
SAKARYA UNIVERSITY JOURNAL OF COMPUTER AND INFORMATION SCIENCES
VOL. 4, NO. 1, APRIL 2021

DOI: 10.35377/saucis.04.01.834048

Research Article

A Study on the Efficacy of Deep Reinforcement
Learning for Intrusion Detection

Halim Görkem Gülmez1, Pelin Angin2
1Middle East Technical University; halim.gorkem.gulmez@gmail.com

2Corresponding Author; Middle East Technical University; pangin@ceng.metu.edu.tr

Received 30 November 2020; Revised 14 December 2020; Accepted: 26 December 2020; Published online 03 February 2021

Abstract

The world has witnessed a fast-paced digital transformation in the past decade, giving rise to all-connected
environments. While the increasingly widespread availability of networks has benefited many aspects of our lives,
providing the necessary infrastructure for smart autonomous systems, it has also created a large cyber attack
surface. This has made real-time network intrusion detection a significant component of any computerized system.
With the advances in computer hardware architectures with fast, high-volume data processing capabilities and the
developments in the field of artificial intelligence, deep learning has emerged as a significant aid for achieving
accurate intrusion detection, especially for zero-day attacks. In this paper, we propose a deep reinforcement
learning-based approach for network intrusion detection and demonstrate its efficacy using two publicly available
intrusion detection datasets, namely NSL-KDD and UNSW-NB15. The experiment results suggest that deep
reinforcement learning has significant potential to provide effective intrusion detection in the increasingly complex
networks of the future.

Keywords: security, deep reinforcement learning, intrusion detection

1. Introduction

The fast-paced developments in computing and network infrastructures in the past two decades have led
to the rise of the Internet of Things (IoT) paradigm with ubiquitous connectivity along with increasingly
widespread usage of cloud computing. While these developments have greatly facilitated daily
operations in many industries and enterprises in addition to touching the daily lives of people in positive
ways, the resulting cyber security issues have created deterrents for the more widespread adoption of
IoT due to an enlarged attack surface with many security vulnerabilities. The number of zero-day
attacks, which are security incidents whose signatures were not previously observed, is rising every day
with the increasing number of vulnerabilities in these networked systems. Some of these attacks can
have devastating consequences, as they are now capable of destroying not only software, but also
hardware components through IoT connections.

Modern network intrusion detection and prevention systems (IDPS) have the purpose of detecting and
mitigating various attacks on networked systems with sub-second response times.While IDPS in legacy
systems mostly relied on attack signature-based solutions, which would create rules for each observed
attack pattern and compare incoming traffic with the rules in the IDPS’s database, this solution is not
sufficient to cover the variety of attacks in today’s complex systems both because of the high of volume
of traffic that needs to be analyzed in real time and due to the inability to generalize and detect attacks
with unknown signatures. Security researchers thus have turned to machine learning (ML) and deep
learning (DL) techniques that are capable of learning patterns of attacks and normal behavior of systems
so that anomalous network traffic can be detected and classified in real time, and the IDPS can adjust
itself to deal with new types of attacks over time.

Reinforcement learning (RL) algorithms, which are based on agents interacting with a runtime
environment under a variety of states to learn to maximize their rewards, has been a popular technique
for many learning-based tasks since their introduction. More recently, deep reinforcement learning
(DRL) algorithms, which utilize deep neural networks within RL to facilitate representation of many
possible state-action pairs and provide generalizability, have been applied successfully to a variety of

http://doi.org/10.35377/saucis.04.01.834048
https://orcid.org/0000-0003-0355-8790
https://orcid.org/0000-0002-6419-2043

Sakarya University Journal of Computer and Information Sciences

Gülmez et. al

12

problem domains. Among successful applications of DRL are Atari games [1], chess [2], solving
arithmetic problems [3], medication treatment plans [4], optimization of chemical reactions [5], and
extraction of biological sequence data [6] among many others. Despite its success in various fields, the
application of DRL to network security has been rather limited so far.

In this paper we propose a DRL-based approach for network intrusion detection and evaluate its
effectiveness on two real-world benchmark datasets that have been commonly used in the evaluation of
ML-based approaches for detecting cyber attacks in legacy networks, namely NSL-KDD and UNSW-
NB15. The evaluation results demonstrate that DRL is a promising method for network intrusion
detection, achieving F-1 scores of over 96% on both datasets. We also show that the effectiveness of the
algorithm is significantly affected by the structure of the embedded deep neural network, i.e., the number
of hidden neurons, as well as the number of training iterations. Performance comparison of the model
with various state-of-the-art ML/DL models demonstrates its promise, especially in terms of F-1 score,
on the two benchmarks.

The remainder of this paper is organized as follows: Section 2 provides an overview of related work in
ML-based intrusion detection systems. Section 3 provides details of the proposed DRL model for
network intrusion detection. Section 4 provides an experimental evaluation of the model on two public
network intrusion detection datasets. Section 5 concludes the paper with future work directions.

2. Related Work

The advances in the field of machine learning have paved the way for their use in the field of cyber
security for the past two decades. Most existing anomaly-based intrusion detection systems rely on ML
techniques. Beehive, a successful solution for detecting intrusion from network logs, was proposed in
[7]. Beehive uses four types of features and utilizes k-means clustering to detect anomalies. One
downside is that it does not work in real time. Another successful approach utilizing k-means clustering
includes the work of [8]. While k-means clustering can be effective for detecting anomalies, predefining
the value of k can be a problem in many settings.

