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Abstract: In this paper on curve, we give a definition of generalized Mannheim curves  that we will depict over the Equiform 
differential geometry of Galilean 4-space. We show some characterizations of generalized Mannheim curves. A new 
characterization has been procured among curvatures by employing the Mannheim curve overview 
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4-boyutlu Galileo Uzayının Equform Geometrisindeki Genelleştirilmiş Mannheim Eğrileri 

Öz: Eğri hakkında ki bu makale de, Galileo 4-uzayının Equform diferansiyel geometrisi üzerinde tanımlayacağımız 
genelleştirilmiş Mannheim eğrinin bir tanımını veriyoruz. Genelleştirilmiş Mannheim eğrilerin bazı karekterizasyonlarını 
gösteriyoruz. Mannheim eğrilerine genel bir bakış kullanılarak eğrilikler arasında yeni bir karekterizasyon sağlandı. 

Anahtar kelimeler: Mannheim eğri, Galileo uzayı, Equform geometri 

1. Introduction 
 

       Although many issues are taken into consideration in differential geometry, curves have an important 
place for this geometry. Curves have been studied in several spaces and continue to be studied. The topic of curves 
has been studied in many areas and is still being studied. The characterizations of curves is grand circumstance for 
curves in curves geometry. The articles concerning Equiform geometry are few. Many scientists studied, joining 
different perspectives on the curves in Mannheim. Mannheim presented in 1878 for the first time that space curves, 
whose principal normal are binormal of another curve, are called Mannheim curves [1]. Using the relationships 
between curvature and torsion of curves, some custom curves can be called. Some researchers attained Mannheim 
curves by identifying conditions between curvature of the curves [2]. Onder at al. have presented new 
characterizatons for these curves by examining the Mannheim curves for the spacelike and and timelike conditions 
[3,4]. Novel characterizations of Mannheim partner curves are granted in Minkowski 3-space by Kahraman and at 
all [5]. Matsuda and Yorozu had given some characterizations and examples of generalized Mannheim curve [6]. 
Orbay and Kasap gave [7] novel characterizations of Mannheim partner curves in Euclidean 3-space. Indeed, 
Mannheim curves for discrepant spaces appear to be able to be depicted Mannheim curves, so new qualifications 
for these curves have been offered to the literature [8-15]. Mannheim curve have an important place in place in 
differential geometry and new studies are still being added to the literature on Mannheim curves [16-21]. The 
Mannheim-B curve is among the new topics presented to the literature [22]. Differential geometry has a large are, 
and curves are an open area in differential geometry.  

In this paper, we introduce a definition of generalized Mannheim curves in the Equiform differential geometry 
of Galilean 4-space. In this space, new characterizations for the generalized Mannheim curves are obtained. We 
also give properties of Mannheim curves for the space we work. 
 
2. Preliminaries 
 
Here, we have given some basic information about curves in 4D Galilean space, necessary for our study [23].  
The Galilean scalar product between any two points is expressed in Affine coordinates as follows. 

 
                                  ℙ! = (ℙ!", ℙ!#, ℙ!$, ℙ!%), i = 1,2,                                   (2.1) 
 

is designated by 
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l(ℙ", ℙ#) = *
|ℙ#" −ℙ""|,																																																																											if	ℙ#" ≠ ℙ"",

(|(ℙ## −ℙ"#)# + (ℙ#$ −ℙ"$)# + (ℙ#% −ℙ"%)#|)
"
#& ,				if	ℙ#" = ℙ"".				

                           (2.2) 

 
The Galilean cross product in G4 for the vectors 𝕡33⃗ = (𝕡", 𝕡#, 𝕡$, 𝕡%),  𝕣3⃗ = (𝕣", 𝕣#, 𝕣$, 𝕣%),	𝕢33⃗ = (𝕢", 𝕢#, 𝕢$, 𝕢%), 
is depicted by 

 

𝕡33⃗ Λ𝕣3⃗ Λ𝕢33⃗ = − 8

0 e#
𝕡" 𝕡#

e$ e%
𝕡$ 𝕡%

𝕣" 𝕣#
𝕢" 𝕢#

𝕣$ 𝕣%
𝕢$ 𝕢%

8,                                                                   (2.3) 

 
where e', 1 ≤ m ≤ 4,  are the standard basis vectors. 
The scalar product of any two vectors 𝑎⃗ = (𝑎", 𝑎#, 𝑎$, 𝑎%) and 𝑏3⃗ = (𝑏", 𝑏#, 𝑏$, 𝑏%) in G4 is designated by 

