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Abstract. In this paper, we explore the travelling wave solutions for some
nonlinear partial differential equations by using the recently established ra-

tional (G′/G)-expansion method. We apply this method to the combined

KdV-mKdV equation, the reaction-diffusion equation and the coupled Hirota-
Satsuma KdV equations. The travelling wave solutions are expressed by hy-

perbolic functions, trigonometric functions and rational functions. When the

parameters are taken as special values, the solitary waves are also derived from
the travelling waves. We have also given some figures for the solutions.

1. Introduction

In the past decades, the travelling wave solutions of nonlinear partial differen-
tial equations (NLPDEs) play an effective role in physics, engineering and applied
mathematics. The mathematical models of these subjects give important informa-
tion about the behaviour of the physical event. Therefore, it is very important to
obtain the traveling wave solutions of NLPDEs [32]. The NLPDEs have interesting
structures that deals with many phenomena in physics, chemistry and engineering,
for example; in fluid flow, plasma waves, mechanics, solid state physics, oceanic
phenomena, atmospheric phenomena and so on. Many researchers have been pro-
posed various different methods to find solutions for nonlinear partial differential
equations and nonlinear fractional differential equations [36–40]. Such as the in-
verse scattering transform method [1], the Hirota’s bilinear method [2], truncated

2020 Mathematics Subject Classification. Primary 35C07; Secondary 35C08.
Keywords. The rational (G′/G)-expansion method, travelling wave solution, the com-

bined KdV-mKdV equation, the reaction-diffusion equation, the coupled Hirota-Satsuma KdV

equations.

mustafa.ekici@comu.edu.tr-Corresponding author; metin.unal@usak.edu.tr

0000-0003-2494-8229; 0000-0002-4462-0872.

©2022 Ankara University
Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics

116



SOLVING SOME COUPLED AND COMBINED WAVE EQUATIONS 117

Painlevé expansion method [3], the tanh-function expansion method [4], the Jacobi
elliptic function expansion method [5], the homogeneous balance method [6–8], the
trial function method [9], the exp-function method [10, 34], differential transform
method [33], the Bäcklund transform method [11], the generalized Riccati equa-
tion method [12–15], the sub-ODE method [17–20], the original (G′/G)-expansion
method [16,29], the double (G′/G,1/G)-expansion method [35] etc.. Since there is
not a common method that can be used to solve all types of nonlinear evolution
equations.

Some researchers established several powerful and direct methods. Wang et
al. [16] first introduced the (G′/G)-expansion method to find travelling wave solu-
tions of nonlinear evolution equations. Later Islam et al. [21] proposed the rational
(G′/G)-expansion method which aims to derive closed form travelling wave solu-
tions. In this paper we use the rational (G′/G)- expansion method and apply for the
combined KdV-mKdV equation, the reaction-diffusion equation, and the coupled
Hirota-Satsuma KdV equations. We derived abundant solutions for each equation
that is different from the solutions in the literature.

2. Description of the Method

Suppose that u = u(x, t) is an unknown function depends on the x and t variables
and we define the polynomial P in u(x, t) and its various order partial derivatives
and nonlinear terms as

P (u, ux, ut, uxx, utt, uxt, ...) = 0. (1)

We use the following steps, to solve Eq.(1) by means of the rational (G′/G)-
expansion method.

Step 1: We assign a new variable U(ξ) in terms of x and t variables and a new
transformation:

u(x, t) = U(ξ) , ξ = x− st+ ξ0 (2)

where is ξ0 a constant and s is the velocity of the wave. The transformation in Eq.(2)
transforms Eq.(1) into an ordinary differential equation (ODE) for u = U(ξ).

Q(U,U ′,−sU ′, U ′′, s2U ′′,−sU ′′, ...) = 0 (3)

where U and its derivatives with respect to ξ are the elements of the Q polynomial
of U(ξ).