Balogun and Jimoh [9] proposed a method utilizing the k-nearest neighbor (KNN) classifier and decision
trees. Their approach was shown to be capable of detecting new attacks with high accuracy. [10] utilized
a variety of ML algorithms including k-means clustering, isolation forest, histogram based outlier score
and cluster-based local outlier factor in their approach called CAMLPAD, and achieved an accuracy of
95% in an intrusion detection task. Pervez and Farid [11] proposed using Support Vector Machines
(SVM) for intrusion detection on the NSL-KDD dataset. Although SVM was successful on the training
set, it failed to detect many attacks in the test set. In [12], a multi-layer perceptron based model with 3
layers was proposed, which achieved 81% accuracy for binary classification on NSL-KDD. Kamel et
al. [13] proposed an AdaBoost-based intrusion detection model and reported 99.9% accuracy on NSL-
KDD, however their training and test sets consisted of subsets of the whole dataset, which were not
clearly described. Hu et al. [14] also applied AdaBoost for intrusion detection on the KDD Cup’99
dataset and achieved 91% detection rate. Engly et al. [15] evaluated the performance of Gradient
Boosting Machines on NSL-KDD and achieved successful results with an ensemble model. Moustafa
and Slay [16] applied Expectation-Maximization Clustering, Logistic Regression (LR) and Naive Bayes
classification on the UNSW-NB15 datasets, and achieved the best results with an accuracy of 83% for
LR.

Following the success of deep learning in many fields in recent years, security researchers have started
employing it in many intrusion detection systems. [17] and [18] proposed using recurrent neural
networks (RNN) in intrusion detection on data with time dependencies and achieved successful results.
A variant of the RNN-based intrusion detection model was proposed by Yin et al. [19], achieving over
83% accuracy on the KDD Cup’99 dataset. An LSTM-based model, which is a special RNN-structure,
was proposed by Li et al. [20], which achieved 83% accuracy and F-1 score on NSL-KDD. Behera et
al. [21] also proposed the use of convolutional neural networks (CNN) for intrusion detection and
achieved high accuracy on the NSL-KDD dataset. They also stated their approach can be adapted to
detect zero-day attacks. Another CNN-based intrusion detection model was proposed by Li et al. [22],

Sakarya University Journal of Computer and Information Sciences

Gülmez et. al

13

which also achieved successful results on NSL-KDD. Lopez-Martin et al. [23] proposed a conditional
variational auto-encoder based model for unsupervised intrusion detection, which achieved 80.10%
accuracy on NSL-KDD. A two-stage stacked auto-encoders based model was proposed by Khan et al.
[24], which achieved 89% accuracy on the UNSW-NB15 dataset. A hybrid model consisting of deep
neural networks and spectral clustering was proposed by Ma et al. [25], which achieved around 72%
accuracy on NSL-KDD. A scalable, hybrid intrusion detection approach, which utilizes deep neural
networks (DNNs), was proposed by Vinayakumar et al. [26]. The distributed DNN-based model was
shown to achieve better performance than traditional ML-based classifiers on a set of benchmarks. Gao
et al. [27] developed a deep belief networks-based model for intrusion detection, and demonstrated its
superior performance in comparison to SVM and MLP.

Researchers have also utilized RL for detecting attacks in networks. Various types of log files were used
in the solution of [28] where a rule-based approach was taken to create association rules signaling
attacks. Their approach utilized RL as a helper rather than basing the solution on it. [29] also proposed
an RL-based approach with multiple agents watching over the network states in a hierarchical manner,
which was shown to provide accurate results, although it was not evaluated with different datasets. A
cyber security simulation was set up in [30] to apply RL for finding the best strategies of both attackers
and defenders in a Markov game. Their experiments demonstrated the tool can be used both for intrusion
detection systems and for launching successful cyber attacks on systems. The approach we propose in
this work differs from existing RL-based approaches in that it utilizes fully connected deep neural
networks for allowing the RL agents to make decisions based on unstructured input data, obviating the
need to manually create large state spaces.

3. Proposed Intrusion Detection Approach

In this section, we describe our proposed DRL-based approach for network intrusion detection. We first
provide a brief overview of deep neural networks, and continue with an explanation of how they are
integrated into RL to achieve a highly accurate intrusion detection model.

3.1 Deep Neural Networks (DNN)

Neural networks are a special category of ML models the design of which resembles the functioning of
the human brain in the sense that it simulates the processing and tranmission of information through the
complex networks of neurons, which get excited or inhibited by the signals in the network [31]. One of
the first examples of neural network structures is the perceptron, which contains a single input layer
connected to an output. The perceptron represents the simplest processes in the brain’s neurons using
an activation function and a set of weights, as depicted in Figure 1(a). Machine learning with a
perceptron involves random assignment of weights to each of the input nodes, and the passage of the
weighted sum of the input values through an activation function to produce the output value. The weights
are adjusted throughout the training process in multiple iterations and the goal of the training process is
to minimize the aggregate error in the output. The error is calculated as the difference between the
ground truth output, and the output that is calculated by the model.

Multi-layer perceptrons (MLP) are feedforward neural networks containing a number of hidden layers
in between the input and output layers, as demonstrated in Figure 1(b). The figure shows a fully-
connected deep neural network with one hidden layer, with every input node connected to every hidden
node and likewise, every hidden node connected to every output node. When the fully-connected neural
network consists of more hidden layers, each node in a hidden layer will be connected to each node in
the following hidden layer. As seen in the figure, each edge connecting the nodes has a weight that is
updated throughout the training process to achieve minimum output error. The number of hidden
neurons in each layer can be different from the number of input and output layer neurons. Training of
the network involves running a back-propagation algorithm [31] updating the weights of the edges in
each iteration. While the number of input nodes is decided by the dimensionality of the input feature
vector, the number of output nodes is decided by the specific learning task, e.g. multi-class classification,

Sakarya University Journal of Computer and Information Sciences

Gülmez et. al

14

regression, binary classification etc. Among commonly used activation functions in MLP are sigmoids
including 𝑦𝑦(𝑣𝑣𝑖𝑖) = t𝑎𝑎𝑎𝑎ℎ (𝑣𝑣𝑖𝑖) and 𝑦𝑦(𝑣𝑣𝑖𝑖) = tanh(𝑣𝑣𝑖𝑖) + (1 + 𝑒𝑒−𝑣𝑣𝑖𝑖)−1.

