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Abstract

In this paper, we generalize the �xed point theorem given in Mlaiki et al [Journal of Inequalities and
Applications (2020) 2020:63] using the concept of double controlled metric-like spaces. Some examples are
given here to illustrate the usability of the obtained results.
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In this article, we begin with the interesting generalization of the standard metric, so-called, b-metric.
Bakhtin [1] and Czerwik [2] introduced b-metric spaces as a generalization of metric spaces and proved the
contraction principle in this framework. Subsequently, many authors obtained �xed point results for single-
valued or set-valued functions, in the setting of b-metric spaces. For detail see ([11],[12] , [13], [14], [15], [16],
[19]). A good review on this topic is given by E. Karapinar [10].
In the extended b-metric de�nition of [3], a function θ : X ×X → [1,∞) is imposed instead of the constant
s ≥ 1. Motivated with this idea Mlaiki et al [4] introduced the controlled metric - type spaces (CMTS).

Following this, the natural question would come to mind. Could we choose two control functions here
and get similar �xed point results? Answer is positive. Abdeljawad et al [6] de�nes the new metric so called
double controlled metric-type spaces (DCMTS) in[2018].

Finally Mlaiki [5] choose two controlled functions and introduce double controlled metric-like spaces
(DCMLS) in [2020] and then obtain some �xed point theorems by using Kannan contraction [17].
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In this article, we will focus to DCMLS's and get �xed point results on this space with Reich contraction.

1. Preliminaries

We now recollect some fundamental de�nitions, notations, and basic results that will be used throughout
this paper.

De�nition 1.1. [1], [2] Let X be a non-empty set and s ≥ 1. d : X ×X −→ [0,∞) be a mapping such that
for all x, y, z ∈ X.
(i) x = y =⇒ d(x, y) = 0 (self- distance)
(ii) d (x, y) = 0 =⇒ x = y (indistancy)
(iii) d (x, y) = d (y, x) (symmetric)
(iv) d (x, y) ≤ s [d (x, z) + d (z, y)] (weakened triangle inequality)

Then (X, d) is called a b-metric space (b-MS).

De�nition 1.2. [3] Let X be a non-empty set and θ : X × X → [1,∞) be a function. A function d :
X ×X −→ [0,∞) is called an extended b-metric if the follwing conditions are satis�ed.
(eb-i) d (x, y) = 0⇐⇒ x = y
(eb-ii) d (x, y) = d (y, x)
(eb-iii) d (x, y) ≤ θ(x, y) [d (x, z) + d (z, y)]
for all x, y, z ∈ X.

For s = 1 every b-metric satis�es the conditions of metric. But converse is not true.
Recently, some authors generalized the b-metric space to more general type of metric type spaces by using
control functions in the triangle inequality.

De�nition 1.3. [4] Let X be a non-empty set θ : X ×X → [1,∞) be a function. A function d : X ×X −→
[0,∞) is called a controlled metric type (CMT) if the following conditions are satis�ed.
(cb-i) d (x, y) = 0⇐⇒ x = y
(cb-ii) d (x, y) = d (y, x)
(cb-iii) d (x, y) ≤ θ(x, z) d (x, z) + θ(z, y) d (z, y)]
for all x, y, z ∈ X.

Abdeljawad et al then introduce a more general b-metric space, which is (DCMTS).

De�nition 1.4. [6] Let X be a non-empty set θ, µ : X×X → [1,∞) be a function. A function d : X×X −→
[0,∞) is called a double controlled metric type (DCMTS) if the following conditions are satis�ed.
(cb-i) d (x, y) = 0⇐⇒ x = y
(cb-ii) d (x, y) = d (y, x) (symmetric)
(cb-iii) d (x, y) ≤ θ(x, z) d (x, z) + µ(z, y) d (z, y)]
for all x, y, z ∈ X.

Remark 1.1. A controlled metric type is also a double controlled metric type when taking the θ = µ. The
converse is not true in general.

Finally, Mlaiki [5] present the generalization so called bouble controlled metric- like spaces (DCMLS).