 

                     〈𝑎⃗, 𝑏3⃗ 〉(! = B
𝑎"𝑏",																																			𝑖𝑓	𝑎" ≠ 0	𝑜𝑟	𝑏" ≠ 0,
𝑎"𝑏" + 𝑎#𝑏# + 𝑎$𝑏$,						𝑖𝑓	𝑎" = 0	𝑜𝑟	𝑏" = 0.                                  (2.4) 

 
The norm of vector 𝑢3⃗  is depicted by 

 

                            ‖𝑢3⃗ ‖(! = IJ〈𝑢3⃗ , 𝑢3⃗ 〉(!J	.                                                                                        (2.5) 

 
Let 𝛼: 𝐼 ⊂ ℛ ⟶ G4, 𝛼(𝑠) = R𝑠, 𝓎(𝑠), 𝓏(𝑠),𝓌(𝑠)V be a curve parametrized by arclength 𝑠. The 𝑡(𝑠) tangent vector 
of α, is depicted by 

 
                                          𝑡(𝑠) = 𝛼)(𝑠) = R1,𝓎′(𝑠), 𝓏′(𝑠),𝓌′(𝑠)V.                                                         (2.6) 
 

Since 𝑡(𝑠) is a unit vector, we can phrase 
 
                                                            〈𝑡, 𝑡〉(! = 1                                                                                  (2.7) 

  
Differentiating (2.7) in respect of  𝑠, we have 

 
                                                      〈𝑡′, 𝑡〉(! = 0.                           (2.8) 
 

The 𝑘" real-valued function with the help of the derivative of the tangent vector function,  
 

 
                                  𝑘"(𝑠) = ‖𝑡′(𝑠)‖ = Z(𝓎))(𝑠))# + (𝓏))(𝑠))# + (𝓌))(𝑠))#          (2.9) 
 

is stated the as first curvature of the curve α. We assume that 𝑘"(𝑠) ≠ 0, for all 𝑠 ∈ 𝐼.  The 𝑛(𝑠) principal vector 
is defined by 

                                                   𝑛(𝑠) = *)(,)
."(,)

,                                    (2.10) 
in other words 

 
                                              𝑛(𝑠) = "

."(,)
R0, 𝓎′′(𝑠), 𝓏′′(𝑠),𝓌′′(𝑠)V.                (2.11) 

 
definition the 𝑘# second curvature function that is depicted by 

 
                                                  𝑘#(𝑠) = ‖𝑛′(𝑠)‖(!.                    (2.12) 
 

The 𝑏(𝑠)	binormal vector field is 
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                                         𝑏(𝑠) = "
.#(,)

]0, ^𝓎
$$(,)
."(,)

_
)
, ^𝓏

$$(,)
."(,)

_
)
, ^𝓌

$$(,)
."(,)

_
)
`.                (2.13) 

 
The 𝑒(𝑠) fourth unit vector is defined by 

 
                                               𝑒(𝑠) = 𝜇𝑡(𝑠)Λ𝑛(𝑠)Λ𝑏(𝑠).                  (2.14) 
 

The 𝑘$ third curvature of the curve 𝛼  is depicted by 
 
                                                    𝑘$(𝑠) = 〈𝑏), 𝑒〉(!.                    (2.15) 
 

Here, as well known, the set {𝑡, 𝑛, 𝑏, 𝑒, 𝑘", 𝑘#, 𝑘$} is Frenet apparatus of the curve 𝛼. Thus the Frenet equations of 
the curve in G4  are given by [15] 

 

                                  

𝑡)(𝑠) = 𝑘"(𝑠)𝑛(𝑠),
𝑛)(𝑠) = 𝑘#(𝑠)𝑏(𝑠),

																										𝑏)(𝑠) = −𝑘#(𝑠)𝑛(𝑠) + 𝑘$(𝑠)𝑒(𝑠),
		𝑒)(𝑠) = −𝑘$(𝑠)𝑏(𝑠).