DNNs are yet more complex artificial neural networks with many more hidden layers than MLPs. Their
complexity allows them to express more complex hypotheses by better modeling the nonlinear
relationships in the network. DNNs provide the inherent ability to learn higher level representations
from possibly unstructured data, which makes them very valuable for a variety of machine learning
tasks. In this work, we utilize fully connected DNNs integrated into the RL process as described below
to achieve highly accurate intrusion detection.

(a) Simple perceptron (b) Feedforward neural network

Figure 1 Structure of neural networks

3.2 DRL-Based Intrusion Detection

Reinforcement learning is an ML technique based on an agent learning through rewards and
punishments it receives through its interactions with the environment. Each state of the agent is
associated with a set of actions that could have different rewards, and the agent learns over time what
action to perform based on its history of actions-rewards at that same state. An agent in RL takes actions
from among a set of possible actions for its current state, and receives a positive or negative reward for
taking that particular action, which it saves in its memory. These rewards are then used by the agent to
decide which action to take in later states, where the ultimate goal of the agent is to maximize its total
reward value. Agents are connected to their environments with action and recognition as described by
Kaelbing et al. [32]. Picking a certain action at a certain state results in an output, which modifies the
state of the agent, and the agent receives the value of this change with a reinforcement signal. The agent
learns to choose the most rewarding action over time by trial and error using different algorithms. The
environment is not always deterministic, i.e. choosing the same action can have different consequences
at different points in time in the same state.

As apparent from the description above, RL is quite different from supervised learning. While
supervised learning utilizes training datasets consisting of labeled input/output pairs, an agent in RL
receives immediate rewards based on its actions after performing the action. Learning does not actually
stop in RL; it is a continuous process in which the agent keeps receiving new rewards or punishments
as it interacts with its environment, however it is expected that the rewards will keep increasing over
time, as the agent learns which actions provide the greatest rewards at each state.

The state-action space could get very large in RL in complex environments, causing the algorithm not
to generalize well. DRL is an improvement of RL algorithms that provides improved generalization
power by augmenting RL with deep neural networks in the state-action input formation. i.e., DRL
utilizes deep neural networks for function approximation in policy and value functions in RL. This

Sakarya University Journal of Computer and Information Sciences

Gülmez et. al

15

capability is important in a network intrusion detection setting, as generalizability matters especially for
cases like zero-day attacks.

In an RL algorithm based on Q-learning, the value function is as follows:

 𝑄𝑄(𝑠𝑠,𝑎𝑎)=𝑟𝑟(𝑠𝑠)+ 𝛾𝛾 𝑚𝑚𝑎𝑎𝑚𝑚𝑎𝑎′Σ𝑃𝑃(𝑠𝑠′|𝑠𝑠,𝑎𝑎)𝑄𝑄(𝑠𝑠′,𝑎𝑎′) (1)

Equation 1 is the Bellman Equation. Here s represents the state, a represents the action, r represents the
reward, and P represents state change possibility. Based on the equation, the Q value of a state-action
pair is equal to the sum of the current reward and potential future Q-values. While this equation is
discrete, many real-life applications involve continuous actions and states. Thus, we need an effective
function approximation technique for the value function. This requirement is met by integrating DNNs
into RL. In the value function using DNNs, every state and Q-value are calculated by utilizing hidden
layers of neural networks, which are trained using backpropagation.

Algorithm 1 Deep Q-learning

1 Initialize replay memory D to capacity N

2 Initialize Q-function with random weights

3
4
5
6
7
8
9
10

11

12

for episode = 1, M do
 Initialize neural network from a random state s
 for t = 1, T do
 Find Q-values for all actions using DNN algorithm: at = maxaQ* (st, a;θ)
 Choose an action at for current state st by using e-greedy exploration
 Move to the next state st+1 with action at, pick reward rt

 Store transition (st, at, rt, st+1) in D
 Sample random minibatch of transitions (st, at, rt, st+1) in D
 Set yj =

 �
𝑟𝑟𝑗𝑗 , 𝑓𝑓𝑓𝑓𝑟𝑟 𝑡𝑡𝑒𝑒𝑟𝑟𝑚𝑚𝑡𝑡𝑎𝑎𝑎𝑎𝑡𝑡 𝑠𝑠𝑗𝑗+1

𝑟𝑟𝑗𝑗 + 𝛾𝛾 𝑚𝑚𝑎𝑎𝑚𝑚𝑎𝑎′𝑄𝑄�𝑠𝑠𝑗𝑗+1, 𝑎𝑎′; θ�, 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑓𝑓𝑎𝑎𝑡𝑡𝑒𝑒𝑟𝑟𝑚𝑚𝑡𝑡𝑎𝑎𝑎𝑎𝑡𝑡 𝑠𝑠𝑗𝑗+1

 Perform a gradient descent step on (𝑦𝑦𝑗𝑗 − 𝑄𝑄�𝑠𝑠𝑗𝑗 , 𝑎𝑎𝑗𝑗; θ�)2

We describe deep Q-learning [1] in Algorithm 1 above. As the algorithm describes, DNNs are used as
part of the RL, forming the DRL algorithm. In RL, immediate rewards are valued more than distant
rewards in the future. DNNs provide the capability for the Q-functions to more accurately take future
rewards into account when deciding about the actions to take. Another advantage of using DNNs in RL
is that the number of interactions needed is reduced by sampling, resulting in better performance and
efficiency.

