
DÜMF Mühendislik Dergisi 12:2 (2021): pp. 237-245

1

Araştırma Makalesi / Research Article

AFWDroid: Deep Feature Extraction and Weighting for Android Malware

Detection

Recep Sinan ARSLAN1*, Emre Ölmez2, Orhan ER3

1 Yozgat Bozok University, Engineering Faculty,Department of Computer Engineering, Yozgat, Turkey, sinanarslanemail@gmail.com, ORCID

0000-0002-3028-0416
2 Yozgat Bozok University, Yozgat, Turkey, emre.olmez@bozok.edu.tr, ORCID 0000-0003-1686-0251
3 İzmir Bakırçay University, Engineering Faculty, Department of Computer Engineering, İzmir, Turkey, orhan.er@bakircay.edu.tr, ORCID

0000-0002-4732-9490

Introduction

Development of mobile internet technologies,

the prevalence of mobile devices is gradually

increasing, and Android is leading this increase

[1]. This open-source operating system,

managed by Google, is available in more than

half of mobile phones worldwide. The Android

operating system has become a very important

milestone in smartphones and mobile devices. It

is used to install new features, add innovative

features, and improve user experiences in many

systems such as smartphones, tablets, smart

TVs, car entertainment systems [2].

In the case that Android users do not like the

stock firmware installed on their smartphones

by the manufacturer, they can install a custom

ROM. Some examples of custom ROMs are

Omni ROM, Lineage OS, and AospExtended.

While other smartphone platforms have a

certain operating system and a number of

applications that can be used depending on the

operating system, the number of applications

developed for each ROM within the Android

ecosystem is quite high. These alternative

systems do not always offer secure

infrastructures [2].

Recently published statistics show that although

the number of applications in the Playstore

decreases in certain periods, it is generally

increasing rapidly [3]. Besides, another feature

of the Android platform is that applications can

be downloaded and installed not only from

Google Play Store but also from third-party

platforms.

* Sorumlu yazar / Correspondence

Recep Sinan ARSLAN

 sinanarslanemail@gmail.com

Please cite this article in press as R. S. Arslan, E. Ölmez, O. Er, “AFWDroid: Deep Feature Extraction and Weighting for Android Malware Detection”, DUJE, vol. 12,

no.2, pp. 237-245, March 2021.

ARTICLE INFO

Article history:

Received: 5 February 2021

Revised: 24 February 2021

Accepted: 1 March 2021

Keywords:

Feature weighting

Malware detection

Machine learning

Artificial Neural Network

ABSTRACT

Android malware detection is a critical and important problem that must be solved for a widely used operating

system. Conventional machine learning techniques first extract some features from applications, then create

classifiers to distinguish between malicious and benign applications. Most of the studies available today ignore

the weighting of the obtained features. To overcome this problem, this study proposes a new software detection
method based on weighting the data in feature vectors to be used in classification. To this end, firstly, the

manifest file was read from the Android application package. Different features such as activities, services,

permissions were extracted from the file, and for classification, a selection was made among these features. The

parameters obtained as a result of selection were optimized by the deep neural network model. Studies revealed

that through feature selection and weighting, better performance values could be achieved and more competitive

results could be obtained in weight-sensitive classification.

Doi: 10.24012/dumf.875036

mailto:sinanarslanemail@gmail.com
mailto:emre.olmez@bozok.edu.tr
mailto:orhan.er@bakircay.edu.tr

DÜMF Mühendislik Dergisi 12:2 (2021): pp. 237-245

238

While applications downloaded and installed

from the local application store can provide a

reasonable level of security, this may not be

possible for non-store apps. Applications

developed for mobile devices are thought to be

for the Android operating system, which

corresponds to approximately 99% of the total

applications [3][4]. More than 10 million

android malware applications were produced in

2019. And it shows that 190.000 malicious apps

occur monthly. In addition, in the first quarter of

2020, it was determined that an average of

480.000 malware appeared per month, showing

a significant increase [5].