                  (2.17) 

 
 

3. Frenet Formulas in Equiform Geometry of Galilean 4-Space 
 
       Here, we confer it in our study in Equiform differential geometry of curves in  [24]. 
Let’s take  𝛼: 𝐼 ⊂ ℛ ⟶ G4 as with arc-length  parameter 𝑠. The equiform parameter of the curve 𝛼(𝑠) expressed 
as 

 
                                                                𝜚 = ∫ 3,

4
,                                                                                (3.1)

                                                            
 

where 𝜌 = "
."

 is radius of curvature of our curve. We can write the above equation as 
 
                                                      3,

35
= 𝜌.                                     (3.2) 

 
assuming that ℎ is homothety with the center in the origin and the coefficient 𝜆. Also, we take 

               
                                                   𝑠̃ = 𝜆𝑠 and 𝜌l = 𝜆𝜌,                      (3.3) 
 

where 𝑠̃ and 𝜌l are the arc-length parameter of 𝛼l and the radius of curvature of this curve, respectively. So 𝜚 is an 
equiform invariant parameter of 𝛼. 
The curvatures 𝑘", 𝑘#, 𝑘$ of the curve α are not invariants of the homothety group, because from (2.17), we can 
write 

 

𝑘m" =
1
𝜆 𝑘", 𝑘m# =

1
𝜆 𝑘#, 𝑘m$ =

1
𝜆 𝑘$. 

 
Now, if we get								 

 
                                                      𝕥 = 36

35
                            (3.4) 

 
and using (3.2), we have 

 
                                                                   𝕥 = 𝜌𝑡.                               (3.5) 
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Also, we define the vectors 𝕟, 𝕓, 𝕖 by 
 
                                                   𝕟 = 𝜌𝑛, 𝕓 = 𝜌𝑏, 𝕖 = 𝜌𝑒              (3.6) 
 

Thus, the frenet formula for the 𝕥, 𝕟, 𝕓, 𝕖 vectors in respect of  𝜚 are follows  
 

  	

𝕥′ = 𝜌̇𝕥 + 𝕟,
				𝕟) = 𝜌̇𝕟 + .#		

."	
𝕓

																						𝕓) = − .#		
."	
𝕟 + 𝜌̇𝕓 + .%		

."	
𝕖,

									𝕖) = − .%		
."	
𝕓 + 𝜌̇𝕖.

 

 
Definition 3.1. The function 𝕜8: 𝐼 → 𝑅, 𝑚 = 1,2,3,	is depicted as  

 
                                           𝕜" = 𝜌̇, 		𝕜# =

.#		

."	
, 𝕜$ =

.%		

."	
             (3.7) 

 
is named the 𝑚*9 equiform curvature of the curve. In addition, the formula in Equiform geometry of 𝐺% with 
similar logic, it is expressed as follows 

                         

𝕥′ = 𝕜"𝕥 + 𝕟,
				𝕟) = 𝕜"𝕟 + 𝕜#𝕓

																						𝕓) = −𝕜#𝕟 + 𝕜"𝕓 + 𝕜$𝕖,
									𝕖) = −𝕜$𝕓 + 𝕜"𝕖.

                                                                       (3.8) 

[24]. 
4. Generalizated Mannheim curves in Equiform Geometry of Galilean 4-Space 

Current porsion, we designate the generalizated Mannheim curve with respect to Equiform differential 
geometry of G4.  
Definition 4.1. Let’s take as a special Frenet curve 𝐶 in Equiform differential geometry of 𝐺% . In the Equform 
differential geometry of  𝐺%, there is a special Frenet curve 𝐶z such that the first normal line at each point of 𝐶 is 
included in the plane generated by the second and third normal lines of  𝐶z at corresponding point under ∅. Where 
∅	 ∶ 𝐶	 ⟼ 𝐶z is a bijection.  As a consequence, the curve 𝐶z is named the generalized Mannheim mate curve of 𝐶 
under this circumstance. 
        Hereafter, a privative Frenet curve 𝐶 in Equiform differential geometry of  𝐺% is parametrized by  parameter 
𝜚,  that is, 𝐶 is dedicated by  𝑥 ∶ 𝐿 ∋ 𝜚	 ⟼ 	𝑥(𝜚) ∈ 𝐺%. When C is a generalized Mannheim curve in 𝐺% and , 
because of descript, a generalized Mannheim mate curve 𝐶z is denoted as the map 𝑥	� ∶ 𝐿	 → 	𝐺% such that  

                                  
                                                                        𝑥� = 𝑥(𝜚) + 𝛼(𝜚)𝑒#(𝜚), 𝜚 ∈ 𝐿,                                                        (4.1) 
 

is written. Where 𝛼 is a smooth function on 𝐿. We remark that the parameter 𝜚 generally is not an arc-length 
parameter of 𝐶z. Let 𝜚� be the arc-length of 𝐶z defined by  

                                                            
                                                                                   𝜚� = 	∫ �3:;(5)

35
�𝑑𝜚,

< . 
 

