
Communications in Advanced Mathematical Sciences
Vol. IV, No. 2, 89-99, 2021

Research Article
e-ISSN: 2651-4001

DOI: 10.33434/cams.803065

On Noncrossing and Plane Tree-Like Structures
Isaac Owino Okoth1*

Abstract
Mathematical trees are connected graphs without cycles, loops and multiple edges. Various trees such as Cayley
trees, plane trees, binary trees, d-ary trees, noncrossing trees among others have been studied extensively.
Tree-like structures such as Husimi graphs and cacti are graphs which posses the conditions for trees if, instead
of vertices, we consider their blocks. In this paper, we use generating functions and bijections to find formulas for
the number of noncrossing Husimi graphs, noncrossing cacti and noncrossing oriented cacti. We extend the
work to obtain formulas for the number of bicoloured noncrossing Husimi graphs, bicoloured noncrossing cacti
and bicoloured noncrossing oriented cacti. Finally, we enumerate plane Husimi graphs, plane cacti and plane
oriented cacti according to number of blocks, block types and leaves.
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1. Introduction
Husimi graph is a connected graph whose blocks are complete graphs. These graphs were introduced and enumerated by
Japanese physicist Kodi Husimi in [5]. If the blocks of a connected graph are polygons then the graph is called a cactus. Cacti
were introduced by Harary and Uhlenbeck in [4] where they appeared as Husimi trees. In 1996, Collin Springer [12] introduced
and enumerated oriented cacti. These are connected graphs whose blocks are oriented cycles. Formulas counting these tree-like
structures as well as their coloured counterparts, i.e. structures coloured with the property that blocks of the same colour are not
incident to one another, have been obtained. See [1, 3–5, 7, 8, 10, 12] for details. In this paper, we enumerate their noncrossing
and plane counterparts. The degree of a vertex in a tree-like structure is the number of blocks that are incident to it.

This paper is organized as follows: In Section 2, we enumerate noncrossing Husimi graphs, cacti and oriented cacti by
block type and number of blocks. A bijection between these structures and certain polygon dissections is also presented here.
Noncrossing tree-like structures whose blocks are coloured using two colours such that no blocks of the same colour are
incident to one another are enumerated in Section 3. Lastly in Section 4, we enumerate plane tree-like structures according to
block sizes, block types and number of leaves. Some of the results presented here were part of the author’s PhD thesis [10].

2. Noncrossing tree-like structures
In this section, we obtain equivalent results for Husimi graphs, cacti and oriented cacti whose blocks do not cross. We shall call
these structures as noncrossing Husimi graphs, noncrossing cacti and noncrossing oriented cacti respectively. The simplest of
the noncrossing structures is a noncrossing tree. This is a tree drawn in the plane with vertices on the boundary of a circle such
that the edges do not cross inside the circle. Marc Noy [9] showed that the number of noncrossing trees on n labelled vertices is
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given by

1
2n−1

(
3n−3
n−1

)
.

This result was later generalised to connected graphs by Flajolet and Noy [2]. Before we embark on the enumeration of
noncrossing Husimi graphs, let us review the notion of butterfly decomposition of noncrossing trees that was introduced in [2].
A butterfly is an ordered pair of trees that share a root. If a vertex v in a tree has degree d, then the tree can be decomposed into
d butterflies hanging from v.
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Figure 2.1. Noncrossing tree

In Figure 2.1, there are 4 butterflies rooted at w,x,y and z. The aforementioned authors showed that if T (x) is the generating
function for trees and B(x) is the generating function for butterflies then we have the following equations:

T (x) =
x

1−B
and B(x) =

T 2

x
.

Theorem 2.1. Let (n2,n3, . . .) be a sequence of non-negative integers satisfying the condition that n = ∑ j≥2( j−1)n j +1. The
number NHGn(n2,n3, . . .) of noncrossing Husimi graphs on [n] having n j blocks of size j is given by

NHGn(n2,n3, . . .) =
(2n+ k−2)!