Step 2: Next we integrate Eq.(3) one or twice as possible. Suppose that the
solution of Eq.(3) can be written in the following form

u(ξ) =

n∑
j=0

aj(G′/G)j

n∑
j=0

bj(G′/G)j
(4)
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where aj and bj (j = 0, 1, 2, ..., n) , (an ̸= 0, bn ̸= 0) are arbitrary coefficient to be
found later. Next we write, the G = G(ξ) function, which satisfies the following
second order ODE;

G′′(ξ) + λG′(ξ) + µG(ξ) = 0 (5)

where λ and µ are real constants. We convert Eq.(5) into (G′/G) form,

d

dξ
(G′/G) = − (G′/G)

2 − λ (G′/G)− µ. (6)

From Eq.(5) or Eq.(6) the solution for (G′/G) as follows

(G′/G) =



−λ
2+

√
λ2−4µ

2

 c1 cosh

(
(

√
λ2−4µ

2 )ξ

)
+c2 sinh

(
(

√
λ2−4µ

2 )ξ

)
c1 sinh

(
(

√
λ2−4µ

2 )ξ

)
+c2 cosh

(
(

√
λ2−4µ

2 )ξ

)
 ; λ2−4µ > 0 ,

−λ
2+

√
4µ−λ2

2

−c1 cos

(
(

√
4µ−λ2

2 )ξ

)
+c2 sin

(
(

√
4µ−λ2

2 )ξ

)
c1 sin

(
(

√
4µ−λ2

2 )ξ

)
+c2 cos

(
(

√
4µ−λ2

2 )ξ

)
 ; λ2−4µ < 0 ,

−λ
2+

c2
c1+c2ξ

; λ2−4µ = 0 ,

(7)
where c1 and c2 are constants.

Step 3: To determine the value of n, which is the degree of U(ξ), in Step 2,
we apply the homogeneous balance method, that is balancing between the highest
order nonlinear terms and the highest order derivatives in Eq.(3). The degree of
other terms in Eq.(3) can be written as in the following form [21]

deg

[
dmu(ξ)

dξm

]
= n+m , deg

[
um

(
dlu(ξ)

dξl

)p]
= mn+ p (n+ l)

where deg[U(ξ)] is the degree of U(ξ).

Step 4: After determining the value of n, we substitute Eq.(4) along with Eq.(5)
into Eq.(3). Equating the coefficients of (G′/G) to zero, gives a system of alge-
braic equations. In order to solve these equations we use the computer software
programme such as Maple or Matematica. If there is a possible solution, we obtain
values for ai, bi, λ, µ and s (i = 0, 1, 2, ..., n).

Step 5: Finally we substitute the values of ai, bi (i = 0, 1, 2, ..., n), λ, µ, s and the
solutions given in Eq.(7), into Eq.(4), hence the solutions of the nonlinear Eq.(1)
are derived.

3. Application of the Method

Example 1. The combined KdV-mKdV equation
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The KdV and mKdV equations are widely studied popular soliton equations.
The nonlinear terms appearing in the KdV and mKdV equations often exist in
applied science and engineering, such as in plasma physics, ocean dynamics and
quantum field theory [22–24]. If we combine the quadratic nonlinear term of the
KdV equation and the qubic nonlinear term of the mKdV equation, then we get
the combined KdV-mKdV equation or the Gardner equation [25]

ut + αu ux + βu2ux + uxxx = 0 (8)

where α and β are nonzero parameters. This equation describes the wave propaga-
tion of bounded particle,sound wave and thermal pulse [26–28].

The travelling wave transformation u(x, t) = U(ξ) , ξ = x− st+ ξ0 , transforms
Eq.(8) into to the following ODE

− sU ′ + αU U ′ + βU2U ′ + U ′′′ = 0 (9)

where s is the velocity of the wave and the superscript of U shows the derivative of
U with respect to ξ. Next, we integrate Eq.(9) and deduce the following equation

C − sU +
1

2
αU2 +

1

3
βU3 + U

′′
= 0 (10)

where C is an integration constant to be found later. We use homogeneous balance
method, such as balancing the terms U ′′ and U3 in Eq.(10) we get n = 1, so we
can write Eq.(4) as

U(ξ) =
a0 + a1(G

′
/G)

b0 + b1(G
′/G)

(11)

Next we substitute Eq.(11) into Eq.(10) and organize the equation in terms of the
powers of (G′/G). Hence equating the coefficients of (G′/G) and its powers to zero
in the resulting equation, gives a system of algebraic equations for a0, b0, a1, b1, s
and C. Solving the set of equations by using the computer programme Maple, we
get the following set of solutions.