In this paper, we propose a simple DRL model for network intrusion detection, where the learning agent
has two different states, i.e. under attack or normal traffic, and four possible actions. Table 1 provides a
high-level overview of states, actions and corresponding reward values. The main difference of this
approach from state-of-the-art ML/DL models for intrusion detection is the overall learning process,
which involves exploration of the different classification options by the learning agent, which is
penalized when it incorrectly classifies an instance and rewarded for correct classification. Through this
process, the agent learns to take the optimal actions over time to maximize its reward. Here the states
refer to the network traces. Unlike traditional deep learning, DNNs are only used as part of the process
in DRL to enable representation of the policies of the agent, i.e. actions to be taken to achieved the
maximum reward at a specific state, without having to enumerate all possible states manually. The
learning process continues throughout the lifetime of the agent. This is an important feature for
especially online learning systems, which will be instrumental in successful intrusion detection in the
era of ever increasing zero-day attacks. Figure 2 shows an activity diagram of the deep Q-learning
algorithm.

Sakarya University Journal of Computer and Information Sciences

Gülmez et. al

16

Table 1 RL States, Actions and Rewards
State Action Reward

Normal No Alarm +1

Normal Alarm -1

Attack Alarm +1

Attack No Alarm -1

Figure 2 Deep Q-learning activity diagram

4. Experimental Evaluation

We have evaluated the effectiveness of the proposed DRL model for intrusion detection using two
benchmark datasets, UNSW-NB15 and NSL-KDD, where the task was to perform binary classification
of records into attack and normal classes. Below we describe the datasets and provide results of the
performed experiments.

4.1 Datasets

UNSW-NB15:

Sakarya University Journal of Computer and Information Sciences

Gülmez et. al

17

The UNSW-NB15 [33] dataset was created by the University of New South Wales in 2015, using the
IXIA tool for generating network traffic including attacks. It has 49 features, two of which are labels for
binary classification (i.e. attack or normal traffic) and multi-class classification (i.e. type of attack). The
dataset contains 9 types of attack traffic in addition to normal traffic, where attacks include DoS, DDoS,
fuzzing, backdoor, analysis, worm, exploit, shellcode and generic. The remaining fields include network
packet and connection details like IP addresses, ports, communication protocols. A subset of the features
of this dataset are listed in Table 2 below. The dataset consists of about two million network packet
traces, which is quite extensive.

Table 2 UNSW-NB15 Features
Feature Type Description Feature Type Description

srcip nominal Source IP sloss integer Source packets retransmitted
or dropped

sport integer Source port dloss integer Destination packets
retransmitted or dropped

dsip nominal Destination IP service nominal http, ftp, …

dsport integer Destination port Sload float Source bits/sec

proto nominal Protocol Dload float Destination bits/sec

dur float Total duration Spkts integer Source-to-destination packet
count

sbytes integer Source-to-destination
transaction bytes

Dpkts integer Destination-to-source packet
count

dbytes integer Destination-to-source
transaction bytes

stime timestamp Record start time

sttl integer Source-to-destination time
to live value

ltime timestamp Record last time

dttl integer Destination-to-source time
to live value

label binary 0 for normal, 1 for attack

…

NSL-KDD:

KDD CUP’99 [34] has been one of the most frequently used datasets in the evaluation of ML-based
intrusion detection techniques since it was released in 1999. This dataset was generated by extracting
features from DARPA98 [35], which is a dataset consisting of traffic obtained from the U.S. Air Force
LAN. The dataset consists of 41 features and 4 attack categories: probing, denial of service (DoS), R2L,
U2R. Despite its age, this dataset is still used by many researchers due to its large size (about 5 million
records) and its modeling of a variety of conditions obtained from real network traffic. It also has some
drawbacks including the presence of many duplicate records, unbalanced numbers of records from
different classes in the training set, which could create biased classification models and the unbalanced
distribution of records in the training and test sets [36].

The NSL-KDD dataset [36] was created to solve the abovementioned issues with KDD CUP’99. It
involved removal of duplicate records and balancing of the number of records for different classes to
prevent bias in the classification. The researchers also provided more balanced training and test sets. All
original features from KDD CUP’99 were retained. Different sets were provided in the dataset, including
sets with binary classification labels as in UNSW-NB15, sets with attack type labels and difficulty
levels, as well as sets not including the hardest-to-detect cases.

Sakarya University Journal of Computer and Information Sciences

Gülmez et. al

18

4.2 Experimental Results

To evaluate the effectiveness of the solution, we have utilized metrics commonly used to in ML to judge
the goodness of algorithms, which are precision, recall, accuracy, and F-1 score. The description of each
metric is provided in Table 3 below. The abbreviations used in the table are as follows:

TP (true positive): The number of instances correctly classified as attacks

TN (true negative): The number of instances correctly classified as normal traffic

FP (false positive): The number of instances incorrectly classified as attacks

FN (false negative): The number of instances incorrectly classified as normal traffic
Table 3 Evaluation Metrics

Metric Formula
Accuracy 𝑇𝑇𝑃𝑃 + 𝑇𝑇𝑇𝑇

𝑇𝑇𝑃𝑃 + 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑃𝑃 + 𝐹𝐹𝑇𝑇

Precision 𝑇𝑇𝑃𝑃
𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑃𝑃

Recall 𝑇𝑇𝑃𝑃
𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑇𝑇

F-1 Score 2 ∗ 𝑃𝑃𝑟𝑟𝑒𝑒𝑃𝑃𝑡𝑡𝑠𝑠𝑡𝑡𝑓𝑓𝑎𝑎 ∗ 𝑅𝑅𝑒𝑒𝑃𝑃𝑎𝑎𝑡𝑡𝑡𝑡
𝑃𝑃𝑟𝑟𝑒𝑒𝑃𝑃𝑡𝑡𝑠𝑠𝑡𝑡𝑓𝑓𝑎𝑎 + 𝑅𝑅𝑒𝑒𝑃𝑃𝑎𝑎𝑡𝑡𝑡𝑡