We can count a smooth function 	Ϝ ∶ 𝐿	 → 	𝐿�	given by Ϝ(𝜚) 	= 𝜚�. We remark that s� is the parameter of  C�, and the 
bijection ∅ ∶ 𝐶	 → 	𝐶z  is defined by ∅(𝑥(𝜚)) 	= 	𝑥�(Ϝ(𝜚)). From the definition of the Mannheim curve, 
corresponding point under a bijection ∅ for each 𝜚 ∈ 𝐿 the vector 𝑒#(𝜚) is grant by linear combination of 𝑒̂$(Ϝ(𝜚)) 
and 𝑒̂%(Ϝ(𝜚)), that is, we can set 𝒆𝟐(𝜚) 	= 	𝑔(𝜚)	𝑒̂$(Ϝ(𝜚)) + ℎ(𝜚)	𝑒̂%(Ϝ(𝜚)) for some smooth functions 𝑔 and ℎ 
on 𝐿.  According to this definition, Differentiating (4.1) according to equiform invariant parameter 𝜚 and using the 
equations (3.8), we have 

 
Ϝ)(𝜚)𝑒̂"RϜ(𝜚)V = 	 𝑒"(𝜚) + 	𝛼)(𝜚)𝑒#(𝜚) + 𝛼(𝜚)(𝕜"(𝜚)𝑒#(𝜚) + 𝕜#(𝜚)𝑒$(𝜚)) 
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                        Ϝ)(𝜚)𝑒̂"RϜ(𝜚)V = 	 𝑒"(𝜚) + R𝛼)(𝜚) + 𝛼(𝜚)𝕜"(𝜚)V𝑒#(𝜚) + 𝛼(𝜚)𝕜#(𝜚)𝑒$(𝜚)                            (4.2)      
 

if we inner product both sides of this equation by 𝑒#(𝜚) and considering the following equality 
 

<	 𝑒̂"(Ϝ(𝜚)), 𝑔(𝜚)	𝑒̂$(Ϝ(𝜚)) 	+ 	ℎ(𝜚)	𝑒̂%(Ϝ(𝜚)) 	>= 	0, 
 

we obtain 
 
                                                        0 = 	 R𝛼)(𝜚) + 𝛼(𝜚)𝕜"(𝜚)V𝜌#, 𝜌 ≠ 0 
 

from this equation we get 
 
                                                                𝛼(𝜚) = 	𝑒>𝕜"5𝑐                                                                              (4.3) 
 

where 𝑐 ∈ 𝑅. Thus we have  
      
                                                           Ϝ)(𝜚)𝑒̂"RϜ(𝜚)V = 	 𝑒"(𝜚) + 𝑒>𝕜"5𝑐𝕜#(𝜚)𝑒$(𝜚), 
 

that is, 
 
                                                                      𝑒̂"RϜ(𝜚)V = 	

@"(5)
Ϝ$(5)

+ @&𝕜"(B𝕜#(5)@%(5)
Ϝ$(5)

, 
 

where ‖Ϝ)(𝜚)‖ = 	Z1 +	(𝑒>𝕜"5𝑐𝕜#(𝜚))# for 𝜚 ∈ 𝐿. If we take the differential of the above equality according to 
𝜚,  we have 

 
                                    Ϝ)(𝜚)𝑒̂"

)RϜ(𝜚)V = ^ "
Ϝ$(5)

_
)
𝑒"(𝜚) +	

"
Ϝ$(5)

𝑒")(𝜚) 

																								+ ]
1

Ϝ)(𝜚)`
)

𝑒>𝕜"5𝑐𝕜#(𝜚)𝑒$(𝜚) 

																																																																			+ "
Ϝ$(5)

	R−𝕜"𝑒>𝕜"5𝑐𝕜#(𝜚)𝑒$(𝜚) + 𝑒>𝕜"5𝑐𝕜#(𝜚)𝑒$)(𝜚)V, 

     Ϝ)(𝜚) ^𝕜�"(𝜚)𝑒̂"(𝜚) + 𝑒̂#(𝜚)_ = ^ "
Ϝ$(5)

_
)
𝑒"(𝜚) 

+	
1

Ϝ)(𝜚) R𝕜"
(𝜚)𝑒"(𝜚) + 𝑒#(𝜚)V 

+]
1

Ϝ)(𝜚)`
)

