring during the current step. Once an item is
placed to one of the bins in the offspring, the free space
of the corresponding bin is also updated. If item x
cannot be placed to any of the bins, then it is kept in the
pool to be placed to one of the bins created in the next
steps.

Figure 1 provides an example of the crossover operator
applied to the given parents. The weights of the items
used in this example are shown in Table 1. The capacity
of the bins is set to 14. Assume that Bs® and B3? are
selected randomly and the items Is and |1 in these bins
are combined in the pool. The items in the pool are
shuffled and the first bin having free space of 14 is
generated as By. Since the weight of the first item Is in
the pool is less than the free space of By, Is is deleted
from the pool and is placed to By and free space of Bg
is updated to 3. The algorithm tries to put the second
item I1 having a weight of 7 to Bo, but there is not
enough space to store this item in By, so it is kept in the
pool.

Table 1. Weights of items used in pool-based
crossover operator example in Figure 1.

Item 0|12 |3)| 4 5 6 7

Weight | 5|7 |3 |5 | 12| 11| 10 | 11

In the second step, B! and B4? are selected randomly
and the items Iy, I7 and Ig in these bins are combined
with the items in the pool. The pool is shuffled again
and B; having a capacity of 14 is generated. The first
item |1 is placed into the newly generated bin B, of the
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offspring. The free space of B is updated to 7. The
weight of the second item I in the pool is equal to 3,
with the back-search operation, it is placed to Bo which
makes By fully utilized. The algorithm tries to place
items |7 and g into B3, but the weights of these items
are greater than the free space available in B1, so they
are kept in the pool. In the third step, Bs! and Bo? are
selected randomly and the items 14 and ls in these bins
are combined with the items in the pool. After the pool
is shuffled, 1. is placed to the newly generated bin Bo.
In the last step, B! and B4? are selected randomly, and
all items are thrown into the pool. Again, the pool is
shuffled and I5 is placed into Bi by using the back-
search operation, whereas lg is placed to the newly
generated bin Bs.

At the end of this step, all partitions of the parents
become empty, so the crossover operator considers
only the items in the pool. Since a back-search
operation has been performed on all items before, a new
partition B is generated to place these items. lp and Ig
is placed to B4 and for the remaining item I7 bin Bs is
created. The crossover operator continues until all
items in the pool are placed into one of the bins.

3.3. Combine and Remap Local Search Technique
At the end of pool-based crossover operator, some bins
in the offspring are fully utilized such as Bo and B4 as
given in Figure 1 so there is no need to touch these
bins. Our local search technique is called Combine and
Remap as it tries to decrease the number of bins used
in the offspring by exchanging information stored in
underutilized bins as shown in Algorithm 3. This
technique considers only the underutilized bins. This
technique allows grouping of the items with lowest
weight into one bin, so it increases the change of
decreasing the total number of bins used in the
solution. It also increases the utilization of some of the
underutilized bins.

Algorithm 3: Combine and remap local search
technique.

Input: An offspring So= {B1, Bz, .., Bk}
Output: The offspring So = {B1, B2, .., Bk}

8.
9.
10.
11.

Create an empty pool Pool :=
Find underutilized bins of offspring So
While there are underutilized bins do

Merge 2 underutilized bins to create a new
partition which is utilized and add remaining items
to the pool: partition, pool «—
partition_reduction (underutilized bins)
End
Merge the pools to create new partitions
Return offspring So

12.
13.
14.
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Figure 1. Pool-based crossover operator applied to the given parents to obtain an offspring.

Local search technique selects underutilized bin pairs
in the offspring and combines the items in these bins
to form new bins. When the items from two bins are
combined, a more intelligent method than shuffling is
used which places the items with the highest weight to
the new bin. The items with the lowest weight are
thrown to the pool to increase the chance of placing
higher number of items into the same bin. The local
search technique is finished when all underutilized
bins are recombined and the items in the bins are
rearranged. Local search technique does not always
guarantee to decrease the number of bins in the
offspring, but it guarantees to increase the utilization
of the underutilized bins which increases the chance to
find a better solution in the next iterations.