De�nition 1.5. [5] Let X be a non-empty set θ, µ : X×X → [1,∞) be a function. A function d : X×X −→
[0,∞) is called a double controlled metric-like (DCMLS) if the following conditions are satis�ed.
(db-i) d (x, y) = 0 =⇒ x = y (indistancy)
(db-ii) d (x, y) = d (y, x)
(db-iii) d (x, y) ≤ θ(x, z) d (x, z) + µ(z, y) d (z, y)

for all x, y, z ∈ X.



A. Tas, Adv. Theory Nonlinear Anal. Appl. 5 (2021), 167�172. 169

Remark 1.2. Any double controlled metric-type space (DCMTS) is a double controlled metric-like space
(DCMLS). However, the converse is not true in general.

2. Main Results

Theorem 2.1. Let (X, d) be a complete double controlled metric-like space (DCMLS) with θ, µ : X2 → [1,∞)
and T be a self mapping satisfying Reich condition. That is, T satis�es

d(Tx, Ty) ≤ αd(x, y) + βd(x, Tx) + γd(y, Ty) (1)

where α, β, γ ∈ (0, 1) with α+ β + γ < 1. Let r = α+β
1−γ < 1 for all x, y ∈ X.

For x0 ∈ X, choose xn = Tnx0. Assume that

i) sup
m≥1

lim
i→∞

θ(xi+1, xi+2)

θ(xi, xi+1)
.µ(xi+1, xm) <

1

r
(2)

ii) lim
n→∞

θ(x, xn) <∞ exist and �nite and lim
n→∞

µ(x, xn) <
1

γ
(3)

then T has a unique �xed point.

Proof. Let x0 ∈ X. Consider the sequence {xn} with xn+1 = Txn for all n ∈ N. It is clear that, if there
exists n0 for which xn0+1 = xn0 then Txn0 = xn0 . Then the proof is �nished. Thus suppose that xn+1 6= xn
for every n ∈ N. Therefore, we may assume that xn+1 = xn for all n ∈ N. Now

d(xn, xn+1) = d(Txn−1, Txn) ≤ α d(xn−1, xn) + β d(xn−1, Txn−1)

+ γ d(xn, Txn)

= α d(xn−1, xn) + β d(xn−1, xn) + γ d(xn, xn+1).

(4)

Therefore , we get

d(xn, xn+1) ≤ (
α+ β

1− γ
) d(xn−1, xn) = r d(xn−1, xn). (5)

Thus, we obtain

d(xn, xn+1) ≤ r d(xn−1, xn) ≤ r2 d(xn−2, xn−1) ≤ . . . ≤ rn d(x0, x1). (6)

For all n,m ∈ N with n < m

d(xn, xm) ≤ θ(xn, xn+1)d(xn, xn+1) + µ(xn+1, xm)d(xn+1, xm)

≤ θ(xn, xn+1)d(xn, xn+1) + µ(xn+1, xm)θ(xn+1, xn+2)d(xn+1, xn+2)

+ µ(xn+1, xm)µ(xn+2, xm)d(xn+2, xm)

≤ θ(xn, xn+1)d(xn, xn+1) + µ(xn+1, xm)θ(xn+1, xn+2)d(xn+1, xn+2)

+ µ(xn+1, xm)µ(xn+2, xm)θ(xn+2, xn+3)d(xn+2, xn+3)

+ µ(xn+1, xm)µ(xn+2, xm)θ(xn+3, xm)d(xn+3, xm) ≤ . . .

≤ θ(xn, xn+1)d(xn, xn+1) +

m−2∑
i=n+1

(

i∏
j=n+1

µ(xj , xm))θ(xi, xi+1)d(xi, xi+1)

+

m−1∏
i=n+1

µ(xi, xm)d(xm−1, xm).

(7)
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Therefore, using (6) we get

d(xn, xm) ≤ θ(xn, xn+1) r
nd(x0, x1)

+
m−2∑
i=n+1

(
i∏

j=n+1

µ(xj , xm))θ(xi, xi+1) r
id(x0, x1)

+

m−1∏
i=n+1

µ(xi, xm) r
m−1d(x1, x0)

(8)

and then

≤ θ(xn, xn+1)r
nd(x0, x1) +

m−1∑
i=n+1

(

i∏
j=0

µ(xj , xm))θ(xi, xi+1) r
id(x0, x1) (9)

Now if we de�ne

Sn =

n∑
i=0

(

i∏
j=0

µ(xj , xm))θ(xi, xi+1) r
i d(x0, x1) (10)

then applying the ratio test, we have

an = (
n∏
j=0

µ(xj , xm))θ(xi, xi+1) r
i d(x0, x1)

an+1

an
= r µ(xi+1, xm)

θ(xi+1, xi+2)

θ(xi, xi+1)
.