Here, the recall is quite important, as it demonstrates the ability of the algorithm to detect attack traffic.
However, equally important is precision, which will ensure that the system will not block legitimate
traffic by creating many false positives. Therefore, the value of the F-1 score, which combines both
metrics, is a good measure for the efficacy of the algorithm. Accordingly, for the optimization of the
models, the F-1 score has been taken as the main performance measure. In the below subsections, we
provide performance results of the DRL model on the two benchmark datasets discussed above and
compare them with the results of previous work that have utilized the same datasets for evaluation.

4.2.1 Experiments with NSL-KDD

The first set of experiments were performed using the NSL-KDD dataset. The learning system was set
up in a Gym environment as explained by Koduvely [37]. Gym provides an environment for testing and
comparison of RL algorithms. We used the full training and test datasets for the experiments. We
experimented with different numbers of training iterations to evaluate the effect of the number of
training iterations on the accuracy of the algorithm. Table 4 lists the precision, recall, accuracy and F-1
score values for the experiments with a low number of training iterations (1) and a high number of
training iterations (20). As seen in the table, the algorithm achieves very high precision and recall when
the number of training iterations is high.

Table 4 Precision, Recall and Accuracy for Varying Number of Training Iterations in NSL-KDD
 Precision Recall Accuracy F-1 Score

Low Iterations 0.715 0.719 0.725 0.72
High Iterations 0.951 0.925 0.940 0.93

We also experimented with different DNN architectures to see the effects of the number of hidden
neurons on the performance of the algorithm. As opposed to the number of iterations, we observe that
increasing the number of hidden neurons in the DNN does not always lead to better performance. We
have tried five different settings and the results are reported in Table 5 below.

In the first experiment, we set the number of neurons at the hidden layers to be 2/3 of the input layer’s
size. We achieved satisfying results with an accuracy close to %97. In the second experiment, the
number of hidden neurons was set equal to the size of the input layer. The performance was much lower
than that of the first setting.

Sakarya University Journal of Computer and Information Sciences

Gülmez et. al

19

In the third experiment, the number of hidden neurons was one and a half times the input layer’s size.
This made the performance degrade even further. In the fourth experiment the number of hidden neurons
was half the size of the input layer, and while the precision and recall values were quite balanced, this
setting did not achieve the performance of the first setting either.

In Experiment 5, we used the square root of the input layer’s size as the number of hidden neurons. This
provided an increase in performance over the previous settings except for the first experiment.

Table 5 Precision, Recall, Accuracy, and F-1 Score for Varying Number of Hidden Neurons in NSL-KDD
 #of hidden

neurons
Precision Recall Accuracy F-1 Score

Experiment 1 2 ∗ 𝐼𝐼𝑎𝑎𝐼𝐼𝐼𝐼𝑡𝑡 𝑠𝑠𝑡𝑡𝑠𝑠𝑒𝑒
3

0.98 0.96 0.97 0.97

Experiment 2 Input size 0.65 0.91 0.70 0.76
Experiment 3 3 ∗ 𝐼𝐼𝑎𝑎𝐼𝐼𝐼𝐼𝑡𝑡 𝑠𝑠𝑡𝑡𝑠𝑠𝑒𝑒

2

0.72 0.54 0.68 0.62

Experiment 4 𝐼𝐼𝑎𝑎𝐼𝐼𝐼𝐼𝑡𝑡 𝑠𝑠𝑡𝑡𝑠𝑠𝑒𝑒
2

0.77 0.79 0.79 0.78

Experiment 5 �𝐼𝐼𝑎𝑎𝐼𝐼𝐼𝐼𝑡𝑡 𝑠𝑠𝑡𝑡𝑠𝑠𝑒𝑒 0.89 0.92 0.89 0.90

After the initial set of experiments with different numbers of hidden neurons, we optimized the training
process by automating the setting of hyperparameter values for the DNN component of the model. The
optimization process performs a grid search [38] over all given possible values of the different
hyperparameters, calculates F-1 scores achieved with the specific hyperparameter settings on the
validation dataset and reports the hyperparameter values resulting in the best F-1 score. Grid search is
currently one of the most commonly used hyperparameter optimization techniques in DL, as it has been
proven to find the most optimal parameter settings when compared to random search and function
approximation techniques for hyperparameter optimization. It involves determining a range of possible
values for each hyperparameter and training the model with all combinations of those values to find the
combination with the optimal performance. In this work, we included the following hyperparameters
for DNN in the automated grid search: (a) learning rate (in the range [0, 0.1]) (b) dropout rate (in the
range [0, 0.4]) (c) number of hidden neurons (in the range [6, 60]). Adam optimizer and L2
regularization were used for DNN. The best performance was achieved with a learning rate of 0.01,
dropout rate of 0.3 and 27 hidden neurons. Before performing grid search for the selected
hyperparameters, we performed trials for the other hyperparameters including the number of epochs,
batch size and reward decay rate, and the best performance was achieved with 30 epochs, a batch size
of 1000 and a reward decay rate of 0.9. Note that although it is possible to include many hyperparameter
types and hyperparameter values in the grid search, the more parameter values included, the longer it
takes to train the model. For a large hyperparameter space, the optimization process could take days of
training, which has been avoided in the DNN literature, as the resulting model could also overfit the
training data, decreasing the usefulness of the model for real-world application. The increase in the
training time would also hurt the performance of online learning, which is important in intrusion
detection systems that need to continuously update their models with new data.

