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Introduction 

Development of mobile internet technologies, 

the prevalence of mobile devices is gradually 

increasing, and Android is leading this increase 

[1]. This open-source operating system, 

managed by Google, is available in more than 

half of mobile phones worldwide. The Android 

operating system has become a very important 

milestone in smartphones and mobile devices. It 

is used to install new features, add innovative 

features, and improve user experiences in many 

systems such as smartphones, tablets, smart 

TVs, car entertainment systems [2].  

In the case that Android users do not like the 

stock firmware installed on their smartphones 

by the manufacturer, they can install a custom 

ROM. Some examples of custom ROMs are 

Omni ROM, Lineage OS, and AospExtended. 

While other smartphone platforms have a 

certain operating system and a number of 

applications that can be used depending on the 

operating system, the number of applications 

developed for each ROM within the Android 

ecosystem is quite high. These alternative 

systems do not always offer secure 

infrastructures [2]. 

Recently published statistics show that although 

the number of applications in the Playstore 

decreases in certain periods, it is generally 

increasing rapidly [3]. Besides, another feature 

of the Android platform is that applications can 

be downloaded and installed not only from 

Google Play Store but also from third-party 

platforms.  
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ABSTRACT 

 
Android malware detection is a critical and important problem that must be solved for a widely used operating 

system. Conventional machine learning techniques first extract some features from applications, then create 

classifiers to distinguish between malicious and benign applications. Most of the studies available today ignore 

the weighting of the obtained features. To overcome this problem, this study proposes a new software detection 
method based on weighting the data in feature vectors to be used in classification. To this end, firstly, the 

manifest file was read from the Android application package. Different features such as activities, services, 

permissions were extracted from the file, and for classification, a selection was made among these features. The 

parameters obtained as a result of selection were optimized by the deep neural network model. Studies revealed 

that through feature selection and weighting, better performance values could be achieved and more competitive 

results could be obtained in weight-sensitive classification. 
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While applications downloaded and installed 

from the local application store can provide a 

reasonable level of security, this may not be 

possible for non-store apps. Applications 

developed for mobile devices are thought to be 

for the Android operating system, which 

corresponds to approximately 99% of the total 

applications [3][4]. More than 10 million 

android malware applications were produced in 

2019. And it shows that 190.000 malicious apps 

occur monthly. In addition, in the first quarter of 

2020, it was determined that an average of 

480.000 malware appeared per month, showing 

a significant increase [5]. 

This structure offered by the Android system on 

the hardware and software side as well as the 

huge user base mentioned above has caused the 

emergence of malicious application developers 

for this operating system, the development of 

applications to exploit end-users with little 

experience of usage and increase in efforts to 

obtain information illegally. This whets the 

appetite of cybercriminals.  

Detection of malicious applications developed 

for the Android operating system was easy in 

the early days of Android. By following the API 

calls of the application on a simple sandbox, 

non-complex malicious features of the 

application could be detected [6]. However, 

with Android 11, malware is engaged in 

increasingly more unpredictable activities and 

prefers more aggressive and complex 

techniques. On the other hand and in response to 

this, developers of malware detection systems 

are suggesting different detection techniques 

[7,8]. 

In the Android operating system, software 

developed with different ROMs and 

applications distributed from third parties are 

stored on end-user mobile devices. This requires 

the development of systems that use the most 

up-to-date methodologies to restrict or prevent 

access to sensitive personal information, to 

detect malware, and thus to secure mobile 

devices. In an environment where routine 

defense approaches fail to contain the ever-

growing Android malware environment, these 

studies are critical.  

Several basic approaches have been proposed in 

the literature for Android malware detection. 

These techniques are based on static, dynamic, 

and hybrid analysis.  

Static analysis examines application codes, 

analyzes all possible execution paths, and aims 

to identify malicious codes before the 

application is run. It is not easy to obtain the 

codes of applications developed using modern 

compilers and runtime libraries. In addition, 

even if the codes are obtained, long analysis is 

required to make sense of the codes due to the 

obfuscation of codes. This has affected the 

performance of systems that detect malware by 

static analysis and caused an increase in false 

detection rates. In fact, static analysis can be 

bypassed by various obfuscation techniques, 

such as polymorphism, encryption, or packing. 

