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Öz

Beyin-Bilgisayar Arayüzü (BBA), mevcut kas ve sinir sistemlerini çeşitli nedenlerle kontrol edemeyen bireylerin dış dünya ile etkileşime 
girmelerini sağlayan bir iletişim sistemidir. Temel olarak, bir BBA, kullanıcının beyin aktiviteleri sırasında üretilen sinyalleri işleyerek 
bazı elektronik cihazlarla iletişim kurmasını sağlar. Bu çalışma, sınıflandırma yoluyla Elektroensafalogram (EEG) sinyalleri içindeki 
sabit bakış verilerini belirlemeye ve toplamaya çalışmaktadır. Bu amaçla Autonomous Üniversitesi’ndeki araştırmacılar tarafından 
kaydedilen EEG sinyallerinden oluşan üç veri seti incelenmiştir. Bu veri kümelerindeki EEG sinyalleri, deneklerin bilgisayar ekranında 
gösterilen beş kutuya bakışlarının Durağan Durum Görsel Uyarılmış Potansiyel bazlı BBA ile tanındığı bir ortamda toplanmıştır. Naive 
Bayes, Aşırı Öğrenme Makinesi ve Destek Vektör Makineleri algoritmaları kullanılarak sınıflandırma yapıldı. EEG sinyallerinden 
Özbağlanımlı, Hjorth ve Güç Spektral Yoğunluğu olarak üç öznitelik seti çıkarılmıştır. Sonuç olarak, Özbağlanımlı özniteliklerin 
kullanıldığı durumda sınıflandırıcılar %45.67 ile %78.34 arasında performans gösterirken, Hjorth özniteliği kullanıldığında 
sınıflandırma performansları %43.34-75.25 ve son olarak Güç Spektral Yoğunluğu kullanılarak sınıflandırma performansları %57.36 
ile %83.42 arasındadır. Ayrıca sınıflandırma performansları, sınıflandırma algoritmalarına göre Naive Bayes için %52.23 ile 79.15, Aşırı 
Öğrenme Makinesi için %56.32-83.42 ve Destek Vektör Makineleri için %43.34-72.27 arasında değişmektedir. Elde edilen doğruluk 
performansları arasında en iyi doğruluk değeri, Güç Spektral Yoğunluk özniteliği ve Aşırı Öğrenme Makinesi algoritması çifti ile elde 
edilen %83.42 olmuştur.

Anahtar Kelimeler: Beyin bilgisayar arayüzü, Sınıflandırma, Elektroensefalogram, Durağan-durum görsel-uyarılmış potansiyel 

Abstract

Brain-Computer Interface (BCI) is a communication system that enables individuals who lack control and use of their existing 
muscular and nervous systems to interact with the outside world because of various reasons. A BCI enables its user to communicate 
with some electronic devices by processing signals generated during brain activities. This study attempts to detect and collect gaze 
data within Electroencephalogram (EEG) signals through classification. To this purpose, three datasets comprised of EEG signals 
recorded by researchers from the Autonomous University were adopted. The EEG signals in these datasets were collected in a setting 
where subjects’ gaze into five boxes shown on a computer screen was recognized through Steady-State Visually Evoked Potential 
based BCI. The classification was performed using algorithms of Naive Bayes, Extreme Learning Machine, and Support Vector 
Machines. Three feature sets; Autoregressive, Hjorth, and Power Spectral Density, were extracted from EEG signals. As a result, 
using Autoregressive features, classifiers performed between 45.67% and 78.34%, whereas for Hjorth their classification performance 
was within 43.34-75.25%, and finally, by using Power Spectral Density their classification performance was between 57.36% and 
83.42% Furthermore, classifier performances using Naive Bayes varied between 52.23% and 79.15% for Naive Bayes, 56.32-83.42% 
for Extreme Learning Machine, and 43.34-72.27% for Support Vector Machines by regarding classification algorithms. Among 
achieved accuracy performances, the best accuracy is 83.42%, achieved by the Power Spectral Density features and Extreme Learning 
Machine algorithm pair.
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1. Introduction
Brain-computer interfaces (BCI) translate brain activity into 
computer commands that provide direct communication 
between the brain and its environment, enabling users to 
interact within a predefined context without requiring 
muscle power (Wolpaw et al. 2000, Loo et al. 2011, Mason 
and Birch 2013). Today, the major focus of research on BCIs 
is on creating custom applications that enable individuals 
with severe motor disabilities to have effective control of 
devices such as computers, speech synthesizers, assistive 
devices and/or prostheses. 