(11)

Therefore under condition (2), the series
∑

n an converges. Therefore, limn→∞ Sn exists. So the real sequence
{Sn} is Cauchy.

Thus we obtained the inequality

d(xn, xm) ≤ d(x1, x0)[rnθ(xn, xn+1) + (Sm−1 − Sn)] (12)

Letting n,m→∞, we get

lim
n,m→∞

d(xn, xm) = 0. (13)

So, the sequence {xn} is d-Cauchy. Since (X, d) is a complete DCMLS then there is some x∗0 ∈ X such
that

lim
n→∞

d(xn, x
∗
0) = 0 (14)

which means xn → x∗0 as n→∞.

Now our claim is to show that Tx∗0 = x∗0.

d(x∗0, Tx
∗
0) ≤ θ(x∗0, xn+1)d(x

∗
0, xn+1) + µ(xn+1, Tx

∗
0)d(xn+1, Tx

∗
0)

= θ(x∗0, xn+1)d(x
∗
0, xn+1) + µ(xn+1, Tx

∗
0)d(Tn, Tx

∗
0)

≤ θ(x∗0, xn+1)d(x
∗
0, xn+1)

+ µ(xn+1, Tx
∗
0)[αd(xn, Tx

∗
0) + βd(xn, Txn) + γd(x∗0, Tx

∗
0)

= θ(x∗0, xn+1)d(x
∗
0, xn+1)

+ µ(xn+1, Tx
∗
0)[αd(xn, Tx

∗
0) + βd(xn, xn+1) + γd(x∗0, Tx

∗
0).

(15)
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Using the facts (ii) in (3) and letting the limit as n→∞ we obtained

d(x∗0, Tx
∗
0) ≤ µ(xn+1, Tx

∗
0) [γ lim

n→∞
d(x∗0, Tx

∗
0)]. (16)

Suppose that Tx∗0 6= x∗0. Since limn→∞ µ(x, xn) <
1
γ we have

0 < d(x∗0, Tx
∗
0) ≤ µ(xn+1, Tx

∗
0) [γd(x

∗
0, Tx

∗
0)]

< d(x∗0, Tx
∗
0).

(17)

It is a contradiction. Which means x∗0 = Tx∗0.
Finally, assume that T has two �xed points, say p and q. Then

d(p, q) = d(Tp, Tq) ≤ αd(p, q) + βd(p, Tp) + γd(q, T q) (18)

and so d(p, q)(1−α) ≤ 0. Since α 6= 1 we received d(p, q) = 0 which implies p = q. This completes the proof.

Remark 2.1. 1. Our result is general then Mlaiki et al [4], 2018 and Abdeljawad et al [6], 2018. Their
spaces satis�es both the conditions indistancy and self-distance.
2. In the Reich contraction [9];

• if we choose α = 0, β = 0 then we obtain Banach contraction.

• If we choose α = β and γ = 0 then we obtain the Kannan contraction.

3. Our result is general then the very recent work of J. Ahmad et al [18], 2020. Their Example 9 is not
applicable to our theorem. They have only one controlled function and their space again satis�es both the
conditions indistancy and self-distance.

4. Every partial metric space is a metric like space. Many papers can be cited in partial metric spaces.
We'll refer [7] and [8].

Example 2.1. In general, Reich contraction theorem is stronger than Banach's and Kannan's �xed point
theorems.
Let X = [0, 1] be with usual metric and T : [0, 1]→ [0, 1] be a mapping de�ned by

f(x) =

{
x
3 0 ≤ x < 1
1
6 x = 1

T does not satisfy Banach's condition, because it is not continuous at 1. Kannan's condition also cannot
be satis�ed because

d(T0, T
x

3
) =

1

2
[d(0, T0) + d(

1

3
, T

1

3
)].

But it satis�es Reich contraction condition if we put α = 1
6 , β = 1

9 , γ = 1
3 .
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