This structure offered by the Android system on

the hardware and software side as well as the

huge user base mentioned above has caused the

emergence of malicious application developers

for this operating system, the development of

applications to exploit end-users with little

experience of usage and increase in efforts to

obtain information illegally. This whets the

appetite of cybercriminals.

Detection of malicious applications developed

for the Android operating system was easy in

the early days of Android. By following the API

calls of the application on a simple sandbox,

non-complex malicious features of the

application could be detected [6]. However,

with Android 11, malware is engaged in

increasingly more unpredictable activities and

prefers more aggressive and complex

techniques. On the other hand and in response to

this, developers of malware detection systems

are suggesting different detection techniques

[7,8].

In the Android operating system, software

developed with different ROMs and

applications distributed from third parties are

stored on end-user mobile devices. This requires

the development of systems that use the most

up-to-date methodologies to restrict or prevent

access to sensitive personal information, to

detect malware, and thus to secure mobile

devices. In an environment where routine

defense approaches fail to contain the ever-

growing Android malware environment, these

studies are critical.

Several basic approaches have been proposed in

the literature for Android malware detection.

These techniques are based on static, dynamic,

and hybrid analysis.

Static analysis examines application codes,

analyzes all possible execution paths, and aims

to identify malicious codes before the

application is run. It is not easy to obtain the

codes of applications developed using modern

compilers and runtime libraries. In addition,

even if the codes are obtained, long analysis is

required to make sense of the codes due to the

obfuscation of codes. This has affected the

performance of systems that detect malware by

static analysis and caused an increase in false

detection rates. In fact, static analysis can be

bypassed by various obfuscation techniques,

such as polymorphism, encryption, or packing.

In addition, the applications analyzed by this

technique are detected by comparing them with

prebuilt signature databases. For this reason,

these signature databases need to be kept up to

date, and most importantly, it can be impossible

to detect zero-day applications. Detection of

real-time traces is possible only when the

malware is executed [9].

Many studies in the literature have suggested

the dynamic analysis approach to overcome

these limitations of static analysis [10,11]. In

this approach it analyses the behaviors of

applications during their operations. This

technique detects malware by analyzing the

similarity between new and known behaviors of

applications based on their application

interface(API) calls. Polymorphic software,

which is effective in changing static signatures,

can be easily detected through active monitoring

and detecting the behavior that cannot be

hidden. This method, which has more useful

features in terms of detection, creates a

problematic situation for mobile devices with

limited resources due to the excessive

consumption of system resources and the

emergence of a serious pre-processing phase

during real-time monitoring.

Some studies have, therefore, suggested hybrid

analysis for malware detection, which consumes

fewer resources and makes a better

DÜMF Mühendislik Dergisi 12:2 (2021): pp. 237-245

239

classification. By combining the advantages of

static and dynamic analysis, this method

proposes a two-step approach [12].

Finally, Google created the Play Protect

platform to limit malware invasion on Google

Play Store. Thanks to this, it was possible to

detect 700.000 malicious apps. More than 300

of these applications are used in Ddos attacks

and are very dangerous. Good results have been

achieved in the capture of 85 different adware

families such as Stalkerware and were removed

from Store. Play protect has a serious control

over the PlayStore for malware detection.

However, although it can detect many malignant

applications, it has not been able to catch some

types of them and has no activity on

applications download from third party

platforms [13].

Unlike previous studies in the literature, our

contributions to Android malware detection can

be summarized as follows:

• We propose a hybrid approach using static

analysis and machine learning techniques for

malware detection. Before the application was

run, application features were obtained from

the Manifest file, weighted, and selected in the

pre-processing phase.

• A deep neural network was used to

implement deep and broad feature learning. In

this way, discriminative features were

produced and classified based on the features

obtained without examining the application

code.