Set 1

a0 = ∓1

2

b0(±
√
− 6

βα+ 6λ)

β
√
− 6

β

, a1 = ±
√
− 6

β
b0 , b1 = 0 (12)

s = −2βλ2 + α2 − 8βµ

4β
, C =

α
(
6βλ2 + α2 − 24βµ

)
24β2

where b0, λ, α, β and µ are all arbitrary constants. Substituting Eq.(12) into Eq.(11)
we get the following solution

U(ξ) = ±
√

− 6

β
(G

′
/G)− α

2β
∓ 3λ

β

√
−β

6
(13)
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where

ξ = x+

(
α2

4β
+

λ2 − 4µ

2

)
t+ ξ0 (14)

and (G′/G) is given in Eq.(7). Substituting Eq.(7) into Eq.(13), we deduce the
following travelling wave solutions.

Case 1: If λ2 − 4µ > 0, then we have

U(ξ) = ±1

2

√
−6 (λ2 − 4µ)

β

(
c1 cosh(

1
2

√
λ2 − 4µξ) + c2 sinh(

1
2

√
λ2 − 4µξ)

c1 sinh(
1
2

√
λ2 − 4µξ) + c2 cosh(

1
2

√
λ2 − 4µξ)

)

∓λ

2

√
− 6

β
− α

2β
∓ 3λ

β

√
−β

6
. (15)

If we choose c1 = sinh(ξ0) and c2 = cosh(ξ0), we get the following hyperbolic
solution for the Eq.(10)

U(ξ) = ±1

2

√
−6 (λ2 − 4µ)

β
tanh

(
ξ

2

√
λ2 − 4µ+ ξ0

)
)∓ λ

2

√
− 6

β
− α

2β
∓ 3λ

β

√
−β

6

The plot of the solution for the values (λ = 5, µ = 4, α = 3, β = −4, ξ0 = 2 ) is
given in Fig 1.

Figure 1. Hyperbolic solution for Eq.(8)
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Case 2: If λ2 − 4µ < 0, then we have

U(ξ) = ±1

2

√
−6 (4µ− λ2)

β

(
−c1 cos(

ξ
2

√
4µ− λ2) + c2 sin(

ξ
2

√
4µ− λ2)

c1 sin(
ξ
2

√
4µ− λ2) + c2 cos(

ξ
2

√
4µ− λ2)

)

∓λ

2

√
− 6

β
− α

2β
∓ 3λ

β

√
−β

6

If we choose c1 = sin(ξ0) and c2 = cos(ξ0), we get the following trigonometric
solution for the Eq.(10)

U(ξ) = ±1

2

√
−6 (4µ− λ2)

β
tan

(
ξ

2

√
4µ− λ2 + ξ0

)
)∓ λ

2

√
− 6

β
− α

2β
∓ 3λ

β

√
−β

6

The plot of the solution for the values (λ = 4, µ = 5, α = 3, β = −6, ξ0 = 2 ) is
given in Fig 2.

Figure 2. Trigonometric solution for Eq.(8)

Case 3: If λ2 − 4µ = 0, then we have

U(ξ) = ±
√
− 6

β

(
c2

c1 + c2ξ

)
∓ λ

2

√
− 6

β
− α

2β
∓ 3λ

β

√
−β

6

The plot of the solution for the values (λ = 4, µ = 4, α = 3, β = −6, ξ0 = 2 ) is
given in Fig 3. In particular, if c1 = 0 and c2 ̸= 0 and λ > 0 and µ = 0, then
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Figure 3. Rational solution for Eq.(8)

Eq.(15) becomes

U(ξ) = ±λ

2

√
− 6

β
tanh

(
λ

2
ξ

)
∓ λ

2

√
− 6

β
− α

2β
∓ 3λ

β

√
−β

6
(16)

or if c1 ̸= 0 and c2 = 0 and λ > 0 and µ = 0, then Eq.(15) becomes

U(ξ) = ±λ

2

√
− 6

β
coth

(
λ

2
ξ

)
∓ λ

2

√
− 6

β
− α

2β
∓ 3λ

β

√
−β

6
(17)

where

ξ = x+

(
α2

4β
+

λ2

2

)
t+ ξ0.