In addition, the applications analyzed by this 

technique are detected by comparing them with 

prebuilt signature databases. For this reason, 

these signature databases need to be kept up to 

date, and most importantly, it can be impossible 

to detect zero-day applications. Detection of 

real-time traces is possible only when the 

malware is executed [9].  

Many studies in the literature have suggested 

the dynamic analysis approach to overcome 

these limitations of static analysis [10,11]. In 

this approach it analyses the behaviors of 

applications during their operations. This 

technique detects malware by analyzing the 

similarity between new and known behaviors of 

applications based on their application 

interface(API) calls. Polymorphic software, 

which is effective in changing static signatures, 

can be easily detected through active monitoring 

and detecting the behavior that cannot be 

hidden. This method, which has more useful 

features in terms of detection, creates a 

problematic situation for mobile devices with 

limited resources due to the excessive 

consumption of system resources and the 

emergence of a serious pre-processing phase 

during real-time monitoring.  

Some studies have, therefore, suggested hybrid 

analysis for malware detection, which consumes 

fewer resources and makes a better 
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classification. By combining the advantages of 

static and dynamic analysis, this method 

proposes a two-step approach [12].  

Finally, Google created the Play Protect 

platform to limit malware invasion on Google 

Play Store. Thanks to this, it was possible to 

detect 700.000 malicious apps. More than 300 

of these applications are used in Ddos attacks 

and are very dangerous. Good results have been 

achieved in the capture of 85 different adware 

families such as Stalkerware and were removed 

from Store. Play protect has a serious control 

over the PlayStore for malware detection. 

However, although it can detect many malignant 

applications, it has not been able to catch some 

types of them and has no activity on 

applications download from third party 

platforms [13]. 

Unlike previous studies in the literature, our 

contributions to Android malware detection can 

be summarized as follows: 

• We propose a hybrid approach using static 

analysis and machine learning techniques for 

malware detection. Before the application was 

run, application features were obtained from 

the Manifest file, weighted, and selected in the 

pre-processing phase.  

• A deep neural network was used to 

implement deep and broad feature learning. In 

this way, discriminative features were 

produced and classified based on the features 

obtained without examining the application 

code.  

• The effect of feature weighting on 

classification performance and its contribution 

to the decrease in false positive(FP) value 

were shown.  

• Repetitive and multi-group experiments were 

carried out with the basic data obtained, and 

the proposed method was compared with 

similar methods. Tests performed with 799 

benign and 1081 malicious applications 

achieved a success rate of 99.6%. 

 

 

In the rest of this study, current and similar 

studies for Android malware detection are 

mentioned. Thus, limitations with existing 

studies have been revelaed. Collection of 

dataset, extraction of application properties, 

pre-processing, ANN model and performance 

measurement metrics are explained in the 

methodology section. Then the tests and 

results were given in the light of the proposed 

model and a comparison was made with 

similar studies. In the conclusion, the study 

has been evaluated in general and suggestions 

for new studies were given. 

Related Works 

Many different security mechanisms are used 
on the Android platform. The most important of 
these is that app permissions must be granted by 
the user at install time. Thus, it is ensured that 
the user knows the permissions that the 
application will use. However, for consent-based 
privacy protection to be successful, end users 
must have sufficient awareness of security. This 
security infrastructure, which is excessively 
dependent on the user, creates protection 
problems. Therefore, antivirus software can also 
be used to ensure security. Thus, users are 
protected with signature-based protection. In an 
environment where malicious applications are 
increasing in quantity and variety rapidly, efforts 
are also made to develop more effective software 
detection systems.  

In the study [14] conducted by Sasisharan, a 
behavioral-based approach for Android malware 
detection was proposed. The malicious dataset 
was compiled and coded to identify suspicious 
API classes. Patterns were created by performing 
multiple sequence aligments for different 
application families and applied to the hidden 
markov model(HMM) profile. 94.5% accuracy 
rate was achieved in the classification. A 
classical classification structure has been applied 
with new patterns.  

MobiTive, is a real-time and sensitive 
malware detection tools using deep neural 
network[15]. It is pre-loaded on the mobile 
device and performs application scanning and 
monitoring. Since it is not possible to locate and 
operate traditional deep learning based approach 
on mobile devices, a different proposal has been 
made. Tests were carried out with LSTM, GRU 
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and CNN networks, and as a result, the highest 
recognition rate was achieved in the GRU. 
Accuracy, precision and recall values were 
96.75%, 96.78% and 96.72, respectively.  