• The effect of feature weighting on

classification performance and its contribution

to the decrease in false positive(FP) value

were shown.

• Repetitive and multi-group experiments were

carried out with the basic data obtained, and

the proposed method was compared with

similar methods. Tests performed with 799

benign and 1081 malicious applications

achieved a success rate of 99.6%.

In the rest of this study, current and similar

studies for Android malware detection are

mentioned. Thus, limitations with existing

studies have been revelaed. Collection of

dataset, extraction of application properties,

pre-processing, ANN model and performance

measurement metrics are explained in the

methodology section. Then the tests and

results were given in the light of the proposed

model and a comparison was made with

similar studies. In the conclusion, the study

has been evaluated in general and suggestions

for new studies were given.

Related Works

Many different security mechanisms are used
on the Android platform. The most important of
these is that app permissions must be granted by
the user at install time. Thus, it is ensured that
the user knows the permissions that the
application will use. However, for consent-based
privacy protection to be successful, end users
must have sufficient awareness of security. This
security infrastructure, which is excessively
dependent on the user, creates protection
problems. Therefore, antivirus software can also
be used to ensure security. Thus, users are
protected with signature-based protection. In an
environment where malicious applications are
increasing in quantity and variety rapidly, efforts
are also made to develop more effective software
detection systems.

In the study [14] conducted by Sasisharan, a
behavioral-based approach for Android malware
detection was proposed. The malicious dataset
was compiled and coded to identify suspicious
API classes. Patterns were created by performing
multiple sequence aligments for different
application families and applied to the hidden
markov model(HMM) profile. 94.5% accuracy
rate was achieved in the classification. A
classical classification structure has been applied
with new patterns.

MobiTive, is a real-time and sensitive
malware detection tools using deep neural
network[15]. It is pre-loaded on the mobile
device and performs application scanning and
monitoring. Since it is not possible to locate and
operate traditional deep learning based approach
on mobile devices, a different proposal has been
made. Tests were carried out with LSTM, GRU

DÜMF Mühendislik Dergisi 12:2 (2021): pp. 237-245

240

and CNN networks, and as a result, the highest
recognition rate was achieved in the GRU.
Accuracy, precision and recall values were
96.75%, 96.78% and 96.72, respectively.

The study numbered [16] developed by
Hossein et al. used the static analysis method. As
a result of the analysis, feature vectors were
created from information such as suspicious API
calls, malicious activities, system calls, and
purposes. The obtained features were classified
using Gradient Boosting and deep learning
methods. As a result, 97.3% of classification
performance was achieved.

 In Android applications, an attempt based on
the principle of creating a permission-based
security model was made to determine the
permissions the applications request but do not
use. While the requested permissions were
obtained from the manifest file, the used
permissions were extracted by code analysis.
Thus, the extra requested permissions were
revealed, and malware detection was performed.
The study reported a 91.95% accurate
classification [17].

DeepAMD [18] proposed an effective
mechanism for detecting malware before it could
be run, as static analysis requires. It adopted a
method of classification with deep neural
networks. It applied different approaches to
detect and identify attacks that may occur at both
static and dynamic analysis phases. A 93.4%
accurate classification was achieved in the static
layer, and 80.3% accurate classification was
achieved in the dynamic layer. Also, in
application category classification, an accuracy
of 92.5% was obtained.

In malware detection, there is a lot of work
on supervised or unsupervised feature learning,
hierarchical feature extraction, and the
application of deep learning to classify these
features. Droidfusion [19] is an approach based
on a multilevel architecture that enables the
combination of base classifiers. Four different
algorithms were proposed to classify the base
classifiers, and then the results of these
algorithms were combined and evaluated.
Experiments were carried out with four separate
datasets, and it was shown that more successful
results were obtained than traditional models.