Electroencephalogram (EEG) signals are one of the most 
widely used types of biomedical signals for BCIs, owing to 
their portability, high time resolution, ease of acquisition 
and implementation, and cost-effectiveness (affordable) as 
compared to other brain activity monitoring techniques 
(Sayilgan et al. 2019, Sayilgan et al. 2020). There are four 
typical EEG-based BCI paradigms: steady-state visual-
evoked potentials (SSVEP), slow cortical potentials (SCP), 
the P300 component of evoked potentials, and sensory-
motor rhythms (SMR) (Pasqualotto et al. 2012). The 
SSVEP signal is a periodic response to a visual stimulator 
modulated at a frequency greater than 6 Hz (Wang et al. 
2006) (or higher than 4 Hz (Regan 1990)). The amplitude 
and phase characteristics of the SSVEP depend on the 
stimulus intensity and frequency (Sayilgan et al. 2019b, 
Sayilgan et al. 2020).

SSVEP-based BCIs have become a popular research 
area utilizing many advantages over other types of BCIs, 
including higher signal-to-noise ratio (SNR) and faster 
information transfer rate (ITR), lesser training time. To 
improve SSVEP based BCIs performance, an effective 
frequency recognition algorithm plays an important role. 
In literature, various techniques for SSVEP based feature 
extraction and classification have been analyzed and 
developed by Carvalho et al. (2015), Oikonomou et al. (2016), 
Tello et al. (2014), Zerafa et al. (2018), and Zhang et al. 
(2018). The same features used in this study were previously 
investigated for different tasks (listening to music, mental 
task, motor task, etc.), and they reported high accuracies 
using the same features by Durmus et al. (2014), Ozmen et 
al. (2017), Sadreddini et al. (2014), Sayilgan et al. (2019a). 
Also, classification methods are proposed in Sayilgan et al. 
(2017), Sayilgan et al. (2019b). However, combinations of 
feature extraction and classification algorithms discussed in 
this study have not been studied for SSVEP signals. 

In this study, various classification methods are used to 
classify SSVEP signals. The three well-known and popular 
classification algorithms, including Naive Bayes, Extreme 
Learning Machine (ELM), and Support Vector Machine 
(SVM) algorithms have a major impact on the performance 
of the entire systems, particularly on accuracy. Therefore, 
the achievements of these algorithms commonly used in 
SSVEP-based BCIs were compared in system performances.

This study was organized as follows: the second section 
introduces the materials. The characteristics of the raw 
signals recorded from the EEG device, details of the visual 
stimulation, basic information about the participants were 
provided and the visual task was described. Besides, detailed 
information on signal processing steps is presented in this 
section. In the next section, section 3, experimental results 
are shown that explain the performance of both classifiers 
and participants in successfully predicting tasks (through 
accuracy, sensitivity, and selectivity). Finally, the results of 
the classification and the performance differences among 
adopted classifiers are discussed and evaluated.

2. Materials and Methods
2.1 Collecting EEG Data: Experimental Setup and 
Protocol

2.1.1. The EEG signal dataset and participants

EEG signals recorded at the Autonomous University were 
downloaded from the Internet (http://archive.ics.uci.edu/
ml/datasets/EEG+Steady-State+Visual+Evoked+Potential
+Signals) and were used in this study. Dataset comprises of 
EEG signals acquired at experiments that were conducted 
on a total number of 29 healthy participants (17 males and 
12 females) aged between 20-29 and 48-50. Seventeen of 
the participants had normal whereas twelve had corrected 
views (Fernandez-Fraga et al. 2018a).

