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Abstract

In this paper, we first take a Bertrand curve pair and then we use Darboux vector instead of mean curvature vector to give characterizations of
Bertrand partner curve by means of the Bertrand curve. By making use of the relations between the Frenet frames of the Bertrand curve pair
we give the differential equations and sufficient conditions of harmonicity(biharmonic curve or 1-type of harmonic curve) for the Bertrand
partner curve in terms of the Darboux vector of the Bertrand curve. We get some new results and finally we write an example to demonstrate
how our assumptions come true.
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1. Introduction and Preliminaries

In geometry one of the most commonly used fact is that we can constitute a relations between the invariants and general features of a curve.
As one of the widely known exemplification revealing this relation is the Bertrand curve pair. We show that all characterizations of the
Bertrand partner curve can be given in terms of the Darboux vector of Bertrand curve. In this way we give the harmonicity conditions
of Bertrand partner curve by means of the Darboux vector of Bertrand curve. Referring this formula we also give differential equations
representing the Bertrand partner curve through the main curve. By this method, we obtain ordinary differential equations. Also this method
made it easier for us to interpret the harmonicity of the Bertrand partner curve. Now we may cite some remarkable works drawing our
attention. We may make classification of biharmonic curves [1]. By this paper we recognize that some curves may be called as biharmonic
curve while some of them are 1-type of harmonic. Among so many works we apply as a tool only some of them: Senyurt and Cakir [2]
point out a method to classify a given curve by means of an another curve.Kocayigit et al.[3] study 1-type of harmonic curves by using
the Darboux vector of the curve itself. Senyurt and Cakir [4] study biharmonic curves whose mean curvature vector field is the kernel of
Laplacian. Also they give the differential equations of a curve according to unit Darboux vector of the given curve [5]. Now we may review
some basic concepts of differential geometry. We can give the Frenet formulas as, [7]

T'=9%xkN, N =-0xT+®tB, B =—91N. (1.1)
Every Frenet frame moves along an axis which is called a Darboux vector and it is given by, [6]
W = 1T +kB. (1.2)

Given that o is a differentiable curve with the principal normal N and 7 is another differentiable curve. If & and y have the common principal
normal at their corresponding points then « is called a Bertrand curve and ¥ is called the Bertrand partner of . In this way («, ) is called
the Bertrand curve pair. It is obvious from this statement, [7]

y(t) = a(t) +A()N(t), A(r) €R. (1.3)

The ordered pair (@, y) forms a Bertrand couple if and only if Ax+ut =1 where A, u € R. The relation between the Frenet frames of o
and yis

Ty = cosOT +sinOB, Ny=N, By= —sin0T + cosOB (1.4)
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provided cos® =< Ty, T >. The relationship between the curvatures of o and y is

Ak —sin0 1 .,
(1) = A=An) Ty(t) = 2 0- (1.5)

When we take the eq.(1.2) and eq.(1.4) into consideration, we have another relation between the Darboux vectors of ¢ and ¥ as follows, [8]

1
Wy= ————W (1.6)

/A2 +u?

provided that 6, = arctan(ﬁ), shown in Fig.1.

a(s)

Figure 1.1: (o, y) Bertrand curve pairs with Darboux vectors

Laplace operator can be defined as the following mapping, [3]
A:x*t(a(l)) — x(a(l)) suchthat AH = —D*H 1.7
where H is the mean curvature vector and D is Levi-Civita connection along a curve.

Theorem 1.1. [3] Let a be a regular curve with the Darboux vector W. We have the following propositions.
DIf AW =0 then o is called a biharmonic curve.

ilf AW =AW then o is called a I-type of harmonic curve, A € R.

Theorem 1.2. [9] Let (¢, B) be a Bertrand curve pair. Then the covariants derivatives of a with respect to B is given as in

1—cos6

DT = (g )XV
1—cos6 1 —cos6

DN = (=g KT+ (=5 )5, (49
1—cos6

DBB = —(W)TN

2. Discussions and Result
Throughout the present paper we use the set {7, N, B, k, T, W } to express the Frenet apparatus of the Bertrand curve o and also the set {Ty, Ny, By, Ky, Ty, Wy}
for the Frenet elements of the Bertrand partner curve ¥ with the norm ¥ =|| Y (s) ||.