AndroidDialysis [20] proposed using the
intents (implicit and explicit) of applications for

malware detection. A dataset consisting of a
total of 7405 applications, including 1846 benign
and 5560 malicious applications, was used.
Permissions were extracted from each
application. Relationships between intents were
evaluated along with permissions. Classification
using permissions yielded an 83% success rate,
but when evaluated together with intents, the
success rate increased to 95.5%.

In the study conducted by Aloatibi, a multilevel
malware detection method using regression
coefficients was proposed to overcome some
limitations of static and dynamic analysis
approaches [21]. In the first layer, static analysis,
and in the second layer, dynamic analysis was
performed. Unlike other studies, a separate
malicious application detection was performed
for each layer. Machine learning techniques
were used for classification. This proposed
technique achieved 98.4%, 98.3%, and 99.0%
success rates for accuracy, f-measure, and
precision, respectively.

Methodology

 This section is devoted to the description of
the proposed model. The system has a multi-
layered structure. The input layer, dex
extraction, and preprocessing stages in this
multi-layered structure were performed for three
separate Android APK datasets. After this stage,
in the preprocessing layer, a series of operations
were carried out, such as extracting Dalvik
EXecutable (DEX) files from the APK files,
transforming them into bytecode format so that
they could be used in the training phase, and
generating the feature vectors. In the decision
layer, the feature vectors obtained in the
preprocessing stage were classified with a deep
artificial neural network(ANN). Training,
feature selection, detection, and evaluation steps
are described in section 3.2. As a result of the
operations performed in the model, the
identification of the applications and the
classification of the behaviors as benign or
malicious were performed. The flow diagram of
the model with a multi-layer architecture is
shown in Figure 1.

Dataset Collection

Various methods have been developed for
Android malware detection. Two of the
malicious application sets used in these methods
were selected and used in the training and testing

DÜMF Mühendislik Dergisi 12:2 (2021): pp. 237-245

241

processes of this study. The first of these
families was the Drebin [22] dataset. It contains
the permissions obtained from XML files as
features. It was developed for use in dataset
research and development and is distributed free
of charge. It contains 5560 applications from
1000 different families. As the other malicious
dataset, another widely used dataset, Genome
[23], was used. Like Drebin, the Genome dataset
is also distributed as open source. Finally,
benign applications were downloaded from two
popular application markets, Google Play [24]
and Apkpure.com [25]. The most popular 900
applications were selected from various
categories such as social media, news, finance,
education, games, and sports. As shown in the
dataset layer, three separate datasets were
combined and evaluated in this study.

Feature Extraction

After the datasets were obtained, the manifest

files were obtained from the DEX files of the

applications. For the applications to be

evaluated in the proposed model, 349 features

were extracted for each application. The study

numbered [26] shows that all features having

the same weight negatively affect the

classification performance. To overcome this,

the features were weighted. Thus, it was

prevented that all features have equal weight in

the training phase and have the same effect at

the model exit.

Preprocessing and Final Dataset Design

In the weighting phase, the frequencies of
using separate features of 6820 malicious and
900 benign applications were taken into account.
With these frequencies, it was aimed to pay
more attention to the permissions frequently
used by malicious and benign applications and
to ensure that they have more effect in the
model. As an example, it was aimed to ensure
that the “FULL_INTERNET_ACCESS”
permission and the “BATTERY_CHANGED”
permission, which are widely used in malicious
applications, do not have the same effect in
understanding the intent of the application. The
obtained usage frequencies were used for
weighting the features. As a result, a 7720x350
two-dimensional feature vector containing the
weighted feature data was obtained.

When this feature vector was examined, it was
seen that some features had the same weight in
all applications and that some applications had
similar features. In this case, using the obtained
vector for direct classification means that the
same features and the same applications are
repeatedly included in the training, which can
cause the model to memorize. To overcome this
problem, feature selection was performed, and
applications with similar features were
eliminated. As a result, a matrix containing 1081
malicious and 799 benign applications and 58
features was obtained. Of these applications,
70% were used for training, 15% for validation,
and 15% for testing.