(2n−1)!∏ j≥2 n j!
(2.1)

where k = ∑ j≥2 n j.

Proof. Let F(x) be the generating function for noncrossing Husimi graphs. Let yi mark the number of vertices in each block.
Adopting the butterfly decomposition of noncrossing trees to noncrossing Husimi graphs, we have that

F(x) =
x

1−∑i≥1 yi+1Bi

and

B(x) =
F2

x

where B(x) is the generating function for butterflies.
Therefore the generating function F(x) satisfies

F(x) =
x

1−∑
i≥1

yi+1

(
F2

x

)i .

Thus for G = F√
x we have

G(x) =
√

x
1−∑

i≥1
yi+1G2i .
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By the Lagrange Inversion Formula, we obtain

[xn]F(x) = [xn− 1
2 ]G(x) =

1
2n−1

[t2n−2]

(
1−∑

i≥1
yi+1t2i

)−(2n−1)

=
1

2n−1
[t2n−2] ∑

k≥0

(
−(2n−1)

k

)(
−∑

i≥1
yi+1t2i

)k

=
1

2n−1
[t2n−2] ∑

k≥0

(
2n+ k−2

k

)(
∑
i≥1

yi+1t2i

)k

=
1

2n−1 ∑
k≥0

(
2n+ k−2

k

)
∑

n2+n3+···=k
n2+2n3+···=n−1

k!yn2
2 yn3

3 . . .

n2!n3! · · ·
. (2.2)

Therefore,

NHGn(n2,n3, . . .) =
1

2n−1

(
2n+ k−2

k

)
k!

∏ j≥2 n j!
.

Corollary 2.2. The number of noncrossing Husimi graphs on n≥ 2 vertices is given by

1
n−1

n−1

∑
k=1

(
2n+ k−2

k−1

)(
n−1

k

)
.

Proof. We need to show that the number of noncrossing Husimi graphs on n vertices with k blocks is given by the generalised
Narayana number,

1
n−1

(
2n+ k−2

k−1

)(
n−1

k

)
. (2.3)

Let [[n,k]] denote the set of all types of partitions of [n] of length k. Since

∑
P∈[[n−1,k]]

k!
n2!n3! · · ·

=

(
n−2
k−1

)
,

the result follows from Equation (2.2).

The formula (2.3) appears in [11] and [14] as the number of dissections of a convex polygon on 2n vertices with k− 1
noncrossing diagonals such that the number of edges enclosing each interior region is even. We now construct a bijection
between the set of these dissections and the noncrossing Husimi graphs.

Lemma 2.3. There is a bijection between the set of dissections of a convex polygon on 2n vertices with k−1 noncrossing
diagonals such that the number of edges enclosing each interior region is divisible by two and the set of noncrossing Husimi
graphs on n vertices with k blocks.

Proof. Consider a convex polygon on 2n vertices such that the vertices are labelled in clockwise direction as 1,1′,2,2′, . . . ,n,n′.
Let the number of noncrossing diagonal edges be k−1 and the number of edges of each interior region be divisible by 2. There
are k such regions. Create an edge between any two vertices of label 1,2, . . . ,n that are in the same region. A vertex which is
incident to more than one region is considered to belong to all the incident regions. The resultant graph is a noncrossing Husimi
graph on n vertices with k blocks. See Figure 2.2 for an example. The process can easily be reversed.
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Figure 2.2. Diagram showing the bijection in the proof of Lemma 2.3.

We obtain further corollaries of Theorem 2.1.

Corollary 2.4. Let (n2,n3, . . .) be a sequence of non-negative integers satisfying the condition that n = ∑ j≥2( j−1)n j +1. The
number NCn(n2,n3, . . .) of noncrossing cacti on [n] having n j blocks of size j is given by

NCn(n2,n3, . . .) =
(2n+ k−2)!

(2n−1)!∏ j≥2 n j!
, (2.4)

where k = ∑ j≥2 n j.