𝑒>𝕜"5𝑐𝕜#(𝜚)𝑒$(𝜚) 

							+
1

Ϝ)(𝜚)	^−𝕜"𝑒
>𝕜"5𝑐𝕜#(𝜚)𝑒$(𝜚)_ 

																																													+	 "	
		Ϝ$(5)

𝑒>𝕜"5𝑐𝕜#(𝜚)R−𝕜#(𝜚)𝑒#(𝜚) + 𝕜"(𝜚)𝑒$(𝜚) + 𝕜$(𝜚)𝑒%(𝜚)V, 
 

If we inner product both sides of this equation by 𝑒#(𝜚) and using the 𝒆𝟐(𝜚) 	= 𝑔(𝜚)	𝑒̂$(Ϝ(𝜚)) + ℎ(𝜚)	𝑒̂%(Ϝ(𝜚)) 
equality 

 
@𝕜"(

(𝕜#)#
=const. 

 
In this way, we have following theorem from the explanations: 
Theorem 4.1. Let’s take a Frenet curve 𝐶 in equiform differential geometry of  𝐺%. If the curve 𝛼 is a generalized 
Mannheim curve, from here, the following equality is satisfied the relationship between the curve functions  𝕜" 
and  𝕜# of 𝐶. 

 
																																																																																																		@

𝕜"(

(𝕜#)#
=const. , 𝜚 ∈ 𝐿.                                                 (4.4) 
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Let 𝜚� be the arc-length of  𝐶z. Also, 𝜚�  we know it is defined by 

 
                                                                              𝜚� = 	∫ �3:;(5)

35
�𝑑𝜚,

<  
 

for 𝜚	 ∈ 	𝐿. We can take into consideration a smooth function 	Ϝ ∶ 𝐿	 → 	𝐿�	given by Ϝ(𝜚) 	= 𝜚�. Considering the 
following equality 

 
‖Ϝ)(𝜚)‖ = 	Z1 +	(𝑒>𝕜"5𝑐𝕜#)#, 

 
from (4.4) equality 

 

‖Ϝ)(𝜚)‖ = 	�1 +
1

(𝕜#)#
 

 
for 𝜚 ∈ 𝐿. 

 
       The description of  𝐶z by arc-length parameter 𝜚� is denoted by 𝑥�(𝜚�), here we use the same letter “𝑥�“ for 
simplicity. Then we can simply write 

 
                                                                𝑥�(𝜚�) = 	𝑥�RϜ(𝜚)V = 𝑥(𝜚) + 𝛼(𝜚)𝑒#(𝜚) 

	
for curve 𝐶z .  By receiving the derivative of this equation with respect to 𝜚, 

 
 
                                                                3:;(5C)

35
=	 3:;(5C)

35C
Ϝ)(𝜚) = 	Ϝ)(𝜚)𝑒̂"(Ϝ(𝜚))     

 
and   

 
Ϝ)(𝜚)𝑒̂"RϜ(𝜚)V = 	 𝑒"(𝜚) + 𝑒>𝕜"5𝑐𝕜#𝑒$(𝜚) 

 
 

Thus we have 
 

𝑒̂"RϜ(𝜚)V = 	
𝟏

I1 + 1
(𝕜#)#

𝑒"(𝜚) +
𝑒>𝕜"5𝑐𝕜#

I1 + 1
(𝕜#)#

𝑒$(𝜚)	 

 
for 𝜚 ∈ 𝐿.  We differentiate of the above equality according to 𝜚, then we have 

 
      Ϝ)(𝜚) ^𝕜�"RϜ(𝜚�)V𝑒̂"RϜ(𝜚)V + 𝑒̂#RϜ(𝜚)V_ = 	

𝕜"

D"E
"

(𝕜#)#

𝑒"(𝜚) 

 

                                                                      +	� "

D"E
"

(𝕜#)#

−	 "

D"E
"

(𝕜#)#

𝑒>𝕜"5𝑐𝕜##�𝑒#(𝜚) 

 

                                                                      +�>𝕜"@
&𝕜"(B𝕜#

D"E
"

(𝕜#)#

+ 𝕜"@&𝕜"(B𝕜#

D"E
"

(𝕜#)#

	� 𝑒$(𝜚) 
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                                                                       + @&𝕜"(B𝕜#𝕜%

D"E
"

