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ABSTRACT: The life times of the components of a product are often analysed in quality control processes.  Design 
of Experiment is mainly used to achieve quality but its’ application to life times are less common.  Life times always 
associate with Reliability. This study integrates experimental design specifically a two-level factorial experimental 
design and simulation models to determine the important the stress factors subjected to different conditions which 
significantly effects the life times of a product.  The main purpose is to optimize the response by extending the 
lifetimes of a product.  The Factors considered are temperature and voltage and their magnitude of the power are set 
at two levels.  Simulation design of Weibull and log-normal distributions are used to generate failure times and 
maximum likelihood (ML) applied in the estimation of parameters. 
 
Keywords: Reliability; Simulation; Weibull distribution; Log-normal distribution; Factorial design. 
 
1. INTRODUCTION 
 
Technology advancement, budget constrain and restrictive testing time has translated to high 
reliability of products [1].  Hence, manufactures strive to remain competitive and completely 
relevant to the global market by meeting consumer’s demands in terms of quality expectations.  
Likewise, the product lifetime is equally an increasing important characteristic [2] and 
manufactures need to understand the expected life times of their product under various 
operating conditions.  As a result, manufacturing companies target new products to reduce the 
initial failures, minimize random failures and to increase product reliability.  Lifetime of a 
product is not only a common concern to engineers but also to statisticians and is a key 
characteristic of product quality and reliability.  It characterizes the time-span during which a 
product can be expected to operate safely under certain conditions and meet specified standards 
of performance. 

A lot of efforts have been made by researchers to develop new reliability models [3]. Yu and 
Chen, 2014 developed reliability model of a complicated product with multiple failure modes 
under different stress conditions [4], Huairou 2008 [5] and  Hu, Zhen and Du, Xiaoping, 2014 
[6] developed a new lifetime cost optimization model to predict product lifetime and Beaudry, 
1978  studied measures to reflect interaction between the reliability and performance 
characteristics of a product. In the review article it was described that, the distribution of 
lifetimes and how lifetimes depend on set experimental (predictor) variables among others [7]. 
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According to Khan & Islam, 2012 [8] reliability is the percentage measure of degree to which 
product/system is in an operable and committable state at the point in time when it is needed. 
That is, the availability of a product or a system. Reliability is very important in that product 
and brand reputations are made or destroyed by their product reliability performance.  Poor 
reliability (unreliability) causes adverse consequences and therefore a number of products or 
systems are serious threat. Unreliability may have implications for: Safety, reputation, good 
will, delays, profit margins, cost of repair and maintenance and competitiveness.  Work to 
minimize failures, improve maintenance effectiveness, shorten repair times and meet customer 
and organization expectation has numerous benefits.  Reliability has broad and important 
impact across the product life cycle.  Therefore, the cost of unreliability can damage a 
company’s image.  Many manufactures have adopted reliability testing to meet and exceed the 
demands of customers [9].  Considering the reliability definition by Crowder, 2002 [10] as 
“probability of performing without failure a specified function under given conditions for a 
specified period of time.” Therefore, reliability testing usually involves simulation of conditions 
under which the item will be used during its lifespan. Reliability does not compare the product 
to some predetermined specifications, such as the case with quality assurance, but rather 
investigates the performance over a predetermined period of time.  
 
Traditionally, the lifetime of a product can be demonstrated by three different patterns of 
failures over time.  These patterns are combined to produce a bath-tab curve as shown in Fig. 
1. The curves not only represent reliability performance of components or non-repaired items, 
but also observes the reliability performance of a large sample of homogeneous items entering 
the field at some start time (usually zero). If we observe the items over their lifetime without 
replacement then we can observe three distinct patterns or shapes. The three distinct patterns or 
periods are mathematically categorized as; a decreasing rate of failure, a constant rate of failure 
and an increasing rate of failure which in practice are known as infant mortality, useful life and 
wear out as shown in Fig. 1.  During the infant mortality phase, the weaker components are 
removed during manufacturing process, pre-delivery testing or when an item comes into 
service. At the useful phase, new component has an equal probability of failure as the old 
component. Finally, the wear out failure which has increasing failure rate caused by weariness, 
fatigue and degradation [11].  As reliability (or part) of a product improves, cases of failed parts 
become less frequent in the field [12].  When a new product is introduced, the company ensures 
that initial failure is minimized, random failures are reduced during the expected working period 
of a product and finally to extend the product’s lifetime. 
 

 
Figure 1.   The Bathtub curve. 
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When design of experiment (DOE) is used for life testing, the response is life or failure time.  
Failure time distribution is the most widely used measure for reliability of a product. The 
distribution is constructed based on failure time data of a product.  The failure time or lifetime 
of a product is described as a continuous random variable T.  Its probability distribution function 
is characterized by cumulative density function, probability density function, reliability 
function or hazard function. The reliability function gives the probability of a product surviving 
up to time t while the hazard function also known as the failure rate function describes the 
probability of failure at the smallest interval (t, δ +t), given survival up to. 
 