The study numbered [16] developed by 
Hossein et al. used the static analysis method. As 
a result of the analysis, feature vectors were 
created from information such as suspicious API 
calls, malicious activities, system calls, and 
purposes. The obtained features were classified 
using Gradient Boosting and deep learning 
methods. As a result, 97.3% of classification 
performance was achieved. 

 In Android applications, an attempt based on 
the principle of creating a permission-based 
security model was made to determine the 
permissions the applications request but do not 
use. While the requested permissions were 
obtained from the manifest file, the used 
permissions were extracted by code analysis. 
Thus, the extra requested permissions were 
revealed, and malware detection was performed. 
The study reported a 91.95% accurate 
classification [17]. 

DeepAMD [18] proposed an effective 
mechanism for detecting malware before it could 
be run, as static analysis requires. It adopted a 
method of classification with deep neural 
networks. It applied different approaches to 
detect and identify attacks that may occur at both 
static and dynamic analysis phases. A 93.4% 
accurate classification was achieved in the static 
layer, and 80.3% accurate classification was 
achieved in the dynamic layer. Also, in 
application category classification, an accuracy 
of 92.5% was obtained.  

In malware detection, there is a lot of work 
on supervised or unsupervised feature learning, 
hierarchical feature extraction, and the 
application of deep learning to classify these 
features. Droidfusion [19] is an approach based 
on a multilevel architecture that enables the 
combination of base classifiers. Four different 
algorithms were proposed to classify the base 
classifiers, and then the results of these 
algorithms were combined and evaluated. 
Experiments were carried out with four separate 
datasets, and it was shown that more successful 
results were obtained than traditional models.  

AndroidDialysis [20] proposed using the 
intents (implicit and explicit) of applications for 

malware detection. A dataset consisting of a 
total of 7405 applications, including 1846 benign 
and 5560 malicious applications, was used. 
Permissions were extracted from each 
application. Relationships between intents were 
evaluated along with permissions. Classification 
using permissions yielded an 83% success rate, 
but when evaluated together with intents, the 
success rate increased to 95.5%.  

In the study conducted by Aloatibi, a multilevel 
malware detection method using regression 
coefficients was proposed to overcome some 
limitations of static and dynamic analysis 
approaches [21]. In the first layer, static analysis, 
and in the second layer, dynamic analysis was 
performed. Unlike other studies, a separate 
malicious application detection was performed 
for each layer. Machine learning techniques 
were used for classification. This proposed 
technique achieved 98.4%, 98.3%, and 99.0% 
success rates for accuracy, f-measure, and 
precision, respectively.  

Methodology  

 This section is devoted to the description of 
the proposed model. The system has a multi-
layered structure. The input layer, dex 
extraction, and preprocessing stages in this 
multi-layered structure were performed for three 
separate Android APK datasets. After this stage, 
in the preprocessing layer, a series of operations 
were carried out, such as extracting Dalvik 
EXecutable (DEX) files from the APK files, 
transforming them into bytecode format so that 
they could be used in the training phase, and 
generating the feature vectors.  In the decision 
layer, the feature vectors obtained in the 
preprocessing stage were classified with a deep 
artificial neural network(ANN). Training, 
feature selection, detection, and evaluation steps 
are described in section 3.2. As a result of the 
operations performed in the model, the 
identification of the applications and the 
classification of the behaviors as benign or 
malicious were performed. The flow diagram of 
the model with a multi-layer architecture is 
shown in Figure 1. 

Dataset Collection 

Various methods have been developed for 
Android malware detection. Two of the 
malicious application sets used in these methods 
were selected and used in the training and testing 
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processes of this study. The first of these 
families was the Drebin [22] dataset. It contains 
the permissions obtained from XML files as 
features. It was developed for use in dataset 
research and development and is distributed free 
of charge. It contains 5560 applications from 
1000 different families. As the other malicious 
dataset, another widely used dataset, Genome 
[23], was used. Like Drebin, the Genome dataset 
is also distributed as open source. Finally, 
benign applications were downloaded from two 
popular application markets, Google Play [24] 
and Apkpure.com [25]. The most popular 900 
applications were selected from various 
categories such as social media, news, finance, 
education, games, and sports. As shown in the 
dataset layer, three separate datasets were 
combined and evaluated in this study. 