Drebin Apkpure, Google Genome

Dataset

.apk .apk .apk .apk

Applications(Input) Layer

.dex .dex .dex .dex

Dex Extraction Layer

Preprocessing Layer

.manifest Vector2D
Delete Similar

Rows and

Columns

Final

Dataset

Decision Layer

Vectorization evaluation
Neural

Network

Evaluation

Criteria

1. Accuracy

2. Precision

3. Recall

4. F-score

5. AUC

 Figure 1. Layered diagram for Android

Malware Detection

Decision Layer

To classify the weighted features obtained
from the dataset used in this study, an ANN
architecture was designed, as seen in Figure 2.
The designed ANN consisted of two hidden
layers with 10 neurons and an output layer with
one neuron. The input layer of the ANN, on the
other hand, had 58 features of each sample in the
dataset, thus 58 neurons.

In the hidden layers of the designed ANN, the
hyperbolic tangent sigmoid transfer function was
used, and in the output layer, the logarithmic
sigmoid transfer function was used. In the

DÜMF Mühendislik Dergisi 12:2 (2021): pp. 237-245

242

training phase, the Gradient Descent algorithm
was used as the optimization algorithm with a
learning rate of 0.01 and 1.000 epochs. The
cross-entropy function was used as the cost
function for performance evaluation during
ANN training [27].To classify the weighted
features obtained from the dataset used in this
study, an ANN architecture was designed, as
seen in Figure 2. The designed ANN consisted
of two hidden layers with 10 neurons and an
output layer with one neuron. The input layer of
the ANN, on the other hand, had 58 features of
each sample in the dataset, thus 58 neurons.

In the hidden layers of the designed ANN, the
hyperbolic tangent sigmoid transfer function was
used, and in the output layer, the logarithmic
sigmoid transfer function was used. In the
training phase, the Gradient Descent algorithm
was used as the optimization algorithm with a
learning rate of 0.01 and 1.000 epochs. The
cross-entropy function was used as the cost
function for performance evaluation during
ANN training [27].

X

X58

a1
(2)

a10
(2)

a1
(3)

a10
(3)

a1
(4)

Output

Output

Layer

2 Hidden

Layers

Input

Layer

.

.

.

.

.

.

.

.

.

58

Features

(Selected)

Figure 2. Architecture of Proposed Neural

Network Model

Performance Calculation

To evaluate the efficiency of the proposed

model, sensitivity, precision, accuracy, f-

measure criteria were used. Accordingly, the

equations given below represent definitions.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑁 + 𝑇𝑃

𝐹𝑃 + 𝑇𝑃 + 𝐹𝑁 + 𝑇𝑁

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦, 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝐹𝑃 + 𝑇𝑃

𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =
2 ∗ 𝑇𝑃

2 ∗ 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁

The TP value indicates how many of the positive

test samples were correctly predicted positively

and the FP indicates how many of the positive

test samples were negatively prediced

incorrectly. The TN value indicates how many

of the negative test samplesa were correctly

predicted negatively and The FN value indicated

how many of the negative test samplesa were

positively predicted incorrectly. In addition, the

ROC curve is often used to evaluate the pros and

cons of a classifier together. Expresses a

graphical plot of specifity and sensitivity values.

F-score is the measure of a model’s accuracy in

a dataset. It is used to evaluate systems that

make binary classification of samples such as

positive and negative.

Experimental Results

After the 1180 data in the dataset were randomly
partitioned as 70% for training, 15% for testing,
and 15% for validation, the performance of the
ANN was analyzed. After the training, the
success rate was 99.4% on the training set,
98.6% on the validation set, and 99.6% on the
testing set, as seen in the confusion matrix in
Figure 3. The success rate was found to be
99.3% on the entire dataset. As seen in these
matrices, the results point to a high success rate
classification, which indicates that the system is
suitable for successful malware detection.