2.1.2.  The EEG device

EEG signals were obtained using a portable, high-resolution 
Emotive Epoc+ EEG model. The device has a total number 
of 16 electrodes (14 data channels, and 2 reference channels). 
The electrodes are positioned concerning the international 
standard called the International 10-20 System (Figure 
1). The device was capable of measuring amplitude within 
a dynamic range of -4.17 mV and +4.17 mV for each 
channel. The device’s sampling rate per channel was 128 
Hz. However, by applying a band-pass filter, signals within 
a frequency response of 0.16 to 43 Hz was acquired and 

http://archive.ics.uci.edu/ml/datasets/EEG+Steady-State+Visual+Evoked+Potential+Signals
http://archive.ics.uci.edu/ml/datasets/EEG+Steady-State+Visual+Evoked+Potential+Signals
http://archive.ics.uci.edu/ml/datasets/EEG+Steady-State+Visual+Evoked+Potential+Signals
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quantized using an Analog-to-Digital Converter with a 
quantization resolution of 16 bits per channel (Fernandez-
Fraga et al. 2018a). 

2.1.3. The setting and experimental protocol 

During the experimental trials, participants were seated in a 
comfortable chair at a distance of 70 cm from the standard 
15-inch LCD monitor (Fernandez-Fraga et al. 2018a). This 
experimental setup is developed by another group Makeig 
et al. (1999), for visual discrimination for the analysis of 
SSVEP-based BCI systems. The tests aimed to obtain data-
related stimuli in brain signals during a simple attention 
exercise, and research was conducted to find the difference 
between carefully related and irrelevant stimuli. Test 
participants were expected to distinguish between different 
types of stimuli presented at high frequencies (Fernandez-
Fraga et al. 2018a, Fernandez-Fraga et al. 2018b).

Before starting the test, the participant is asked to 
concentrate when a red cross appears in the green box 
(Makeig et al. 1999). The test begins with the configuration 
shown in Figure 2 (a). A total number of 100 stimuli were 

presented in each test: 20 attended (events) 80 unattended 
(Figure 2 (b) and 2 (c), respectively), the last 200 ms remain 
on the screen before the stimulus disappears (Courchesne 
et al. 1994).

2.2. Analysis of Steady-State Visually-Evoked Potentials

2.2.1. Preprocessing

SSVEP signals, unfortunately, might easily get contaminated 
by other bio-signals or environmental noise. Therefore, the 
first step is to filter noisy data as much as possible (Diez 
et al. 2013). According to the literature, band-pass and 
notch filters are widely used as filters in the preprocessing 
step. The signals are digitized within a certain frequency 
range corresponding to the stimulus frequencies and 
their harmonics. Since the EEGs are in the narrow-band 
frequency range, a band-pass filter was used in the signal 
preprocessing step. Also, the notch filter is often used to 
filter the mains line interference. SSVEP is subdivided 
using stimulus points that indicate the beginning and end 
of the signal. The data were filtered by a band-pass filter 
with cutoff frequencies of 0.16 and 43 Hz to remove the 
DC component and high-frequency artifacts, including city 
mains interference (50 Hz). Since SSVEP signals are not 
sensitive to low-frequency structures such as eye or body 
movements, no extra artifact removal method has been used 
(Wu 2016, Oostenveld et al. 2011).

2.2.2. Feature extraction

Feature extraction and feature classification use distinctive 
features of SSVEP signals to define an individual’s intention 
to control an external device. In other words, feature 
extraction consists of extracting important features from the 
recorded SSVEP data and obtaining the feature vector. In 
this way, the size of the feature vector is reduced while the 
most defining properties are selected for the classifier.

Feature extraction sometimes requires time-consuming 
signal analysis. Existing BCIs typically generate, frequency 
domain information such as mu (µ) (8-12 Hz) and/or Figure 1. 10-20 international electrode topographic 

representation.

Figure 2. Five-box test (A) Initial state (B) Unattended stimulus (C) Attended stimulus (event).