Table 6 provides performances of state-of-the-art ML algorithms in the literature in terms of precision,
recall, accuracy, and F-1 score on the NSL-KDD dataset and example related works in the literature
utilizing these algorithms. The models compared against include logistic regression, SVM with the
Radial Basis Function (RBF) kernel, random forest, Gradient Boosting Machine (GBM), Adaboost,
multi-layer perceptron (MLP), convolutional neural networks (CNN) (results of these are provided by
Lopez-Martin et al. [39]), variational autoencoder, deep belief network and fully connected deep neural
network (results of these are provided by Yang et al. [40]). All of the included models are state-of-the-
art ML/DL models that have been utilized in a variety of intrusion detection systems.

As seen in Table 6, the proposed DRL model achieved good results in all of the performance measures
for the NSL-KDD experiments. While models such as random forest, GBM, Adaboost, MLP and CNN
achieved quite high precision values, their low recall values caused a lower F-1 score. As recall values
demonstrate the ability of the models to detect attacks, it is quite an important metric for the goodness
of the models in practice.

Sakarya University Journal of Computer and Information Sciences

Gülmez et. al

20

Table 6 Performance Comparison of Proposed Approach and Existing ML Approaches on NSL-KDD
ML/DL

algorithm
Precision Recall Accuracy F-1

Score
Example

Work
Method

DRL
(proposed)

0.98 0.96 0.97 0.97 --

Logistic
regression

0.90 0.55 0.71 0.68 Moustafa and
Slay [16]

A network intrusion detection
system using logistic regression
in its decision engine along with
association rule mining is
proposed.

SVM 0.91 0.88 0.88 0.89 Lopez-Martin
et al. [39]

Application of an optimized
SVM model on intrusion
detection datasets is evaluated.

Random
forest

0.97 0.57 0.75 0.72 Lopez-Martin
et al. [39]

Application of an optimized
random forest model on intrusion
detection datasets is evaluated.

GBM 0.97 0.63 0.78 0.76 Engly et al.
[15]

The performance of GBM on
intrusion detection datasets is
evaluated by itself vs. in an
ensemble with random forests
and neural networks.

Adaboost 0.97 0.60 0.76 0.74 Hu et al. [14] A computationally lightweight
intrusion detection model based
on direct application of the
AdaBoost algorithm is proposed.

MLP 0.97 0.67 0.80 0.79 Ingre and
Yadav [12]

An artificial neural network with
Backpropagation (BFG) and
tansig activation function is
proposed for intrusion detection.

CNN 0.97 0.68 0.81 0.80 Li et al. [22] An image conversion method for
network data is proposed and the
resulting data is fed into a
convolutional neural network for
intrusion detection.

Variational
Autoencoder

0.95 0.80 0.80 0.87 Yang et al.
[40]

A supervised variational auto-
encoder with regularization is
proposed, which utilizes
Wasserstein GAN for learning
latent data distribution.

Deep belief
network

0.89 0.55 0.57 0.68 Gao et al.
[27]

A DNN classifier comprising
multilayer unsupervised learning
networks, and a supervised
backpropagation learning
network is proposed for intrusion
detection.

Fully
connected

DNN

0.89 0.61 0.62 0.73 Vinayakumar
et al. [26]

A distributed, fully connected
DNN architecture is proposed for
intrusion detection in large
networks.

Sakarya University Journal of Computer and Information Sciences

Gülmez et. al

21

4.2.2 Experiments with UNSW-NB15

The second set of experiments was performed with the UNSW-NB15 dataset. As in the previous
experiments, the optimal hyperparameters were found using grid search with the same set of possible
values as in Section 4.2.1. The best performance was achieved with a learning rate of 0.01, dropout rate
of 0.3 and 32 hidden neurons. We report the best performance results in Figure 3 below. We performed
two different experiments, where we utilized the default training set consisting of 175341 records and
test set consisting of 82332 records in the first experiment. In the second experiment we randomly
selected training and test data over the dataset. 100000 records were selected for both sets. The results
did not change much in this experiment as compared to the first experiment.

Figure 3 Precision, Recall, Accuracy, and F-1 Score on UNSW-NB15

Table 7 provides a performance comparison of the proposed approach with existing state-of-the-art ML-
based approaches in the literature in terms of precision, recall, accuracy, and F-1 score on the UNSW-
NB15 dataset. The models in the table are the same as those in Section 4.2.1 and their results are
provided by Lopez-Martin et al. [39] and Yang et al. [40] as before.

Table 7 Performance Comparison of Proposed Approach and Existing ML Approaches on UNSW-NB15
Algorithm Precision Recall Accuracy F-1 Score

DRL (proposed) 0.95 0.97 0.96 0.96

Logistic regression 0.81 0.94 0.84 0.87

SVM 0.75 0.99 0.82 0.86

Random forest 0.83 0.99 0.88 0.90

GBM 0.80 0.99 0.86 0.88

Adaboost 0.80 0.98 0.85 0.88

MLP 0.81 0.98 0.87 0.89

CNN 0.86 0.98 0.90 0.91

Variational Autoencoder 0.95 0.92 0.93 0.94

Deep belief networks 0.85 0.97 0.89 0.91

Fully connected DNN 0.82 0.98 0.87 0.90

As seen in Table 7, high precision, accuracy and F-1 scores are achieved by the proposed DRL-based
approach. While for this dataset SVM, random forest and GBM achieve higher recall values, their
precision values are much lower than that of the DRL approach, which means they would create many
false positives at runtime. The DRL model achieves a better balance between false positives and false
negatives, with high precision, recall and F-1 values. This makes it promising for both accurately
detecting attacks and achieving high network reliability by avoiding unnecessary interruption of traffic.