542

41.2%

0

0.0%

100%

0.0%

8

0.6%

766

58.2%

99.0%

1.0%

98.5%

1.5%

100%

0.0%

99.4%

0.6%

121

42.9%

1

0.4%

99.2%

0.8%

3

1.1%

157

55.7%

98.1%

1.9%

97.6%

2.4%

99.4%

0.6%

98.6%

1.4%

O
u
tp

u
t
C

la
ss

O
u
tp

u
t
C

la
ss

0

1

0

1

0 1 0 1

124

44.0%

0

0.0%

100%

0.0%

1

0.4%

157

55.7%

99.4%

0.6%

99.2%

0.8%

100%

0.0%

99.6%

0.4%

787

41.9%

1

0.1%

99.9%

0.1%

12

0.6%

1080

57.4%

98.9%

1.1%

98.5%

1.5%

99.9%

1.1%

99.3%

0.7%

O
u
tp

u
t
C

la
ss

O
u
tp

u
t
C

la
ss

0

1

0

1

0 1 0 1

Target ClassTarget Class

Target ClassTarget Class

Training Confusion Matrix Validation Confusion Matrix

Test Confusion Matrix All Confusion Matrix

Figure 3. Confusion Matrix

DÜMF Mühendislik Dergisi 12:2 (2021): pp. 237-245

243

Table 1 demonstrates the calculated sensitivity,
specificity, precision, and F1-score values for
each subset of the dataset and the entire dataset.
Accordingly, the best result belonged to the
sensitivity value: A high rate of success was
achieved with 1.0000 on the training set, 0.9937
on the validation set, 1.0000 on the testing set,
and 0.9991 on the entire dataset.

Table 1. Metric Measurements on the Data Set

Metrics Training

Set

Validation

Set

Test

Set

Overall

Sensitivity 1.0000 0.9937 1.0000 0.9991

Specificity 0.9855 0.9758 0.9920 0.9850

Precision 0.9897 0.9813 0.9937 0.9890

F1 Score 0.9948 0.9874 0.9968 0.9940

Figure 4 shows the change in the cross-entropy
cost function during training according to the
number of iterations. Accordingly, the best
validation performance was 0.066995 at epoch
1000.

Best Validation Performance is

0.066995 at Epoch 1000

C
ro

ss
- E

n
tr

o
p

y

 100 200 300 400 500 600 700 800 900 1000

10-1

10-2

100

Train

Validation

Test

Best

Figure 4. Cost function performance curve

Figure 5 shows the receiver operating
characteristic curves. As can be inferred from
these curves, the performances of the areas
under training, validation, and testing curves
(ROC) were very close to each other.

Training ROC Validation ROC

Test ROC All ROC

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

0.8

1

0.6

0.2

0.4

0

0.8

1

0.6

0.2

0.4

0

0.8

1

0.6

0.2

0.4

0

0.8

1

0.6

0.2

0.4

0

Figure 5. Receiver operating characteristic

Comparison with other proposed frameworks

We suggested the ANN model for Android
malware detection. For this, the applications
were analyzed and different tests were
performed to try to obtain the best model.
Experimental results of this model were
obtained.

The comparison of the proposed model in this
work with studies using different and up-to-date
approaches is summarized in Table-2. When the
results of known android malware detection
tools such as Drebin[22], RevealDroid[28],
Nauman [29], ProDroid[14], DL-Droid[30],
Maldozer[31] were examned, although some
studies obtained low classification rates, in
general an accuracy of 95% and above has been
achieved.