Note that Eq.(16) and Eq.(17) represents the solitary wave solutions of the com-
bined KdV–mKdV equation Eq.(8)

Set 2

a0 =
(−λα∓

√
−96βµ2−6λ4β+48µλ2β)b1

4β , a1 = −αb1
2β , b0 = b1λ

2

s = −2λ2β+8µβ−α2

4β , C =
α(6λ2β−24µβ+α2)

24β2

(18)
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where b1, λ and µ are arbitrary constants. Substituting Eq.(18) into Eq.(11) we get
the following solution

U(ξ) =
−2α(G

′
/G) + (−λα∓

√
−96βµ2 − 6λ4β + 48µλ2β)

4β(G′/G) + 2λβ
(19)

where

ξ = x+

(
2µ− 2λ2β + α2

4β

)
t+ ξ0 (20)

and (G′/G) is given in Eq.(7).

Set 3

a0 =
−6b20λ+ 12b1µb0 + 3b0b1λ

2 − 6λµb21

∓
√
−6b21λ

2β + 24b1βb0λ− 24b20β
+

αb0
2β

a1 =
−αb1 ±

√
−6b21λ

2β + 24b1βb0λ− 24b20β

2β
(21)

s =
−2λ2β + 8µβ − α2

4β
, C =

α
(
6λ2β − 24µβ + α2

)
24β2

where b0, b1, λ, α, β and µ are arbitrary constants. Substituting the values of con-
stants from Eq.(21) into Eq.(11) gives

U(ξ) =

(
−αb1±

√
−6b21λ

2β+24b1βb0λ−24b20β

2β

)
(G′/G) + (

−6b20λ+12b1µb0+3b0b1λ
2−6λµb21

∓
√

−6b21λ
2β+24b1βb0λ−24b20β

+ αb0
2β )

b1(G
′/G) + b0

where ξ = x+ ( 2βλ
2+α2−8βµ

4β )t+ ξ0.

Example 2. The reaction-diffusion equation

We have the reaction-diffusion equation [30]

utt + αuxx + βu+ γu3 = 0 (22)

where α , β and γ are nonzero constants. The traveling wave variable Eq.(2) reduces
the Eq.(22) into an ODE (

α+ s2
)
U ′′ + βU + U3 = 0, (23)

where s is the velocity of the wave. Next we express the solution of the Eq.(23) in
terms of (G′/G) as it is written in Eq.(4), where G = G(ξ) satisfies the second order
linear ODE in Eq.(23). We use homogeneous balance method, such as balancing
the terms U ′′ and U3 in Eq.(23) we get n = 1, hence from Eq.(4), we have

U(ξ) =
a0 + a1(G

′/G)

b0 + b1(G′/G)
. (24)
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Substituting Eq.(23) into Eq.(22) and write the left hand side in terms of (G′/G).
Hence equating the coefficients of the resulting equation to zero, gives a system of
algebraic equations for a0, b0, a1, b1 and s. Solving the set of equations by using the
computer programme, we get the following set of solutions:

Set 1

a0 = ± 1
2

√
−β(λ2−4µ)

γ b1 , b0 = 1
2λb1 ,

a1 = 0 , s = ±
√

2β
λ2−4µ − α

(25)

where b1, λ and µ are all arbitrary constants. Substituting Eq.(25) into Eq.(24) we
get the following solution

U(ξ) =
± 1

2

√
−β(λ2−4µ)

γ

(G′/G) + λ/2
(26)

where

ξ = x±

(√
2β

λ2 − 4µ
− α

)
t+ ξ0 (27)

and (G′/G) is given in Eq. (7). Substituting Eq.(7) into Eq.(26), we deduce the
following travelling wave solutions.

Case 1: If λ2 − 4µ > 0, then we have

U(ξ) = ±

√
−β

γ

(
c1 sinh(

ξ
2

√
λ2 − 4µ) + c2 cosh(

ξ
2

√
λ2 − 4µ)

c1 cosh(
ξ
2

√
λ2 − 4µ) + c2 sinh(

ξ
2

√
λ2 − 4µ)

)
.

If we choose c1 = cosh(ξ0) and c2 = sinh(ξ0), we get the following hyperbolic
solution for the Eq.(22)

U(ξ) = ±

√
−β

γ
tanh

(
ξ

2

√
λ2 − 4µ+ ξ0

)
.