Feature Extraction 

After the datasets were obtained, the manifest 

files were obtained from the DEX files of the 

applications.  For the applications to be 

evaluated in the proposed model, 349 features 

were extracted for each application. The study 

numbered [26] shows that all features having 

the same weight negatively affect the 

classification performance. To overcome this, 

the features were weighted. Thus, it was 

prevented that all features have equal weight in 

the training phase and have the same effect at 

the model exit.  

Preprocessing and Final Dataset Design  

In the weighting phase, the frequencies of 
using separate features of 6820 malicious and 
900 benign applications were taken into account. 
With these frequencies, it was aimed to pay 
more attention to the permissions frequently 
used by malicious and benign applications and 
to ensure that they have more effect in the 
model. As an example, it was aimed to ensure 
that the “FULL_INTERNET_ACCESS” 
permission and the “BATTERY_CHANGED” 
permission, which are widely used in malicious 
applications, do not have the same effect in 
understanding the intent of the application. The 
obtained usage frequencies were used for 
weighting the features. As a result, a 7720x350 
two-dimensional feature vector containing the 
weighted feature data was obtained.  

When this feature vector was examined, it was 
seen that some features had the same weight in 
all applications and that some applications had 
similar features. In this case, using the obtained 
vector for direct classification means that the 
same features and the same applications are 
repeatedly included in the training, which can 
cause the model to memorize. To overcome this 
problem, feature selection was performed, and 
applications with similar features were 
eliminated. As a result, a matrix containing 1081 
malicious and 799 benign applications and 58 
features was obtained. Of these applications, 
70% were used for training, 15% for validation, 
and 15% for testing. 

Drebin Apkpure, Google Genome

Dataset

.apk .apk .apk .apk

Applications(Input) Layer

.dex .dex .dex .dex

Dex Extraction Layer

Preprocessing Layer

.manifest Vector2D
Delete Similar 

Rows and 

Columns

Final 

Dataset

Decision Layer

Vectorization evaluation
Neural 

Network

Evaluation 

Criteria

1. Accuracy

2. Precision

3. Recall

4. F-score

5. AUC

 Figure 1. Layered diagram for Android 

Malware Detection 

Decision Layer  

To classify the weighted features obtained 
from the dataset used in this study, an ANN 
architecture was designed, as seen in Figure 2. 
The designed ANN consisted of two hidden 
layers with 10 neurons and an output layer with 
one neuron. The input layer of the ANN, on the 
other hand, had 58 features of each sample in the 
dataset, thus 58 neurons.  

In the hidden layers of the designed ANN, the 
hyperbolic tangent sigmoid transfer function was 
used, and in the output layer, the logarithmic 
sigmoid transfer function was used. In the 
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training phase, the Gradient Descent algorithm 
was used as the optimization algorithm with a 
learning rate of 0.01 and 1.000 epochs. The 
cross-entropy function was used as the cost 
function for performance evaluation during 
ANN training [27].To classify the weighted 
features obtained from the dataset used in this 
study, an ANN architecture was designed, as 
seen in Figure 2. The designed ANN consisted 
of two hidden layers with 10 neurons and an 
output layer with one neuron. The input layer of 
the ANN, on the other hand, had 58 features of 
each sample in the dataset, thus 58 neurons.  

In the hidden layers of the designed ANN, the 
hyperbolic tangent sigmoid transfer function was 
used, and in the output layer, the logarithmic 
sigmoid transfer function was used. In the 
training phase, the Gradient Descent algorithm 
was used as the optimization algorithm with a 
learning rate of 0.01 and 1.000 epochs. The 
cross-entropy function was used as the cost 
function for performance evaluation during 
ANN training [27]. 
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Figure 2. Architecture of Proposed Neural 

Network Model  

Performance Calculation 

To evaluate the efficiency of the proposed 

model, sensitivity, precision, accuracy, f-

measure criteria were used. Accordingly, the 

equations given below represent definitions. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑁 + 𝑇𝑃

𝐹𝑃 + 𝑇𝑃 + 𝐹𝑁 + 𝑇𝑁
 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦, 𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝐹𝑃 + 𝑇𝑃
 

𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =  
2 ∗ 𝑇𝑃

2 ∗  𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 

The TP value indicates how many of the positive 

test samples were correctly predicted positively 

and the FP indicates how many of the positive 

test samples were negatively prediced 

incorrectly. The TN value indicates how many 

of the negative test samplesa were correctly 

predicted negatively and The FN value indicated 

how many of the negative test samplesa were 

positively predicted incorrectly. In addition, the 

ROC curve is often used to evaluate the pros and 

cons of a classifier together. Expresses a 

graphical plot of specifity and sensitivity values. 