0

0.2

0.4

0.6

0.8

1

Precision Recall Accuracy F-1 Score

Default test set

Random test set

Sakarya University Journal of Computer and Information Sciences

Gülmez et. al

22

The good performance of the DRL model is attributable to the exploration of a wide set of network
states and penalizing all incorrect classifications with the same penalty function, which limits the
number of false positives and false negatives as the RL agent continues to learn.

5. Conclusion

In this work, we proposed a deep reinforcement learning based approach for network intrusion detection.
The proposed approach overcomes the generalization shortcomings of reinforcement learning and
achieves high performanca on binary intrusion detection tasks trying the differentiate between normal
and attack traffic. The efficacy of the model was evaluated with two widely used intrusion detection
benchmark datasets and F-1 scores of over 96% were achieved for both datasets. We also demonstrated
the effects of the number of hidden neurons and number of iterations on the performance of the proposed
algorithm. This study has shown that deep reinforcement learning is a promising method for network
intrusion detection. We aim to expand upon this study in future work by evaluating the performance of
the model on additional datasets as well as creating extensions of the model with different reward
functions to achieve optimal performance in a variety of settings.

References

[1] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra and M. Riedmiller,
“Playing Atari with Deep Reinforcement Learning,” pp. 1–9, 2013. Retrieved from
http://arxiv.org/abs/1312.5602

[2] M. Lai, “Giraffe: Using Deep Reinforcement Learning to Play Chess,” September, 2015.
Retrieved from http://arxiv.org/abs/1509.01549

[3] L. Wang, D. Zhang, L. Gao, J. Song, L. Guo and H. T. Shen, “MathDQN: Solving arithmetic
word problems via deep reinforcement learning,” 32nd AAAI Conference on Artificial
Intelligence, pp. 5545–5552, 2018.

[4] S. Nemati, M. M. Ghassemi and G. D. Clifford, “Optimal medication dosing from suboptimal
clinical examples: A deep reinforcement learning approach,” Proceedings of the Annual
International Conference of the IEEE Engineering in Medicine and Biology Society, 2016.

[5] Z. Zhou, X. Li and R. N. Zare, “Optimizing Chemical Reactions with Deep Reinforcement
Learning,” ACS Central Science, vol. 3, no. 12, pp. 1337–1344, 2017.

[6] M. Mahmud, M. S. Kaiser, A. Hussain and S. Vassanelli, “Applications of Deep Learning and
Reinforcement Learning to Biological Data,” IEEE Transactions on Neural Networks and
Learning Systems, vol. 29, no. 6, pp. 2063–2079, 2018.

[7] T. Yen, A. Oprea and K. Onarlioglu, "Beehive: large-scale log analysis for detecting suspicious
activity in enterprise networks,". Proc. 29th Annual Computer Security Applications Conference,
pp. 199–208, 2013.

[8] A. Razaq, H. Tianfield and P. Barrie, "A big data analytics based approach to anomaly detection,"
Proc. - 2016 IEEE/ACM 3rd International Conference on Big Data Computing Applications and
Technologies (BDCAT), pp. 187–193, 2016.

[9] A. O. Balogun and R. G. Jimoh, "Anomaly intrusion detection using a hybrid of decision tree

Sakarya University Journal of Computer and Information Sciences

Gülmez et. al

23

and K-nearest neighbor," Journal of Advances in Scientific Research & Applications (JASRA),
vol. 2, no. 1, pp. 67-74, 2015.

[10] A. Hariharan, A. Gupta and T. Pal, "CAMLPAD: Cybersecurity Autonomous Machine Learning
Platform for Anomaly Detection," Proc. Future of Information and Communication Conference
(FICC), San Francisco, CA, USA, pp. 705-720, 2020.

[11] M. S. Pervez and D. M. Farid, “Feature selection and intrusion classification in NSL-KDD cup
99 dataset employing SVMs,” SKIMA 2014 - 8th International Conference on Software,
Knowledge, Information Management and Applications, pp. 1–6, 2014.

[12] B. Ingre and A. Yadav, "Performance analysis of NSL-KDD dataset using ANN," 2015
International Conference on Signal Processing and Communication Engineering Systems, pp.
92-96, 2015.

[13] S.O.M. Kamel, N. Hegazi, H. Harb, A. ElDein and H. ElKader, "AdaBoost Ensemble Learning
Technique for Optimal Feature Subset Selection," International Journal of Computer Networks
and Communications Security vol. 4, no. 1, pp. 1–11, 2016.

[14] W. Hu, W. Hu, and S. Maybank, "AdaBoost-Based Algorithm for Network Intrusion Detection,"
IEEE Transactions on Systems, Man, and Cybernetics - Part B: Cybernetics, vol. 38, no. 2, pp.
577-583, 2008.

[15] A. H. Engly, A. R. Larsen, and W. Meng, "Evaluation of Anomaly-Based Intrusion Detection
with Combined Imbalance Correction and Feature Selection," Proc. 14th International
Conference on Network and System Security, Melbourne, Australia, pp. 277-291, 2020.

[16] N. Moustafa and J. Slay, "A hybrid feature selection for network intrusion detection systems:
central points and association rules," arXiv:1707.05505, (2017) [cs.CR].

[17] J. Kim and H. Kim, “Applying Recurrent Neural Network to Intrusion Detection with Hessian
Free Optimization,” In: Kim H., Choi D. (eds) Information Security Applications. WISA 2015.
Lecture Notes in Computer Science, vol. 9503, 2016, Springer, Cham.