A B C
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membership in all data classes in a data set (Ibanez et al. 
2014).

Extreme-learning machine (ELM) was developed based 
on a single-layer and feed-forward network model (Huang 
et al. 2006). ELM is preferred in many different areas of the 
literature due to its advantages such as short training time, 
high accuracy generalization (Altan and Kutlu 2018, Altan 
et al. 2016, Yayık 2017) over new samples in multi-class 
training clusters and no need for any training parameters 
(Huang and Chen 2007). ELM randomly assigns the input 
weights and hidden node values of the neural network, and 
the output layer weights are calculated by the least-squares 
method (Tang et al. 2015).

Support vector machine (SVM) has adopted the principle 
of large margins to formulate decision rules, using a solid 
foundation in statistical learning theory (Vapnik 1998). 
Depending on the selection of kernel functions, different 
classifiers, including linear and non-linear classifiers, can be 
created. For ease of evaluation, only linear classifiers were 
used and the penalty parameter was taken as 1 in SVM 
training.

2.2.4. Evaluation of classifiers 

In order to evaluate the performance of the classification 
algorithms used in this study, k-fold cross-validation and 
confusion matrix evaluation criteria were used.

k-Fold Cross-Validation

One of the most commonly used methods to separate 
the data set as a training and test set is the k-fold cross-
validation method. In this method, the data set is divided 
into random pieces. Each time k-1 is used for training the 
algorithm, while the remaining 1 is used for testing the 
algorithm. This process is repeated until all parts are used for 
testing purposes. Test errors are recorded each time and the 
average of the errors is calculated after the last piece (Narin 
et al. 2014). The performance of the classifier algorithm used 
is evaluated in this way. In this study, the data set is divided 
into 10 equal parts.

Confusion Matrix

To evaluate the classifier performance, the confusion matrix 
is first calculated. It is created by comparing the answers 
given by the classification algorithm to the test set with the 
real values in the data set. The confusion matrix criteria used 
for performance evaluation in this study are given below;

ACC TP FN FP TN
TP TN= + + +
+   (4)

high beta (18-26 Hz) rhythm amplitudes, or time-domain 
information such as P300 and slow cortical potentials (SCP) 
(Guger at al. 2009, Chiappa and Bengio 2004) or power 
spectral density (PSD) values (Millan and  Mourino 2003, 
Penny et al. 2000), and autoregressive (AR), and Hjorth 
parameters (Pfurtscheller et al. 1998, Gunal 2001).

In this study, as the feature vectors, autoregressive parameters 
(AR), Hjorth parameters and power spectrum density 
(PSD) were tested. These three feature extraction methods 
were compared in terms of classification performances.

The autoregressive model (AR), whose order is p, is 
calculated by Eq. 1 equation. In this equation, x(n) indicates 
the output sequence, e(n) indicates the white noise sequence 
with the variance σ2, a(k) indicates the relational parameters 
(AR) and/or feature. The AR(p) model is characterized by 
the AR model parameters {a [1], a [2], …, a [p], σ2}.
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The Hjorth identifiers are constructed by combining three 
sub-parameters. These parameters are activity, mobility, and 
complexity. Activity is simply defined as the energy of the 
signal (σx). Mobility is the ratio of the standard deviation of 
the first derivative of the x signal to the standard deviation 
of the signal, expressed in the equation given in Eq. 2.

M x
x
v
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l   (2)

Complexity, also known as form factor (FF), gives a 
computable value for the form of the signal.
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The power spectral density (PSD) can be considered as the 
power distribution on the frequency band of the signal. 
The strength of a signal is calculated by squaring it. PSD 
of a signal is calculated by taking the Fourier transform of 
the signal’s autocorrelation function. PSD is widely used 
in the literature as a feature, was calculated by the Welch 
periodogram (Millan and Mourino 2003, Penny et al. 2000, 
Pfurtscheller et al. 1998, Gunal 2001, Oikonomou et al. 
2016).