In this article we are concerned with finding factors that affect the lifetimes of a product and 
also increasing the lifetimes by conducting simulation with right censoring both for Weibull 
and log-normal distribution. Simulation model is developed based on these factor levels. 
Maximum likelihood method is used to estimate the parameters of both Weibull distribution 
and log-normal distribution. Finally, we find that combination of input-factor values that 
optimizes the response. 
 
1.1. Maximum Likelihood Estimation (MLE)                                                               

Maximum likelihood estimate (MLE) can be described as follows: Given the model and its 
parameters, the MLE function is the probability (density) of a sample data seen as a function of 
the model parameters. Estimates of the model parameters are obtained by maximizing logarithm 
of the likelihood. Estimates are the values that maximizes probability of the sample data. Its 
main aim is to find combination of parameters β and η that maximize the probability of a given 
data. MLE estimates tend to predict long life with small samples. 
 
The PDF of a log normal distribution is given by: 

                    (1) 

Where σ is the shape parameter and µ= T50, median (scale) parameter. 
 
While the PDF of Weibull distribution is:  

 

                               (2)      
 
η is the scale parameter and β is the shape parameter.     
                                                                                      
2. MATERIAL AND METHOD 
 
A complete factorial design can become large even at two levels of each factors.  An experiment 
with eight factors would require 25 = 32 runs. In the case of reliability experiment, each run 
may be measured as in hours, days, months etc and may take several thousand hours, which 
would be practically infeasible to conduct 32 runs. Thus, more efficient methods of conducting 
experiments are needed. Fractional factorial designs can reduce the number of runs by choosing 
a subset or fraction of the complete factorial design. A 25-2 factorial design would reduce the 
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number of runs by using a quarter fractional factorial experiment, (1/4 (25-2)) to eight runs. 
Although this provides an advantage of reducing the number of runs, the disadvantage is that 
many of the effects are hidden or confounded by the main effect factors that the experimenter 
deems the most important. 
 
This assumes that many of the confounded effects are not significant and have very minimal 
effect or do not affect the response at all. Fractional factorial designs are particularly useful if 
it can be estimated which main effects and interactions are significant so that the remaining 
effects can be confounded [13]. 

 
The parameters are chosen to determine their corresponding influence on the lifetimes, which 
are: 
 
•Voltage (V) 
 
• Temperature (C) 
 
These factors are to be studied in levels of high and low.  

 
Table 1. Factors and factor levels used in the design. 

 
 
 
 
2.1. Simulation Test 
 
A simulation of two factors temperature and voltage were investigated to determine the 
reliability of a product. A simulation of a 22 design with no interaction was conducted for 
Weibull distribution and log-normal distribution. The main objective is to identify the 
significant factors that affect the lifetimes of a product. Table 2 gives the layout of the design 
matrix. 

 
Table 2.  Layout of 22 design matrix. 

Run I A B AB Response 
1 1 + - - R1 
2 1 - + - R2 
3 1 + + + R3 
4 1 - - + R4 

 
1n(η) = α0 + α1T emperature + α2V oltage + α12(T emperature)(V oltage)        (3) 

2.2. Simulation Results  
The simulation results are summarized for Weibull distribution and given in Table 3. Similarly, 
the results for Log-normal distribution are summarized and given in Table 4.  

Table 3. Weibull distribution analysis results. 
Likelihood ratio test-table 

Model Effect DF Ln(LKV) P Value 
Reduced Temperature 1 -1378.3 <0.0001 
 Voltage 1 -1281 0.0007 
Full - 4 -1377 - 

Factor Low(-) High(+) 
Temperature 38 43 
Voltage 105 120 
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Estimates of Parameters 
Predictor Coef. S.d Error P Value  
Intercept 4.8139 1.647 0.068  
Temperature 0.0304 0.013 1.15E-02  
Voltage -0.0466 0.257 7.17E-03  

 
Table 4. Log-normal distribution analysis results. 

                                                 Likelihood ratio test - table 
Model Effect DF Ln(LKV) P Value 
Reduced Temperature 1 -1425 0.0001 
 Voltage 1 -1654 0.0200 
Full - 4 -2144 - 

Estimates of Parameters 
Predictor Coef. S.d Error P Value  
Intercept 5.0753 0.0432 0.0067  
Temperature 0.0998 0.077 0.0231  
Voltage -0.1006 0.0266 0.0002  

 
The layout of table 3 and table 4 are similar to the ANOVA table. This makes it easy to read 
for those who are familiar with ANOVA. From the P value column, temperature and voltage 
are important to the product life. The estimated relationship is: 
  

1n(η) = α0 + α1T emperature + α2V oltage  
 
for weibull distribution and for log-normal distribution. The estimated shape parameter for the 
weibull distribution is 1.85. 
 
3. CONCLUSION 

 
Instant results and sequentially make agricultural experiments different from industrial 
experiments. For most industrial experiments results are always available instantly (days, hours 
e.t.c) and the results from each group can be acted upon to be used in the next experiments 
while in agricultural experiments, processes are always restricted during growing seasons. In 
addition, normal distribution which characterizes most experimental designs is not a logical 
distribution for lifetimes due to censoring. Due to censoring, analysis of variance (ANOVA) 
and least square method (LSM) cannot be used to improve reliability [14]. In this case, ANOVA 
method can only be applicable if suspensions are treated as failures and midpoint of interval 
data used as failure times. 
 