Proof. In the noncrossing setting, there is only one way to turn a complete graph into a cycle thus the required equation follows
from Equation (2.1) i.e.,

NCn(n2,n3, . . .) = NHGn(n2,n3, . . .).

Corollary 2.5. The number of noncrossing cacti on [n], where n≥ 2, is

1
n−1

n−1

∑
k=1

(
2n+ k−2

k−1

)(
n−1

k

)
.

Proof. We obtain the formula by summing over all possibilities of n2,n3, . . . and k as in the proof of Corollary 2.2.

Corollary 2.6. Let (n2,n3, . . .) be a sequence of non-negative integers satisfying the condition that n = ∑ j≥2( j−1)n j +1. The
number NOCn(n2,n3, . . .) of noncrossing oriented cacti on [n] having n j blocks of size j is given by

NOCn(n2,n3, . . .) =
(2n+ k−2)!2k−n2

(2n−1)!∏ j≥2 n j!
,

where k = ∑ j≥2 n j.

Proof. Since any polygon of size ≥ 3 has 2 orientations, we have

NOCn(n2,n3, . . .) = 2k−n2 ·NCn(n2,n3, . . .).

The formula thus follows from Equation (2.4).
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Corollary 2.7. The number of noncrossing oriented cacti on [n], where n≥ 2, is

∑
k≥0

∑
n2+n3+···=k

n2+2n3+···=n−1

(2n+ k−2)!2k−n2

(2n−1)!∏ j≥2 n j!
.

3. Bicoloured noncrossing tree-like structures
In the next proposition, we obtain a formula for the number of noncrossing Husimi graphs on n labelled vertices such that the
degrees of the vertices are less than or equal to 2. This will make 2-colouring possible. Recall, from Section 1, that the degree
of a vertex v in a Husimi graph is the number of blocks that are incident to it.

Proposition 3.1. Let NHGn,2(n2,n3, . . .) be the number of noncrossing Husimi graphs on [n] having ni blocks of size i such
that ∑i≥2(i−1)ni +1 = n and all the vertices have degree less than or equal to 2. Then

NHGn,2(n2,n3, . . .) =
n!2k−1

(n− k+1)!∏ j≥2 n j!
(3.1)

where k = ∑ j≥2 n j.

Proof. Let F(x) be the generating function for 2-colourable noncrossing Husimi graphs with root degree 1 (or 0). Let yi mark
blocks of size i. Since each vertex in the block is to have degree less than or equal to two, the generating function satisfies

F(x) = x(1+∑
i≥1

yi+1(2F− x)i). (3.2)

The butterflies of these graphs must be rooted at vertices of degree 1 (or consists of a single vertex). We subtract x to cater for
cases in which a butterfly consists of a single vertex.

Setting G = 2F− x in Equation (3.2) we obtain

G = x(1+2 ∑
i≥1

yi+1Gi).

G is the generating function for 2-coloured Husimi graphs with root degree 1 (in the case of a single vertex, there are no
blocks, thus nothing to be coloured; otherwise there are precisely two colourings). When y2 = y3 = · · ·= 1, then we obtain the
generating function for the large Schröder numbers.

Now, for arbitrary root degree, root degree 2 Husimi graphs are obtained by merging two root degree 1 Husimi graphs. We
subtract F for double counting root degree 1 Husimi graphs. The generating function is thus

H(x) =
F2

x
−F =

G2

4x
− x

4
.

This implies that

[xn]H =
1
4
[xn+1]G2.

By the Lagrange Inversion Formula, we have

1
4
[xn+1]G2 =

1
2(n+1)

[tn−1]

(
1+2 ∑

i≥1
yi+1t i

)n+1

=
1

2(n+1)
[tn−1] ∑

k≥0

(
n+1

k

)(
2 ∑

i≥1
yi+1t i

)k

=
1

2(n+1) ∑
k≥0

2k
(

n+1
k

)
∑

n2+n3+···=k
n2+2n3+···=n−1

k!yn2
2 yn3

3 · · ·
n2!n3! · · ·

Therefore,

NHGn,2(n2,n3, . . .) =
2k−1

n+1

(
n+1

k

)
· k!

n2!n3! · · ·
. (3.3)
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Corollary 3.2. There are n ·2n−3 noncrossing trees on n≥ 2 vertices such that all the vertices have degree less than or equal
to 2.