2.2.3. Classification methods

Naive Bayes is a clustering classification algorithm based 
on probability prediction which is widely used in pattern 
recognition studies. It is a successful classification model 
based on the principle of calculating the probability of 
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criteria. Performance values were determined by performing 
10 iterations in total and averaging the results obtained. The 
performance of each classification algorithm was evaluated 
using 10-fold cross-validation. Nine combinations of 
different feature extraction and classifiers were tested for 
each person. Table 1 summarizes the average performance 
of all classification schemes. 

The classification achievements of SSVEP data recorded 
from twenty-nine different individuals during visual tasks 
were given as percentages. According to these results, when 
the AR, Hjorth and PSD feature extraction methods were 
applied separately and tested with Naive Bayes, ELM and 
SVM classifiers, the success rates of the tasks were close to 
each other but the ACC rates were between 46.43-82.58% 
on average. When the classifiers are compared among 
themselves, the lowest and highest achievements of the 
Naive Bayes classifier are 52.23% and 79.15%, while the 
ELM classifier is 56.32-83.42% and the SVM classifier 
is the lowest 43.34% and the highest 72.27%. In terms of 
feature methods, the classification results of the AR and 
PSD features are 45.67-78.34%, and 57.36% and 83.42%, 
respectively, and for Hjorth 43.34-75.25%. 

When the experimental results of the feature methods are 
examined, it is seen that the classification success of the 
AR and PSD feature parameters including the frequency 
domain properties is higher than the Hjorth descriptors. 
Also, the ELM algorithm gave the highest success among 
the classifiers that are investigated in this study while the 
SVM algorithm resulted in the worst performance among 
these classifiers.

SEN TP FN
TP= +   (5)

SPE TN FP
TN= +   (6)

The above formulas are expressed as accuracy (ACC), 
sensitivity (SEN) and selectivity (SPE), respectively. 
All values in the equations are calculated in the Matlab 
environment using the “Confusion Matrix”. TP belongs to 
a class and represents the number of data assigned to the 
same class by the classifier and FN represents the number 
of data assigned to a different class in error. The number of 
data belonging to a different class and assigned to a different 
class by the classifier is represented by TN, and the number 
of data assigned by mistake to the same class is represented 
by FP (Narin et al. 2014).

3. Results and Discussion
The performances of the classifier algorithms were 
calculated with the Matlab program and SSVEP data were 
classified by using Naive Bayes, ELM and SVM algorithms. 
For the SVM algorithm, the libSVM library was used with 
the library’s default parameters (i.e. Linear Kernel and C = 
1). In the remaining algorithms (Naive Bayes and ELM), 
we trusted MATLAB’s Statistics and Machine Learning 
toolbox applications, using the default parameters for each 
classification scheme found in MATLAB’s online manual. 
In order to obtain a correct solution in a reasonable time for 
each algorithm, the optimum number of iterations deemed 
appropriate in the literature was determined as convergence 

Table 1. Classification results of SSVEP-based BCI data.

Trial set Classifiers
Classifier Performances (%)

AR Hjorth PSD
SEN SPE ACC SEN SPE ACC SEN SPE ACC

Five Box Visual 
Task 1

Naive Bayes 59.85 55.33 57.93 52.23 56.81 54.30 68.96 75.43 71.03
ELM 73.24 69.01 71.79 68.41 56.32 61.80 79.07 72.18 76.33
SVM 45.67 52.84 50.11 47.22 43.34 46.43 60.33 57.36 59.20

Five Box Visual 
Task 2

Naive Bayes 58.02 62.76 60.94 52.58 59.05 54.90 70.40 66.65 68.41
ELM 78.34 75.42 73.38 71.31 69.83 71.03 83.42 81.36 82.58
SVM 49.92 58.33 57.45 54.20 51.10 53.17 64.88 61.39 63.44

Five Box Visual 
Task 3

Naive Bayes 62.43 68.98 66.68 60.38 66.41 64.31 79.15 73.59 77.26
ELM 77.88 66.69 70.09 71.77 75.25 74.34 81.03 77.26 80.16
SVM 65.14 58.03 63.32 53.43 54.42 52.75 72.27 69.40 71.39
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Dynamics in Nature and Society, 2018: 1-19. https://doi.
org/10.1155/2018/2143873.