This approximation gives wrong results and lead to wrong conclusions. Consequently, the use 
of ANOVA method on lifetimes data violates the normal distribution assumption among others. 
In addition, the commonly used ML estimate approach is considered to have an “estimability” 
problem. Testing for important effects in the model cannot be done by comparing the ML 
estimates with their corresponding standard errors because the ML estimates may be infinite. 
One factor with two levels experiment with censored observation and failure time data is given 
according to the factor levels. In this example it is observed that as the parameter tends toward 
infinity the likelihood function increase to the maximum and therefore concluded that ML 
estimate for the main effect tends to be infinite when the true factor effect is large [15].   
 
The study aims at increasing the lifetimes of a product by simulation. The important factors are 
identified through the screening process and a second order (quadratic) response surface 
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methodology used to determine the optimal values.  Weibull and lognormal models with an 
assumed scale parameter was used in the model simulation and maximum likelihood estimation 
for the parameter estimation. Temperature and voltage were found to be significant effects and 
therefore they play an important role in the lifetimes of a component. 
 
REFERENCES 

[1] Zhang, C. W., Zhang, T., Xu, D., and Xie, M. (2013). Analyzing highly censored reliability data without exact 
failure times: an efficient tool for practitioners. Quality Engineering, 25(4), 392–400. 
http://doi.org/10.1080/08982112.2013.783598. 

[2] Kesler, J. L. K., Freeman, L. J., and Vining, G. G. (2014). A Practitioner’s guide to analyzing reliability 
experiments with random and subsampling. Quality Engineering, 26(3), 359–369. 
http://doi.org/10.1080/08982112.2014.887101. 

[3] Beaudry, M. (1978). Performance-reliability measures for computing systems. IEEE Transactions on 
Computing, Vol. 27. 

[4] Yu, Z., Ren, Z., Tao, J., and Chen, X. (2014). Accelerated testing with multiple failure modes under several 
temperature conditions, Mathematical Problems in Engineering, Vol.1 http://doi.org/10.1155/2014/839042. 

[5] Huairou, A. M. (2008). Reliability assessment using a likelihood ratio test. International Journal of 
Performance Engineering, 4, 196-198. http://doi.org/10.23940/ijpe.08.p196.mag. 

[6] Hu, Z. and Du, Xiaoping D. (2013). Lifetime cost optimization with time-dependent reliability, Journal of 
Engineering Optimization, Vol. 46, Issue 10, p.1389-1410. http://doi.org/10.1080/0305215X.2013.841905. 

[7] Rigdon, S. E., Englert, B. R., Lawson, I. A., Borror, C. M., Montgomery, D. C. and Pan, R. (2012). Experiments 
for reliability achievement. Quality Engineering, 25(1), 54-72. http://doi.org/10.1080/08982112.2013.733611. 

[8] Khan, M. A. and Islam, H. M. (2012). Bayesian analysis of system availability with half-normal life time. 
Quality Technology and Quantitative Management, 9(2), 203-209. 
http://doi.org/10.1080/16843703.2012.11673286. 

[9] Lwo, B. J., Frank, Lin, M. S., Huang, K. H. (2014). TSV reliability model under various stress tests. IEEE 64th 
Electronic Components and Technology Conference (ECTC), http://doi.org/10.1109/ECTE.2014.6897350. 

[10] Crowder, M. a. (2002). Statistical concepts in reliability. (Vol. 50). Springer.   
[11] Tobias, P. A. and Trindade, D. (2012). Applied reliability. New York: CRC Press. 
[12] Woo, S., and Neal, D. L. O. (2018). Improving the reliability of a domestic refrigerator compressor subjected 

to repetitive loading, International Compressor Engineering Conference.  
[13] Wu, C. F. J. and Hamada, M. S. (2009). Experiments: Planning, Analysis, and Optimization, 2nd Edition, John 

Wiley and Sons. 
[14] Wang, G. a. (2017). Bootstrap analysis of designed experiments for reliability improvement with a non-

constant scale parameter. Reliability Engineering & System Safety, 160, p.114-121, 
http://dx.doi.org/10.1016/j.ress.2016.12.006. 

[15] Silvapulle, M. J. (1986). Existence of maximum likelihood estimates in regression models for grouped and 
ungrouped data. Journal of the Royal Statistical Society, Vol. 48. No.1, p. 100-106.  

 

http://doi.org/10.1080/08982112.2013.783598
http://doi.org/10.1080/08982112.2014.887101
http://doi.org/10.1155/2014/839042
http://doi.org/10.23940/ijpe.08.p196.mag
http://doi.org/10.1080/0305215X.2013.841905
http://doi.org/10.1080/08982112.2013.733611
http://doi.org/10.1080/16843703.2012.11673286
http://doi.org/10.1109/ECTE.2014.6897350
http://dx.doi.org/10.1016/j.ress.2016.12.006

	K3
	3
	2. MATERIAL AND METHOD
	2.2.  Simulation Results
	Table 3. Weibull distribution analysis results.