Proof. The result follows from Equation (3.3) by taking (n2,n3, . . .) = (n−1,0, . . .) so that k = n−1.
Observe that these trees are also noncrossing paths. The corollary thus follows by a simple counting argument as well: first

choose a root (in n ways), then 2 choices for each step.

Corollary 3.3. Let NHGn,2 be the number of noncrossing Husimi graphs on [n] in which all the vertices have degree at most 2.
Then

NHGn,2 =
1

n−1

n−1

∑
k=1

2k−1
(

n
k−1

)(
n−1

k

)
. (3.4)

Proof. To prove Formula (3.4), we need to show that the number of noncrossing Husimi graphs on n vertices with k blocks in
which each vertex has degree ≤ 2 is given by

2k−1

n−1

(
n

k−1

)(
n−1

k

)
.

Since

∑
P∈[[n−1,k]]

k!
n2!n3! · · ·

=

(
n−2
k−1

)
,

the result follows from Equation (3.3).

Lemma 3.4. The number of bicoloured noncrossing Husimi graphs on [n] having ni blocks of size i such that ∑i≥2(i−1)ni+1=
n is equal to

n!2k

(n− k+1)!∏ j≥2 n j!

where k = ∑ j≥2 n j.

Proof. Consider a noncrossing Husimi graph on [n] having ni blocks of size i such that ∑i≥2(i−1)ni +1 = n and with vertices
having degree less than or equal to 2. Let b be a block in the graph. There are two choices for colouring block b and one choice
for the remaining blocks. The result thus follows from Equation (3.1).

Corollary 3.5. The number of bicoloured noncrossing Husimi graphs on n vertices is given by

1
n−1

n−1

∑
k=1

2k
(

n
k−1

)(
n−1

k

)
. (3.5)

We obtain the following special case by setting k = n−1 in Equation (3.5).

Corollary 3.6. There are n ·2n−2 bicoloured noncrossing trees on n≥ 2 labelled vertices.

Corollary 3.7. The number of bicoloured noncrossing cacti on [n] having ni cycles of size i such that ∑i≥2(i−1)ni +1 = n is
equal to

n!2k

(n− k+1)!∏ j≥2 n j!
,

where k = ∑ j≥2 n j.

Corollary 3.8. The number of bicoloured noncrossing cacti on [n], where n≥ 2, is

1
n−1

n−1

∑
k=1

2k
(

n
k−1

)(
n−1

k

)
.
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Corollary 3.9. The number of bicoloured noncrossing oriented cacti on [n] having ni cycles of size i such that ∑i≥2(i−1)ni+1=
n is equal to

n!22k−n2

(n− k+1)!∏ j≥2 n j!
,

where k = ∑ j≥2 n j.

Corollary 3.10. The number of bicoloured noncrossing oriented cacti on [n], for n≥ 2, is

∑
k≥0

∑
n2+n3+···=k

n2+2n3+···=n−1

n!22k−n2

(n− k+1)!∏ j≥2 n j!
.

4. Plane tree-like structures
A plane Husimi graph (resp. plane cactus) is a Husimi graph (resp. cactus) drawn on the plane such that its blocks are ordered
(see, Figure 4.1 for plane cactus).

Figure 4.1. Plane cactus on 32 vertices.

In this section, we shall call the number of blocks coming out of a vertex as the degree of that vertex. A leaf is a non-root
vertex which is incident to exactly one block. A non-leaf vertex is referred to as internal vertex.