Fernandez-Fraga, SM., Aceves-Fernandez, MA., Pedraza-
Ortega, JC., Ramos-Arreguin, JM. 2018b. Screen task 
experiments for EEG signals based on SSVEP brain computer 
interface. Int. J. Adv. Res. (Indore), 6(2): 1718-1732. http://
dx.doi.org/10.21474/IJAR01/6612.

Guger, C., Ramoser, H., Pfurtscheller, G. 2009. Real-time EEG 
analysis with subject-specific spatial patterns for a brain-
computer interface (BCI). IEEE Trans. Rehabil. Eng., 8: 447–
456. https://doi.org/10.1109/86.895947.

Gunal, S. 2001. Örüntü tanıma uygulamalarında alt uzay analiziyle 
öznitelik seçimi ve sınıflandırma. Doktora tezi, Osmangazi 
Üniversitesi, Fen Bilimleri Enstitüsü, Eskişehir.

Huang, G., Chen, L. 2007. Convex incremental extreme learning 
machine. Neurocomputing, 70(16-18): 3056-3062. https://doi.
org/10.1016/j.neucom.2007.02.009.

Huang, G., Zhu, Q., Siew, C. 2006. Extreme learning machine: 
Theory and applications. Neurocomputing, 70: 489-501. https://
doi.org/10.1016/j.neucom.2005.12.126.

Ibanez, A., Bielza, C., Larranaga, P. 2014. Cost-sensitive 
selective naive bayes classifiers for predicting the increase of 
the h-index for scientific journals. Neurocomputing, 135: 42-52. 
https://doi.org/10.1016/j.neucom.2013.08.042.

Loo, C. K., Samraj, A., Lee, G. C. 2011. Evaluation of methods 
for estimating fractal dimension in motor imagery-based brain 
computer interface. Discrete Dynamics in Nature and Society, 
724697: 1-8. https://doi.org/10.1155/2011/724697.

Makeig, S., Westerfield, M., Jung, TP., Covington, J., 
Townsend, J., Sejnowski, TJ., Courchesne, E. 1999. 
Functionally independent components of the late positive 
event-related potential during visual spatial attention. J. 
Neurosci., 19(7): 2665–2680. https://doi.org/10.1523/
JNEUROSCI.19-07-02665.1999.

Mason, S. G., Birch, G. E. 2003. A general framework for 
brain-computer interface design. IEEE Trans. Neural 
Syst. Rehabil. Eng., 11: 70-85. https://doi.org/10.1109/
TNSRE.2003.810426.

Millan, JR., Mourino, J. 2003. Asynchronous BCI and local 
neural classifiers: An over view of the adaptive brain computer 
interface project. IEEE Trans. Neural Syst. Rehabil. Eng., 11: 
159–161. https://doi.org/10.1109/TNSRE.2003.814435

Narin, A., İşler, Y., Özer, M. 2014. Konjestif kalp yetmezliği 
teşhisinde kullanılan çapraz doğrulama yöntemlerinin 
sınıflandırıcı performanslarının belirlenmesine olan etkilerinin 
karşılaştırılması. DEÜ Mühendislik Fakültesi Mühendislik 
Bilimleri Dergisi, 16(48): 1-8. Retrieved from https://dergipark.
org.tr/tr/pub/deumffmd/issue/40797/492155.

In conclusion, since it is known that SSVEP data varies 
from person to person, a larger number of participants 
may be necessary to reach a general judgment. It is one 
of the drawbacks of our study. We used a general-purpose 
and freely-available dataset; hence, we were not able 
to use a larger dataset in this study. Besides, since it is 
difficult in many respects to experiment with people with 
neurophysiological disorders, trials have been conducted 
with healthy individuals in this study and many studies in 
the literature.

The experimental results show the potential of the proposed 
procedure in real-time applications to contribute to SSVEP 
based brain-computer interface applications.
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