Table 2. AFWDroid vs other proposed

frameworks

Metrics [14] [22] [28] [29] [30] [31] AFWDroid

Accuracy 0.945 0.93 0.858 0.9 0.985 - 0.993

Precision 0.93 - 0.892 0.9 0.980 0.962 0.989

F1 Score 0.939 - 0.874 0.9 0.988 0.962 0.994

DÜMF Mühendislik Dergisi 12:2 (2021): pp. 237-245

244

Conclusion and Future Works

This study proposed a novel method
encompassing feature selection and feature
weighting for malware detection in mobile
applications. A multi-layer structure was used to
apply the proposed model. Basically, static
analysis-based processes were carried out to
obtain application features. In this approach,
firstly, malicious and benign application sets
were obtained, and their features were extracted.
Then, the obtained features were weighted
separately for malicious and benign applications.
Thus, it was aimed to prevent all features to be
used in model training from having the same
effect at the model exit. From the feature matrix
obtained, the data that would cause problems
during the training phase was eliminated, and
thus, a more meaningful data feature set was
obtained. Successful classification performance
was then achieved with a weighted input cleared
of noisy data. Various tests and conventional
performance measurement methods were used to
evaluate the success level of the proposed
model. Thanks to its distinctive features, the
proposed model both achieved a high level of
success and enabled obtaining results rapidly.

Future studies are planned to try to take into
account more features in feature weighting to
further increase the classification performance,
taking into account the level of correlation
between the acquired features.

Acknowledgements

We would like to thank Drebin [22] and Genome
[23] projects for providing malicious datasets
free of charge and for their valuable
contributions to the conduct of the study.

References

[1] S. Wang, Z. Chen, Q. Yan, K. Ji, L. Peng, B. Yang

and M. Conti, “Deep and broad URL feature mining

for android malware detection”, Information

Sciences, 513, 600-613, 2020.

[2] M. Amin, T. A. Tanveer, M. Tehseen, M. Khan, F.

A. Khan and S. Anwar, “Static malware detection

and attribution in android byte-code through and end

to end deep system”, Future generation computer

systems, 102, 112-126, 2020.

[3] J. Clement, “statista.com,” [Online].

Available:https://www.statista.com/statistics/266210

/number-of-available-applications-in-the-google-

play-store/.

[4] F-Secure Team, “f-secure.com” [Online]. Available:

https://blog.f-secure.com/another-reason-99-percent-

of-mobile-malware-targets-androids/.

[5] J. Johnson, “statista.com,” [Online]. Available:

https://www.statista.com/statistics/680705/global-

android-malware-volume/

[6] R.S. Arslan, İ. A. Doğru and N. Barışçı, “Permission

comparison based malware detection system for

Android mobile applications”, Journal of

Polytechnic, 20(1), 175-189, 2017.

[7] A.T. Kabakuş and İ.A. Doğru, “An in-depth analysis

of Android malware using hybrid techniques”,

Digital Investigation, 24, 25-33, 2018.

[8] İ. A. Doğru and Ö. Kiraz, “Web-based android

malicious software detection and classification

system”, Applied Sciences, 8(9), 1622- 1641, 2018.

[9] M. Jerbi and Z. C. Dagdia, “On the use of artificial

malicious patterns for android malware detection”,

Computer & Security, 92, 1-22, 2020.

[10] C. Willems, T. Holz and F. Freiling, “Toward

autmated dynamic malware analysis using

cwsandbox”, IEEE Security and Privacy Magazine,

5(2), 32-39, 2007.

[11] K. Rieck, T. Holz, C. Willems and P. Düssel,

“Learning and classification of malware behaviour”,

Proceedings of the 5th International Conference on

Detection of Instrusions and Malware, and

Vulnerability Assessment, 1-20, 2008.

[12] M. Wozniak, M. Grana and Emilio Corchado, “A

survey of multip classifier systems as hybrid

systems”, Information Fusion, 16(1), 3-17, 2014.

[13] A. Mathur, L.M. Podila, K. Kurkarni, Q. Niyaz,

A.Y. Javaid, “NATICUSdroid: A malware detection

framework for Android using native and custom

permissions”, Journal of Information Security and

Applications, 58, 1-14, 2021.