Theorem 4.1. Let (n2,n3, . . .) be a sequence of non-negative integers satisfying the coherence condition: n=∑ j≥2( j−1)n j+1.
The number PHGn(n2,n3, . . .) of plane Husimi graphs on n vertices having n j blocks of size j is given by

PHGn(n2,n3, . . .) =
(n+ k−1)!
n!∏ j≥2 n j!

, (4.1)

where k = ∑ j≥2 n j.

Proof. Let P(x) be the generating function for plane Husimi graphs. Let yi mark the number of vertices in each block. Then we
have

P(x) =
x

1−∑i≥1 yi+1Pi .

By the Lagrange Inversion Formula [13], we obtain

[xn]P(x) =
1
n
[tn−1]

(
1−∑

i≥1
yi+1t i

)−n

=
1
n
[tn−1] ∑

k≥0

(
−n
k

)(
−∑

i≥1
yi+1t i

)k

=
1
n
[tn−1] ∑

k≥0

(
n+ k−1

k

)(
∑
i≥1

yi+1t i

)k

=
1
n ∑

k≥0

(
n+ k−1

k

)
∑

n2+n3+···=k
n2+2n3+···=n−1

k!yn2
2 yn3

3 · · ·
n2!n3! · · ·

. (4.2)
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Therefore,

PHGn(n2,n3, . . .) =
1
n

(
n+ k−1

k

)
k!

∏ j≥2 n j!
.

This completes the proof.

In the proof of the following corollary, we get a formula for the number of plane Husimi graphs with a given number of
blocks.

Corollary 4.2. The number of plane Husimi graphs on n≥ 2 vertices is given by

1
n

n−1

∑
k=1

(
n+ k−1

k

)(
n−2
k−1

)
.

Proof. We need to show that the number of plane Husimi graphs on n vertices with k blocks is given by,

1
n

(
n+ k−1

k

)(
n−2
k−1

)
. (4.3)

Let P(n,k) denote the set of all types of partitions of {1,2, . . . ,n} of length k. Since

∑
P∈P(n−1,k)

k!
n2!n3! · · ·

=

(
n−2
k−1

)
, (4.4)

then the formula follows from Equation (4.2).

Setting k = n− 1 in Equation (4.3), we recover the formula for plane trees on n vertices. Similarly, setting n = dn+ 1,
nd+1 = n and ni = 0 for all i 6= d +1, in Equation (4.1), we rediscover the formula

1
dn+1

(
(d +1)n

n

)
for the number of d-tuplet trees on dn+1 vertices obtained in [6]. Here, if d = 1 we get the number of plane trees on n+1
vertices.

Corollary 4.3. Let (n2,n3, . . .) be a sequence of non-negative integers satisfying the condition that n = ∑ j≥2( j−1)n j +1. The
number PCn(n2,n3, . . .) of plane cacti on n nodes and having n j blocks of size j is given by

PCn(n2,n3, . . .) =
(n+ k−1)!
n!∏ j≥2 n j!

, (4.5)

where k = ∑ j≥2 n j.

Proof. Since there is only one way to turn a complete graph into a cycle, the required equation follows from Equation (4.1) i.e.,

PCn(n2,n3, . . .) = PHGn(n2,n3, . . .).

Corollary 4.4. The number of plane cacti on n nodes, where n≥ 2, is

1
n

n−1

∑
k=1

(
n+ k−1

k

)(
n−2
k−1

)
.

Proof. We obtain the formula by summing over all possibilities of n2,n3, . . . and k as in the proof of Corollary 4.2.

Corollary 4.5. Let (n2,n3, . . .) be a sequence of non-negative integers satisfying the condition that n = ∑ j≥2( j−1)n j +1. The
number POCn(n2,n3, . . .) of plane oriented cacti on n vertices and having n j blocks of size j is given by

POCn(n2,n3, . . .) =
(n+ k−1)!2k−n2

n!∏ j≥2 n j!
,

where k = ∑ j≥2 n j.
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Proof. Since any polygon of size ≥ 3 has 2 orientations, we have

POCn(n2,n3, . . .) = 2k−n2 ·PCn(n2,n3, . . .).