Case 2: If λ2 − 4µ < 0, then we have

U(ξ) = ±

√
−β

γ

(
c1 sin(

ξ
2

√
4µ− λ2) + c2 cos(

ξ
2

√
4µ− λ2)

−c1 cos(
ξ
2

√
4µ− λ2) + c2 sin(

ξ
2

√
4µ− λ2)

)
.

If we choose c1 = cos(ξ0) and c2 = sin(ξ0), we get the following trigonometric
solution for the Eq.(22)

U(ξ) = ∓

√
−β

γ
tan

(
ξ

2

√
4µ− λ2 + ξ0

)
.
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Case 3: If λ2 − 4µ = 0, then we have trivial solution for the Eq.(22)

U(ξ) = 0.

Set 2

a0 = ± λb0
√
β√

γ(4µ−λ2)
, a1 = ±2

√
β

γ(4µ−λ2)b0 ,

b1 = 0 , s = ±
√

2β
λ2−4µ − α

(28)

where b0, λ, β and µ are arbitrary constants. Substituting Eq.(28) into Eq.(24) we
get the following solution

U(ξ) = ± 2
√
β√

γ (4µ− λ2)

(
(G′/G) +

λ

2

)
, (29)

where

ξ = x±

(√
2β

λ2 − 4µ
− α

)
t+ ξ0 (30)

and (G′/G) is given in Eq.(7).

Set 3

a0 = ±
√

β
γ(4µ−λ2) (λb0 − 2µb1) ,

a1 = ±
√

β
γ(4µ−λ2) (λb1 − 2b0) , s = ±

√
2β

λ2−4µ − α
(31)

where b0, b1, λ and µ are arbitrary constants. Substituting Eq.(31) into Eq.(24) we
get the following solution

U(ξ) = ±

√
β

γ(4µ−λ2) (λb1 − 2b0) (G
′
/G) +

√
β

γ(4µ−λ2) (λb0 − 2µb1)

b1(G
′/G) + b0

where

ξ = x±

(√
2β

λ2 − 4µ
− α

)
t+ ξ0

and (G′/G) is given in Eq.(7).

Set 4

a0 = ±
√

β
γ(4µ−λ2)

((
λ
2 ± 1

6

√
3λ2 − 12µ

)
− 2µ

)
b1 , a1 = ±

√
−β
3γ b1 ,

b0 =
(

λ
2 ± 1

6

√
3λ2 − 12µ

)
b1 , s = ±

√
2β

λ2−4µ − α
(32)
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where b1, λ and µ are arbitrary constants. Substituting Eq.(32) into Eq.(24) we get
the following solution

U(ξ) = ±

√
−β
3γ (G

′/G) +
√

β
γ(4µ−λ2)

((
λ
2 ± 1

6

√
3λ2 − 12µ

)
− 2µ

)
(G′/G) + λ

2 ± 1
6

√
3λ2 − 12µ

where

ξ = x±

(√
2β

λ2 − 4µ
− α

)
t+ ξ0

and (G′/G) is given in Eq.(7).

Example 3. The coupled Hirota-Satsuma KdV equations

The coupled Hirota-Satsuma KdV equations (CHSK) describes an interaction of
two long waves with different dispersion relations [31]. We will consider the CHSK
equations in the following form

ut =
1
4uxxx + 3uux − 6vvx ,

vt = − 1
2vxxx − 3uvx .

(33)

Making the transformations u(x, t) = U(ξ) , v(x, t) = V (ξ) , ξ = x − st + ξ0,
where s is the velocity of the wave to be determined later. We get the CHSK
equations in the following form

−sU ′ =
1

4
U ′′′ + 3UU ′ − 6V V ′, (34)

−sV ′ = −1

2
V ′′′ − 3UV

′
.