[14] S. K. Sasidharan, C. Thomas, “ProDroid – An

Android malware detection framework based on

profile hidden markov model”, Pervasive and

Mobile Computing, 72, 1-16, 2021.

[15] R. Feng, S. Chen, X. Xie, G. Meng, S.W. Lin ve Y.

Liu, “A performance-sensitive malware detection

system using deep learning on mobile devices”,

Information forensics and security, 16, 1-16, 2021.

[16] F. Hossein, C. Mauro, Y. Danfeng and S.

Alessandro, “Anastasion: android malware detection

using static analysis of appication”, 8th IFIP

International Conference on New Technologies,

Mobility and Security (NTMS), 1-5, 2016.

DÜMF Mühendislik Dergisi 12:2 (2021): pp. 237-245

245

[17] R.S. Arslan, İ. A. Doğru and N. Barışçı,

“Permission-based malware detection system for

android using machine learning techniques”,

International journal of software engineering and

knowledge engineering, 29(01), 43-61, 2019.

[18] S. I. Imtiaz, S. Rehman, A. R. Javed, Z. Jalil, X. Liu

and W. S. Alnumay, “DeepAMD: Detection and

Identification of Android Malware using high-

efficient Deep Artificial Neural Network”, Future

Generation computer systems, 115, 844-856, 2020.

[19] S. Y. Yerima and S. Sezer, “DroidFusion: A Novel

Multilevel Classifier Fusion Approach for Android

Malware Detection”, IEEE Transactions on

Cynernetics, 49(2), 453-466, 2019.

[20] A. Feizollah, N. B. Anuar, R. Salleh, G. S. Tangil

and S. Furnel, “AndroDialysis: Analysis of Android

Intent Effectiveness in Malware Detection”,

Computers & Security, 65, 121-134, 2017.

[21] S. S. Alotaibi, “Regression coefficients as triad scale

for malware detection”, Computers and Electrical

Engineering, 1-14, 2020.

[22] D. Arp, M. Spreitzenbarth, M. Hübner, H. Gascon,

K.Rieck and C. Siemens, “Drebin: Effective and

explainable detection of android malware in your

pocket”, Proceedings of the Annual Symposium on

Network and Distributed System Security, 2014.

[23] Malgenome Project,

“malgenomeproject.org,”[Online]. Available:

http://www.malgenomeproject.org/.

[24] Google, “Google play store,” [Online]. Available:

https://play.google.com/store/apps?hl=en.

[25] APKPure Team, “APKPure.com,” [Online].

Available: https://apkpure.com/cn/.

[26] L. Cai, Y. Li and Z. Xiong, “JOWMDroid: Android

malware detection based on feature weighting with

joint optimization of weight-mapping and classifier

parameters”, Computer & Security, 100, 1-14, 2020.

[27] E. Ölmez, V. Akdoğan, M. Korkmaz and O. Er,

“Automatic Segmentation of Meniscus in

Multispectral MRI Using Regions with

Convolutional Neural Network (R-CNN)”, Journal

of Digital Imaging, 33, 916-929, 2020.

[28] J. Garcia, M. Hammad, B. Pedrood, A. Bagheri-

Khaligh, S. Malek, “Obfuscation-resilient, efficient,

and accurate detection and family identification of

android malware”, Technical Report, Department of

Computer Science, George Mason University, 1-15,

2015.

[29] M. Nauman, T.A. Tanveer, Sohail. K, Toqeer. A.,

“Deep neural architectures for large scale android

malware analysis”, Cluster Computing Springer, 1-

20, 2017,

[30] M. K. Alzaylaee, S. Yerima, S. Sezer, “Dl-droid:

deep learning based android malware detection

using real devices”, Computer and Security, 89,1-

11,2020.

[31] E.B. Karbab, M. Debbabi, A. Derhab, D. Mouheb,

“Maldozer:automatic framework for android

malware detection using deep learning”, Digital

investigation, 24, 48-59, 2018.

http://www.malgenomeproject.org/