(𝕜#)#

𝑒%(𝜚)	, 

 
considering  1 − 𝑒>𝕜"5𝑐R𝕜#(𝜚)V

# = 0 equality, from the above equation, coefficient of 𝑒$(𝜚) is zero. Thus, for 
each 𝜚	 ∈ 𝐿, the vector 𝑒̂"(Ϝ(𝜚)) is granted by linear combination of 𝒆𝟏(𝜚) and  𝒆𝟑(𝜚). And, as above, the vector 
𝑒̂#(Ϝ(𝜚)) is given by linear combination of 𝒆𝟏(𝜚), 𝒆𝟑(𝜚)	and 𝒆𝟒(𝜚). 
       Since the curve 𝐶z  is a special Frenet curve in Equiform differential geometry of 𝐺%, the vector 𝒆𝟐(𝜚) is grant 
by linear combination of 𝑒̂$(Ϝ(𝜚)) and 𝑒̂%(Ϝ(𝜚)). 

With the above description, we have following theorem: 
Theorem 4.2.  Let C be a special Frenet curve in Equiform differential geometry of 𝐺% whose curvature functions 
𝕜" =constant and 𝕜# =constant are constant functions and satisfy the equality: 1 − 𝑒>𝕜"5𝑐R𝕜#(𝜚)V

# = 0 , 𝜚 ∈ 𝐿.  
If the curve 𝐶z given by 𝑥�(𝜚�) = 𝑥(𝜚) + 𝛼(𝜚)𝑒#(𝜚) , 𝜚 ∈ 𝐿 is a private Frenet curve, then 𝐶 is a generalized 
Mannheim curve and 𝐶z is the generalized Mannheim mate curve of 𝐶. 
Theorem 4.3. Let’s take the curve C defined by 

 
𝑥(𝜚) 	= (	𝜚, 𝛼	 ∫(∫𝒽(𝜚)	sin 𝜚 𝑑𝜚)𝑑𝜚 , 𝛼	 ∫(∫𝒽(𝜚)	cos 𝜚 𝑑𝜚)𝑑𝜚 , 𝛼	 ∫(∫𝒽(𝜚)	ℊ(𝜚)𝑑𝜚)𝑑𝜚) , 𝑠	 ∈ 	𝐼, 

 
where 𝛼 is a positive constant number,	 ℊ and 𝒽 are any smooth functions:	𝐼	 → 	𝑅, and Ϝ	defined by 

 

𝒽(𝜚) =
ln 𝑐(1 + ℊ(𝜚)#)>$(ℊ(𝜚)(ℊ(𝜚))))#

	𝛼	Z1 + ℊ(𝜚)#
 

 
for 𝜚	 ∈ 	𝐼. Then the curvatures 𝕜" and 𝕜# of the curve C satisfy the equality 

 
1 − 𝑒>𝕜"5𝑐R𝕜#(𝜚)V

# = 0, 
 

for each 𝜚 ∈ 	𝐼. 
Proof. First we have to find 𝕜" and 𝕜#. Given the definitions of curvatures, 

 

𝕜" = ‖𝑒′#(𝜚)‖ = 𝛼𝒽(𝜚)Z1 + ℊ#(𝜚) 

 

is obtained. Similarly,  

𝕜# = 〈𝑒)#(𝜚), 𝑒$(𝜚)〉 = −(1 + ℊ(𝜚)#)
>$
# ℊ(𝜚)Rℊ(𝜚)V). 

 

If we substitute these equations in the condition of Mannheim curve, 

 

𝑐 =
𝑒>6𝒽(5)J"Eℊ#(5)

−(1 + ℊ(𝜚)#)
>$
# ℊ(𝜚)(ℊ(𝜚)))

 

 

is obtained. If we leave 𝒽(𝜚) alone in the last eqation, it is 

 

𝒽(𝜚) = LM BN"Eℊ(5)#O
&%
Nℊ(5)(ℊ(5))$O

#

	6	J"Eℊ(5)#
. 

 



On Generalized Mannheim curves in the Equiform Geometry of the Galilean 4-Space 

 

204 
 

So briefly, considering the formula of curvature calculations in Equiform differential geometry of 𝐺% the proof is 

can be done easily.  

5.  Conclusion 

       In this study, we defined the Mannheim curve for the Equiform differential geometry. We have obtained a 

new characterizations between the curvatures of the Mnnheim curve. A new case is obtained if the curvatures are 

not zero. We gave the application of the Mannheim curve with a general example. 
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