Figure 2 is an example local search scenario applied to
the underutilized bins of an offspring. In this example,
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actual data taken from HARDO instance of hard data
sets [17] is used. The weights of the items are divided
by 1000 and rounded to increase readability and are
given in Table 2. The capacity of each bin is 100. This
simple example shows that the local search technique
can decrease the total number of bins used in the
offspring by 1. The bins which have utilization less
than 90% are considered in this phase. The first
underutilized bin pair deleted from the offspring is B11
and Bis. The items that have the highest weight in
these bins are Is, 147 and Iso So they are used to generate
the first partition P1. The remaining items l124, 1129 and
ligs having lower weights are thrown to the pool.
Likewise, By and B, are combined, P is filled with
items 17, 141 and lgs having highest weight. The items
with lower weights are thrown to the pool. P3 and P4
are generated using bin pairs B2s and By, B4z and Bsa.
All the underutilized bins have 3 items, so does the
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newly generated partitions P1 - P4. Also, the utilization
of the partitions is higher as compared to the selected
bins. All remaining items that have not been placed to
a partition are available in the pool and we know that
the weights of these items are lower, so the pool
increases the chance to generate partitions that hold
more items.

Our algorithm initially selects the items with the
highest weight from the pool. l11, 1121 and lios are
placed to Ps and there is still 22 free space in Ps. The
next item with the highest weight is 129 but it has a
weight of 25, so it cannot be placed to this partition.
Our algorithm applies best fit in this case to see if there
is an item in the pool that has a weight equal to the free
space available in the partition. If so, it selects that

item, removes it from the pool and puts it to the
partition. If there is no such item having an equal
weight, then it selects the item which has a lower but
closer weight. l1g¢'s weight is 21, so it is placed to Ps.
Partitions Ps and P; are generated using the same
procedure.

The newly generated partitions Ps and Pg are nearly
fully utilized, and all newly generated partitions have 4
items, which decreases the total number of bins in the
offspring by 1. At the end of local search phase, the
newly generated partitions are replaced with the
underutilized bins in the offspring.

Table 2. Weights of items used in combine and remap local search technique example given in Figure 2.

li 5 7 119 | 40 | 41 | 47 | 54 | 55 | 57 | 70 | 93 | 96 | 111 | 121 | 124 | 129 | 132 | 134 | 148 | 158 | 159 | 160 | 186 | 190
Wi [ 35| 34 | 33|32 |31 )31 |33 3|2 | 28|27 26 26 26 25 25 25 24 23 23 23 21 21
free space : 15
Bin 11 129,47, 70
5,47,70
free space : 18 Partition 1
Bin 15 124,186,5
124,129, 186
Pool
free space : 17
Bin 20 41, 96,134
free space: 8
free space: 1
free space : 19 Partition 2 ~
Bin 21 159, 148, 7 111'121:_124'18
Partition 5
134, 148, 159
Pool 124,129, 186 free space: 1
134, 148, 159,
121,132, 160, 129, 132.,.134, 148
free space : 16 111, 158,190 Partition 6
Bnos [ 121,98,55 ] Pool e space 10
158, 159, 160, 190
Partition 7

Partition 3

121,132,160

Bin 32 132,160, 19

Bin 47
free space: 8

Partition 4

111,158,190

Pool

free space : 21

Bin 51

40,57, 54

Figure 2. Applying combine and remap local search technique to the underutilized partitions of the offspring.
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IV. EXPERIMENTAL EVALUATION

In this section, two set of tests are provided to measure
the performance of our algorithm using medium and
hard class instances selected from Scholl uniformly
distributed instances [17]. First the performance of our
algorithm is compared with quantum inspired cuckoo
search algorithm (QICS) [8], adaptive cuckoo search
algorithm (ACS) [7], firefly colony optimization
algorithm (FCO) [5], firefly algorithm (FA) [9], ant
system algorithm (AS) [6] and improved Lévy-based
whale optimization algorithm (ILWOA) [10]. The
performance of the algorithms in Table 4 and Table 6
are collected from [10], and the same instances used in
this reference work are selected as medium and hard
instances for the comparison of the algorithms. We also
showed the performance of our algorithm using two

medium class instances and the results are reported in
Table 4. Best known column represents the best
achievable bin number. The performance of the
algorithms from the literature are collected from [10]
and the best bin value obtained in 30 runs is given as
the performance of PBEA. Our algorithm outperforms
the listed algorithms in 2 instances (N4W2B1RO and
N4W2B1R3) and obtains the same performance with
ACS and ILWOA in 14 instances. In 9 instances, our
algorithm obtains the best-known bin value. Even if we
have shown results of 16 medium class instances,
indeed there are 240 instances in this class. We tested
our algorithm for all 240 instances, and we are able to
obtain the best-known bin value for 113 instances.