By balancing the highest order derivatives and nonlinear terms in Eq.(34), we get
n = 2 and from Eq.(4) we write the solutions of Eq.(33) as

U(ξ) = a0+a1(G
′/G)+a2(G

′/G)2

b0+b1(G′/G)+b2(G′/G)2
,

V (ξ) = e0+e1(G
′/G)+e2((G

′/G)2

d0+d1(G′/G)+d2(G′/G)2

(35)

Substituting Eq.(35) into Eq.(34), and we convert Eq.(34) into a polynomial in
(G′/G). Equating the coefficients of the same power of (G′/G) to zero, yields a set
of simultaneous algebraic equations. Solving the set of equations for ai, bi, ei, di(i =
0, 1, 2) and s by using the computer programme, we get the following set of solutions

Set 1
a2 = −2b0 , a1 = −2λb0 , b1 = b2 = 0 , d1 = d2 = 0

e0 = − e2(λ2b0+8µb0+8a0)
4b0

, e1 = λe2 , d0 = e2

s = λ2b0+8µb0+6a0

2b0

(36)



SOLVING SOME COUPLED AND COMBINED WAVE EQUATIONS 127

where a0, b0, e2, λ and µ are constants. Substituting Eq.(36) into Eq.(35), hence we
reach the following solutions

U(ξ) = −2
[
(G′/G)2 + λ(G′/G)

]
+

a0
b0

(37)

V (ξ) = (G′/G)2 + λ(G′/G)− λ2 + 8µ

4b0
− 2

a0
b0

where

ξ = x−
(
λ2 + 8µ

2b0
+ 3

a0
b0

)
t+ ξ0

and (G′/G) is given in Eq.(7). Substituting Eq.(7) into Eq.(37), we deduce the
following travelling wave solutions.

Case 1: If λ2−4µ > 0 and if we choose c1 = cosh(ξ0), c2 = sinh(ξ0), then we have
the hyperbolic solutions for the Eq.(34)

U(ξ) = a0

b0
+ λ2

2 − λ2−4µ
2 coth2

(
ξ
2

√
λ2 − 4µ+ ξ0

)
,

V (ξ) = −2a0

b0
− λ2

4 − λ2+8µ
4b0

+ λ2−4µ
4 coth2

(
ξ
2

√
λ2 − 4µ+ ξ0

)
.

Case 2: If λ2 − 4µ < 0 and if we choose c1 = cos(ξ0), c2 = sin(ξ0), then we have
the trigonometric solutions for the Eq.(34)

U(ξ) = a0

b0
+ λ2

2 − λ2−4µ
2 cot2

(
ξ
2

√
4µ− λ2 + ξ0

)
,

V (ξ) = −2a0

b0
− λ2

4 − λ2+8µ
4b0

+ λ2−4µ
4 cot2

(
ξ
2

√
4µ− λ2 + ξ0

)
.

Case 3: If λ2 − 4µ = 0, , then we have rational solutions for the Eq.(34)

U(ξ) = a0

b0
+ λ2

2 − 2c22
(c1+c2ξ)2

,

V (ξ) = −2a0

b0
− λ2

4 − λ2+8µ
4b0

+ ( c2
c1+c2ξ

)2.

Set 2

a2 = −b0 , a1 = −λb0 , b1 = b2 = 0 , d2 = 0 , e0 = λd0e2
2d1

a0 = − b0(λ2d2
1+8µd2

1+4e22)
8d2

1
, e1 = e2(λd1+2d0)

2d1

s =
λ2d2

1−4µd2
1−12e22

8d2
1

(38)

where b0, d0, d1, e2, λ and µ are constants. Substituting Eq.(38) into Eq.(35), hence
we reach the following solutions

U(ξ) = −
[
(G

′
/G)2 + λ(G

′
/G)

]
−
(
λ2 + 8µ

8

)
−
(

e22
2d21

)

V (ξ) = e2
(G′/G)2 + (λd1+2d0

2d1
)(G′/G) + λd0

2d1

d1(G′/G) + d0
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where

ξ = x−
(
λ2 − 4µ

8
+

4

3

e22
d21

)
t+ ξ0

and (G′/G) is given in Eq.(7).

Set 3

a2 = −b0 , a1 = −λb0 , b1 = b2 = 0

e0 = e2d0

d2
, e1 = e2d1

d2

s = −λ2b0+8µb0+12a0

4b0

(39)

where a0, b0, d0, d1, d2, e2, λ and µ are constants. Substituting Eq.(39) into Eq.(35) ,
hence we reach the following solutions

U(ξ) = −
[
(G

′
/G)2 + λ(G

′
/G)

]
+

a0
b0

V (ξ) = e2
(G′/G)2 + d1

d2
(G′/G) + d0

d2

d2(G′/G)2 + d1(G
′/G) + d0

where

ξ = x+

(
λ2 + 8µ

4
+ 3

a0
b0

)
t+ ξ0

and (G′/G) is given in Eq.(7).