F-score is the measure of a model’s accuracy in 

a dataset. It is used to evaluate systems that 

make binary classification of samples such as 

positive and negative.  

Experimental Results  

After the 1180 data in the dataset were randomly 
partitioned as 70% for training, 15% for testing, 
and 15% for validation, the performance of the 
ANN was analyzed. After the training, the 
success rate was 99.4% on the training set, 
98.6% on the validation set, and 99.6% on the 
testing set, as seen in the confusion matrix in 
Figure 3. The success rate was found to be 
99.3% on the entire dataset. As seen in these 
matrices, the results point to a high success rate 
classification, which indicates that the system is 
suitable for successful malware detection. 
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Figure 3. Confusion Matrix 
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Table 1 demonstrates the calculated sensitivity, 
specificity, precision, and F1-score values for 
each subset of the dataset and the entire dataset. 
Accordingly, the best result belonged to the 
sensitivity value: A high rate of success was 
achieved with 1.0000 on the training set,  0.9937 
on the validation set, 1.0000 on the testing set, 
and 0.9991 on the entire dataset. 

Table 1. Metric Measurements on the Data Set 
 

Metrics Training 

Set 

Validation 

Set 

Test 

Set 

Overall 

Sensitivity 1.0000 0.9937 1.0000 0.9991 

Specificity 0.9855 0.9758 0.9920 0.9850 

Precision 0.9897 0.9813 0.9937 0.9890 

F1 Score 0.9948 0.9874 0.9968 0.9940 

 

Figure 4 shows the change in the cross-entropy 
cost function during training according to the 
number of iterations. Accordingly, the best 
validation performance was 0.066995 at epoch 
1000. 
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Figure 4. Cost function performance curve 

Figure 5 shows the receiver operating 
characteristic curves. As can be inferred from 
these curves, the performances of the areas 
under training, validation, and testing curves 
(ROC) were very close to each other. 
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Figure 5. Receiver operating characteristic 

Comparison with other proposed frameworks 

We suggested the ANN model for Android 
malware detection. For this, the applications 
were analyzed and different tests were 
performed to try to obtain the best model. 
Experimental results of this model were 
obtained.  

The comparison of the proposed model in this 
work with studies using different and up-to-date 
approaches is summarized in Table-2. When the 
results of known android malware detection 
tools such as  Drebin[22], RevealDroid[28], 
Nauman [29], ProDroid[14], DL-Droid[30], 
Maldozer[31] were examned, although some 
studies obtained low classification rates, in 
general an accuracy of 95% and above has been 
achieved.    

Table 2. AFWDroid vs other proposed 

frameworks 

 

Metrics [14] [22] [28] [29] [30] [31] AFWDroid 

Accuracy 0.945 0.93 0.858 0.9 0.985 - 0.993 

Precision 0.93 - 0.892 0.9 0.980 0.962 0.989 

F1 Score 0.939 - 0.874 0.9 0.988 0.962 0.994 
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Conclusion and Future Works  

This study proposed a novel method 
encompassing feature selection and feature 
weighting for malware detection in mobile 
applications. A multi-layer structure was used to 
apply the proposed model. Basically, static 
analysis-based processes were carried out to 
obtain application features. In this approach, 
firstly, malicious and benign application sets 
were obtained, and their features were extracted. 
Then, the obtained features were weighted 
separately for malicious and benign applications. 
Thus, it was aimed to prevent all features to be 
used in model training from having the same 
effect at the model exit. From the feature matrix 
obtained, the data that would cause problems 
during the training phase was eliminated, and 
thus, a more meaningful data feature set was 
obtained. Successful classification performance 
was then achieved with a weighted input cleared 
of noisy data. Various tests and conventional 
performance measurement methods were used to 
evaluate the success level of the proposed 
model. Thanks to its distinctive features, the 
proposed model both achieved a high level of 
success and enabled obtaining results rapidly.  

Future studies are planned to try to take into 
account more features in feature weighting to 
further increase the classification performance, 
taking into account the level of correlation 
between the acquired features. 
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