Table 3. Performance of PBEA on medium class

iati dataset.

variations of the pool-based crossover operator on hard
class instances. For all the experiments, the population | Instance N Capacity | BEST AVG  STD
size and generation size are set to 100 and 500, NIW1B1R2 | 50 1000 19 19 0
rfaspectlvely. The propose(_j algorithm is executed 30 N1W1B1R9 | 50 1000 17 17
times for each instance. Since the crossover operator
and local search technique is always executed, both the N1W1B2RO | 50 1000 1r w3 04
crossover and mutation rate is 1. N1W1B2R1 | 50 1000 17 17 0
The medium class instances contain 50 to 500 items NIWIB2RS | 50 1000 17 17 0
whose weights are between 10-500. These items should N2W1B1R0 | 100 1000 34 344 05
be assigned to the minimum number of bins with a N2W1B1R1 | 100 1000 35 353 047
capaqlty of 1000. '_I'able 3 I|s_ts the performance of our N2W1B1RS | 100 1000 35 3537 049
algorithm on medium class instances. The best value
denotes the minimum number of bins found by the N2W1B1R4 | 100 1000 34 3471 047
algorithm, whereas the average bin value and standard N2W3B3R7 | 100 1000 13 13 0
Qeviation are calculated usir)g 30 runs. In 9 medium N2W2B1R0 | 100 1000 12 12 0
instances out of 16, our algorithm always uses the same
bin number. PBEA obtains the same bin number in | N4W2BIRO 500 1000 104 1045 051
nearly half of the runs for 6 medium instances, whereas N4W2B1R3 | 500 1000 103 10397 0.18
for 1 instance n_amely N4WZB_1R3, we were able to Naw3B3R7 | 500 1000 74 74 0
obtain the best bin number 103 in 2 out of 30 runs.

N4W4B1R0 | 500 1000 57 57 0
The performance of the proposed work is compared N4W4B1R1 | 500 1000 57 57 0
with the algorithms from the literature for the same 16

Table 4. Performance comparison of PBEA with related studies on medium class dataset.

Instance N Capacity | Bestknown QICS  ACS FCO FA AS ILWOA PBEA
N1W1B1R2 50 1000 19 20 19 19 20 20 19 19
N1W1B1R9 50 1000 17 18 17 17 17 17 17 17
N1W1B2R0 50 1000 17 18 17 18 18 18 17 17
N1W1B2R1 50 1000 17 17 17 17 17 18 17 17
N1W1B2R3 50 1000 16 17 17 17 17 17 17 17
N2W1B1R0 100 1000 34 36 34 35 35 37 34 34
N2W1B1R1 100 1000 34 37 35 36 36 36 35 35
N2W1B1R3 100 1000 34 37 35 36 36 36 35 35
N2W1B1R4 100 1000 34 37 34 35 35 35 34 34
N2W3B3R7 100 1000 13 13 13 13 13 13 13 13
N2W4B1R0 100 1000 12 12 12 12 12 12 12 12
N4W2B1R0 500 1000 101 109 105 106 106 107 105 104
N4AW2B1R3 500 1000 100 108 104 105 105 106 104 103
N4W3B3R7 500 1000 74 74 74 74 74 74 74 74
NAW4B1R0 500 1000 56 58 57 57 57 58 57 57
N4AWA4B1R1 500 1000 56 58 57 58 58 58 57 57
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There are 10 large class instances that contain 200
items. The weights of these items are between 20,000
and 35,0000 and the bin capacity is 100,000. Our
algorithm is executed on each instance 30 times and the
best bin value, the average bin value with its standard
deviation is given in Table 5. The same bin value is
obtained in all of the runs for 4 instances, whereas the
best bin value is obtained only once for HARD4
instance. On the other hand, the best bin value is
obtained in more than half of the runs in the remaining
5 instances.

other items. Generally, it outperforms the second
crossover type because placing heavier items to the bins
first is a smarter decision since there will always be
much space for lighter items as compared to heavier
items. This sorting operation decreases the search space
so when combined with local search, it shows worse
performance as compared to shuffling. The pool-based
crossover operator using shuffle may not be the best
choice when considered alone, but with a combination
of the local search technique, it gives the best results.

Table 5. Performance of PBEA on hard class dataset.