The result follows from Equation (4.5).

Corollary 4.6. The number of plane oriented cacti on n vertices, where n≥ 2, is

∑
k≥0

∑
n2+n3+···=k

n2+2n3+···=n−1

(n+ k−1)!2k−n2

n!∏ j≥2 n j!
.

For the rest of this paper, we are interested in the number of plane tree-like structures with a given number of leaves.

Theorem 4.7. Let (n2,n3, . . .) be a sequence of non-negative integers satisfying the coherence condition: n=∑ j≥2( j−1)n j+1.
The number of plane Husimi graphs on n vertices with ` leaves and having n j blocks of size j is given by

1
n

(
n
`

)(
k−1

n− `−1

)
k!

∏ j≥2 n j!
(4.6)

where k = ∑ j≥2 n j.

Proof. Let F(x,u) be the bivariate generating function for the number of plane Husimi graphs such that x and u are marking
vertices and leaves respectively. Again yi will mark the number of vertices in each block.

Now,

F(x,u) = xu+
x

1−∑i≥1 yi+1F(x,u)i − x.

For convenience, let w = F(x,u) so that w = x
(

u+ ∑i≥1 yi+1wi

1−∑i≥1 yi+1wi

)
. We extract the coefficients of xn and u` in the generating

function.

[xnu`]F(x,u) = [xnu`]w =
1
n
[u`tn−1]

(
u+

∑i≥1 yi+1t i

1−∑i≥1 yi+1t i

)n

=
1
n
[u`tn−1]

n

∑
j=0

(
n
j

)
u j
(

∑i≥1 yi+1t i

1−∑i≥1 yi+1t i

)n− j

=
1
n

(
n
`

)
[tn−1]

(
∑i≥1 yi+1t i

1−∑i≥1 yi+1t i

)n−`

=
1
n

(
n
`

)
[tn−1]

(
∑
i≥1

yi+1t i

)n−`(
1−∑

i≥1
yi+1t i

)−(n−`)

=
1
n

(
n
`

)
[tn−1]

n−`

∑
j=0

(
−(n− `)

j

)(
−∑

i≥1
yi+1t i

) j(
∑
i≥1

yi+1t i

)n−`

=
1
n

(
n
`

)
[tn−1]

n−`

∑
j=0

(
n− `+ j−1

j

)(
∑
i≥1

yi+1t i

)n−`+ j

.

Let k = n− `+ j so that

[xnu`]F(x,u) =
1
n

(
n
`

) 2n−2`

∑
k=n−`

(
k−1

n− `−1

)
∑

n2+n3+···=k
n2+2n3+···=n−1

k!yn2
2 yn3

3 · · ·
n2!n3! · · ·

.

This completes the proof.
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From Equation (4.6) and summing over all n j as in Equation (4.4), it follows that there are

1
n

(
n
`

)(
k−1

n− `−1

)(
n−2
k−1

)
(4.7)

plane Husimi graphs on n vertices with k blocks and having exactly ` leaves. Setting k = n− 1, we rediscover the famous
Narayana number for the number of plane trees with a given number of leaves. Summing over all `, making use of Vandermonde
convolution, we obtain Equation (4.3) for the number of plane Husimi graphs on n vertices.

The expected number of leaves in plane Husimi graphs on n vertices with k blocks is

n−1

∑
`=1

`

n

(
n
`

)(
k−1

n− `−1

)(
n−2
k−1

)
=

(
n+ k−2

k

)(
n−2
k−1

)
and upon division by Equation (4.3), we get that on average there are (n2−n)/(n+ k−1) leaves in the aforementioned plane
graphs.

Setting r = n− ` in Equation (4.7), we obtain the following result.

Corollary 4.8. There are

1
n

(
n
r

)(
k−1
r−1

)(
n−2
k−1

)
plane Husimi graphs on n vertices with k blocks and having r internal vertices.
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