[18] Y. Chuan-long, Z. Yue-fei, F. Jin-long and H. Xin-zheng, “A Deep Learning Approach for
Intrusion Detection using Recurrent Neural Networks,” IEEE Access, vol. 5, pp. 21954 - 2196,
2017.

[19] C. Yin, Y. Zhu, J. Fei, and X. He, ‘‘A deep learning approach for intrusion detection using
recurrent neural networks,’’ IEEE Access, vol. 5, pp. 21954–21961, 2017.

[20] Z. Li, A. L. G. Rios, G. Xu, and L. Trajkovic, ‘‘Machine learning techniques for classifying

network anomalies and intrusions,’’ in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS), pp. 1–5,
2019.

[21] S. Behera, A. Pradhan, and R. Dash, “Deep Neural Network Architecture for Anomaly Based
Intrusion Detection System,” 5th International Conference on Signal Processing and Integrated
Networks (SPIN 2018), pp. 270– 274, 2018.

Sakarya University Journal of Computer and Information Sciences

Gülmez et. al

24

[22] Z. Li, Z. Qin, K. Huang, X. Yang, and S. Ye, ‘‘Intrusion detection using convolutional neural
networks for representation learning,’’ in Proc. Int. Conf. Neural Inf. Process. pp. 858–866,
2017.

[23] M. Lopez-Martin, B. Carro, A. Sanchez-Esguevillas, and J. Lloret, ‘‘Conditional variational

autoencoder for prediction and feature recovery applied to intrusion detection in IoT,’’ Sensors,
vol. 17, no. 9, p. 1967, Aug. 2017.

[24] F. A. Khan, A. Gumaei, A. Derhab, and A. Hussain, ‘‘TSDL: A twostage deep learning model

for efficient network intrusion detection,’’ IEEE Access, vol. 7, pp. 30373–30385, 2019.

[25] T. Ma, F. Wang, J. Cheng, Y. Yu, and X. Chen, ‘‘A hybrid spectral clustering and deep neural

network ensemble algorithm for intrusion detection in sensor networks,’’ Sensors, vol. 16, no.
10, p. 1701, Oct. 2016.

[26] R. Vinayakumar, M. Alazab, K. P. Soman, P. Poornachandran, A. Al-Nemrat, and S.

Venkatraman, ‘‘Deep learning approach for intelligent intrusion detection system,’’ IEEE
Access, vol. 7, pp. 41525–41550, 2019.

[27] N. Gao, L. Gao, Q. Gao, and H. Wang, "An Intrusion Detection Model Based on Deep Belief
Networks," Proc. 2nd International Conference on Advanced Cloud and Big Data, Huangshan,
China, pp. 247-252, 2014.

[28] B. Deokar and A. Hazarnis, “Intrusion Detection System using Log Files and Reinforcement
Learning,” International Journal of Computer Applications, vol. 45, no. 1919, pp. 28–35, 2012.

[29] A. Servin and D. Kudenko, “Multi-agent reinforcement learning for intrusion detection: A case
study and evaluation,” Frontiers in Artificial Intelligence and Applications, vol. 178, pp. 873–
874, 2008.

[30] R. Elderman, L. J. J. Pater, A. S. Thie, M. M. Drugan and M. A. Wiering, “Adversarial
reinforcement learning in a cyber security simulation,” ICAART 2017- Proceedings of the 9th
International Conference on Agents and Artificial Intelligence, pp. 559–566, 2017.

[31] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. Cambridge, MA, USA: MIT Press,
2016.

[32] L. P. Kaelbling, M. L. Littman, and A. W. Moore, “Reinforcement Learning: A Survey,” Journal
of Artificial Intelligence Research, vol. 4, 1996.

[33] N. Moustafa, J. Slay, "UNSW-NB15: A Comprehensive Data Set for Network i Intrusion
Detection Systems (UNSW-NB15 Network Data Set)," Proceedings of the 2015 IEEE Military
Communications and Information Systems Conference (MilCIS), pp. 1–6, 2015.

[34] KDD Cup 1999. Avaliable online: https://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
(Accessed on 20 November 2020).

[35] 1998 DARPA Intrusion Detection Evaluation Dataset. Available online:
https://www.ll.mit.edu/r-d/datasets/1998-darpa-intrusion-detection-evaluation-dataset
(Accessed on 20 November 2020).

Sakarya University Journal of Computer and Information Sciences

Gülmez et. al

25

[36] M. Tavallaee, E. Bagheri, W. Lu, and A.A. Ghorbani, “A detailed analysis of the KDD CUP 99
data set,” IEEE Symposium on Computational Intelligence for Security and Defense
Applications, pp. 1–6, 2009.

[37] H. Koduvely, “Github repository, gym-network_intrusion,” Retrieved from
https://github.com/harik68/gym-network_intrusion, 2018.

[38] Y. Sun, B. Xue, M. Zhang, and G. G. Yen, “An Experimental Study on Hyper-parameter
Optimization for Stacked Auto-Encoders,” Proc. IEEE Congress on Evolutionary Computation,
Rio de Janeiro, Brazil, pp. 1-8, 2018.

[39] M. Lopez-Martin, B. Carro, A. Sanchez-Esguevillas, and J. Lloret, “Shallow neural network with
kernel approximation for prediction problems in highly demanding data networks,” Expert
Systems with Applications, vol. 124, pp. 196-208, 2019.

[40] Y. Yang, K. Zheng, B. Wu, Y. Yang, and X. Wang, “Network intrusion detection based on
supervised adversarial variational auto-encoder with regularization,” IEEE Access, vol. 8., pp.
42169-42184, 2020.