Table 6 shows the performance comparison of PBEA -
- . . . Inst N C t BEST AVG STD
with the algorithms from the literature using the hard nstance apactty
class instances. The best result reported in Table_5 is | HARDO | 200 100,000 57 5737  0.49
used as the performance of PBEA. Our algorithm
outperforms the listed algorithms for 8 instances and HARD1 | 200 100,000 58 58.04 0.18
gives the same performance with ACS and ILWOA in
2 instances. Even if we are very close to the best-known | HARDZ | 200 100,000 58 5837 049
bin value for hard instances, unfortunately PBEA was HARD3 | 200 100,000 57 57 0
not able to produce the best-known result.
] . HARD4 200 100,000 58 58.97 0.18
Finally, the performance of the operators proposed in
our algorithm is evaluated. We have conducted tests on HARDS5 | 200 100,000 58 58 0
the hard class instances and reported the best bin value
with the average bin value and standard deviation of the HARD6 | 200 100,000 o8 5823 043
resu!ts obtained in 30 runs in Table 7. There are tyvo HARD7 | 200 100,000 57 57 0
versions of the pool-based crossover operator which
vary in the selection of the items in the pool to be placed HARD8 | 200 100,000 58 58.2 0.41
to the bins. First crossover operator sorts all items in the
pool from highest to lowest weight, whereas second | HARD9 [ 200 100,000 58 58 0
operator shuffles the items in the pool. The first
crossover type uses a sorted list, so it first tries to place
the highest weight items to the bins and then tries the
Table 6. Performance comparison of PBEA with related studies on hard class dataset.
Instance N Capacity kr?g\i}n QICS ACS FCO FA AS ILWOA  PBEA
HARDO 200 100,000 56 59 58 59 60 59 58 57
HARD1 200 100,000 57 60 59 59 60 60 59 58
HARD?2 200 100,000 56 60 59 59 61 60 59 58
HARD3 200 100,000 55 59 58 59 60 59 58 57
HARDA4 200 100,000 57 60 59 60 61 60 59 58
HARD5 200 100,000 56 59 58 59 60 59 58 58
HARDG 200 100,000 57 59 59 59 61 60 59 58
HARD7 200 100,000 55 59 58 58 59 59 57 57
HARDS 200 100,000 57 59 59 59 61 60 59 58
HARD9 200 100,000 56 59 59 59 60 59 59 58
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Table 7. Performance of the operators of PBEA on hard class dataset.

Crossover Only Crossover + Local Search
Sorted Shuffle Sorted Shuffle
Instance | BEST AVG STD | BEST AVG STD | BEST AVG STD | BEST AVG STD
HARDO | 59 59.1 0.31 | 59 59.04 0.18 58 58.07 0.25 | 57 57.37 0.49
HARD1 | 60 60 0 60 60 0 58 58.97 0.18 | 58 58.04 0.18
HARD2 | 60 60 0 60 60.04 0.18 | 59 59.23 0.43 |58 58.37 0.49
HARD3 | 59 59 0 59 59 0 57 58.13 043 | 57 57 0
HARD4 | 60 60 0 60 60.5 0.51 59 59.8 041 | 58 58.97 0.18
HARDS | 59 59.17 0.38 | 59 59.9 0.31 58 58.93 0.25 | 58 58 0
HARD6 | 59 59.94 0.25 | 60 60.1 031 |59 59 0 58 58.23 0.43
HARD7 | 58 58.4 0.5 58 58.1 0.31 57 57.17 0.38 | 57 57 0
HARDS | 60 60 0 60 60.14 0.35 |59 59 0 58 58.2 0.41
HARD9 | 59 59.9 0.31 | 59 59.97 0.18 58 58.67 0.48 | 58 58 0

V. CONCLUSION AND FUTURE WORK
In this study, we have proposed a novel pool-based
evolutionary algorithm that solves the one-dimensional
bin packing problem. We have designed the pool-based
crossover operator to increase the diversity and the
combine and remap local search technique to increase
the quality of the solution. The experimental study
indicates that our algorithm outperforms six algorithms
from the literature with respect to the total number of
bins used.

The proposed algorithm can be used for the solution of
real world problems such as industrial and logistic
applications, multiprocessor scheduling and cloud
computing that can be modeled using bin packing
problem. Pool-based evolutionary algorithm can also
be applied to two-dimensional or three-dimensional bin
packing problem if the representation of the individuals
is changed properly.
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