Set 4

a0 = λ4b0−8λ2µb0+16µ2a2+16µ2b0
4λ2

a1 = λ4b0−8λ2µb0+16µ2a2+16µ2b0
4µλ , d2 = 0

b1 = λb0
µ , b2 = λ2b0

4µ2 , e0 = e1 = e2 = 0

s = −λ4b0−16λ2b0µ+48µ2a2+48µ2b0
4b0λ2

(40)

where a2, b0, λ and µ are constants. Substituting Eq.(40) into Eq.(35), hence we
reach the following solutions

U(ξ) =
a2(G

′/G)2 +
(

λ4b0−8λ2µb0+16µ2a2+16µ2b0
4µλ

)
(G′/G) +

(
λ4b0−8λ2µb0+16µ2a2+16µ2b0

4λ2

)
λ2b0
4µ2 (G′/G)2 + λb0

µ (G′/G) + b0

V (ξ) = 0

where

ξ = x+

(
λ2 − 16µ

4
+

12µ2a2 + 12µ2b0
b0λ2

)
t+ ξ0

and (G′/G) is given in Eq.(7).
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Set 5

a0 = λ4b0−8λ2b0µ+16µ2a2+16µ2b0
4λ2 , e1 = e2 = 0

a1 = λ4b0−8λ2b0µ+16µ2a2+16µ2b0
4λµ , d1 = d2 = 0

b1 = λb0
µ , b2 = λ2b0

4µ2 , s = −λ4b0−16λ2b0µ+48µ2a2+48µ2b0
4b0λ2

(41)

where a2, b0, λ and µ are constants. Substituting Eq.(41) into Eq.(35) , hence we
reach the following solutions

U(ξ) =
a2(G

′/G)2 +
(

λ4b0−8λ2b0µ+16µ2a2+16µ2b0
4λµ

)
(G′/G) +

(
λ4b0−8λ2b0µ+16µ2a2+16µ2b0

4λ

)
λ2b0
4µ2 (G′/G)2 + λb0

µ (G′/G) + b0

V (ξ) =
e0
d0

where e0, d0 are constants and

ξ = x+

(
λ2 − 16µ

4
+

12µ2a2 + 12µ2b0
b0λ2

)
t+ ξ0

and (G′/G) is given in Eq.(7).

4. Conclusion

In this paper, we have obtained various types of travelling wave solutions for
the combined KdV-mKdV equation, the reaction-diffusion equation, and the cou-
pled Hirota-Satsuma KdV equations that are solved by using the rational (G′/G)-
expansion method. The main idea of this method is to reduce the partial differential
equation to an ODE by using the travelling wave transformation (Eq.(2)), after in-
tegrating the ODE in Eq.(3), once or twice, then express the ODE in a compact
form. This ODE can be written by a n-th degree polynomial in terms of (G′/G),
where G = G(ξ) is the general solution of the second order LODE in Eq.(5). In
order to find the positive integer, we use the homogeneous balance method, that is
balancing between the highest order derivative term and nonlinear term. The coef-
ficients of the polynomials can be obtained by solving a set of algebraic equations.
Generally, the resulted algebraic equations can be solved by using Maple software
program. It is mostly possible to find a solution of the algebraic equations, but it
is generally unable to guarantee the existence of a solution. Despite of this, the
rational (G′/G)-expansion method is still powerful method for finding travelling
wave solutions of nonlinear evolution equations. The rational (G′/G)-expansion
method is also direct, concise, elementary that the general solution of the second
order ODE Eq.(5) is well known and effective that it can be used for many other
nonlinear evolution equations, such as the generalized shallow water wave equation,
the compound KdV-Burgers equations, the Klein-Gordon equation, the generalized
KPP equation, the approximate long water wave equations, the coupled nonlinear
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Klein-Gordon-Zakharov equations, and so on. Therefore, various explicit solutions
of these nonlinear evolution equations can be obtained by this method.
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