Theorem 2.1. Let (o, y) be a Bertrand curve pair and 'y be the partner curve with Darboux vector Wy. Differential equation characterizing the curve y with
respect to connection is given by

en D7, Wy+ D7, Wy+ D1, Wy + cpyWy = 0

with the coefficients cy1, ¢y, Cy3 and cyy as

2
ey = P (Kyr;, - K),,’L'y> ,
cp = (191({,’1'7 — By Ty — (91T — 1.91(;,1‘7),) (qu', - K;,Ty) ,
— <K¥/177K7T5/+192(K7‘L';7K;,‘Cy)(K%+T%)) (ﬂKyT&*ﬁK{,Ty) + (191({,/177191(,,17’,’7 (19)(71';,7191(,’,1,,)/) (K;,/Tyfkyfg,,),
!
= <K,//‘L';," — K1y, — 0 iy k), + T 7y) (KT — K,//‘L'y)) (19 Ky Ty — 19K§,17> + (19 Ky Ty — Oy Ty — (05T, — 9K Ty) (K7 — 13/1'{,))
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Proof. From the definition of Darboux vector we have

Wy = 1Ty + KBy
Covariant derivatives of this vector with respect to 7y are
J
Dr,W, = TTy+K,By,
2 " / J /"
DEWy = Ty+ (KT, — OK,7y )Ny + KBy,
DLWy = (r;,” — %Ky (KT — K,;,Ty)) Ty + (19 KyTy — 0Ky Ty + (01T — ﬂK;,Ty),)Ner (1921},()(71';, —KyTy) + K)/,”)By.
From eq.(2.1) and eq.(2.2) we write T, and By as follows
K. / ,L./
T, = Y D Wy— Y — W, and By= ——~—D — W,
v Ky Ty — K} Ty Ty Ky Ty — K} Ty v v Ky Ty — K} Ty Wyt Ky Ty — K} Ty v
Setting these vectors into eq.(2.3) we get Ny as
1 KJ,T —K ,L.// K.I ,CI/ _ K.//,.L.I
Ny = ﬂ(KT,_K/T)D%Wy—Q— 77/ y,yzDTvWVJ" 77[ 7,72 .
YTy~ KTy O (iy T — K Ty) 8 (16,7 — KTy)

Putting the equivalents of Ty, Ny and By into eq.(2.4) we obtain

1
/ /
DKy T, — K, Ty

1

D3 W, :( i T — 9K Ty + (V5,7 — DK, Ty
7,Wy = ((9%r7y y Ty + (O 7)) Ky Ty — Ky Ty

)D%Wy+ <(Ky1:;,” — K‘;,//‘L'yf 192(1(71;, - K;,‘L'y)(K‘% +T§))

K] Ty — Ky T}

Y Ty 7 ! 2 / / / /

ST~ ) )DTyWy-'r <(Ky Ty — Ky Ty + 8 (Ky ke, + Ty 7)) (16 Ty — Ky Ty)
v &y

1
+ (O Ky Ty — O Ky Ty + (Vi Ty — DiyTy))

! —
/" /" / ’ Ty a4
+ (B 1y Ty — B Ky Ty + (Vi Ty — DIy Ty) )W> .

Finally we arrange the linear union of D3T},Wy7 DzTyWy, DTYWy, W, with the coefficients Cyl» Cy2s Cy35 Cyd and this completes the proof.

/ /
K'y‘L'y — Ky’fy

2.1

(2.2)

(2.3)

2.4)

Theorem 2.2. Let (0.,7) be a Bertrand curve pair. Then the differential equation characterizing the curve 7y in terms of o with respect to connection can be

given
@ DFW + 0y DFW + 03DgW + oW = 0
with the coefficients ®y, @y, W3, Oy as

® sinZO(cose +sin9)
= ¢q——
1 N u?

3s5in®0 (cos6 + sind)

N/EEaTH

1 s5in6(cos6 + sinb) p3cos6

!/
T) e T\/A2 4+ u? Jr(l—st'nG)(Kr’—K’r)’

(

m =

pak—pat  p3(kt’ —«"7)cosO
kT — k't (sin® —1)(k7 — x'7)2”’

o3 = pit+

I ! S I

put —pax’ p3(x"t — k'1")cosO
Kkt — k't (sinf —1)(k7 — k'7)2’

Wy =

sin® (25in26 + 2sin*6 + 1) 1 25inB(cosO + sinH) (1), pe cos0 + sin6

"
= ) e T =,
N e S C A N Ny R I/ s
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sin® (1+ 5in26) 7 l)erc (cosB +s5inB)*t 1 cos6 +sin®

p2=ci ik (7: 2 Em (r) 3 i (7:)
cosO +sin@, ", . ;.\ KT+K
+61(W) ((?) sm@cosGJrcosG(cost 1)(1(1' —K 17)( )

/

Mo /2
—(( T? )z)lsin29 + cos6 (cosB +sin) ((%)”’C)/ +cos8 (cosB + sind) (w

2y

—(;)coszG(KT' B KJ‘L')> v cos8(cosO + sin0) (1:”1:—2(1:’)2) n cy

222+ u? VAZ+u?’

_ ,cos@+sinb | ( kT" ; . Y]
p3=ci (W) ((T)cos9s1n9+cos9(l 7cos9) ((K‘L’ — K 1:)

2t — i /ot
Jr(l_—Kz)(1’”172(1")2)JrM

T )+(KTT

)sin29 — (K”‘L’) cosOsind

/

—K(%)zsinZG + (T—Kz) (t"t— 2(1”)2)c0526

/4 1 _2,(./ / 0 6 : 9
+cos€(cos9+sin9)(’(r . ”)wae(u))ﬂzm ot — Kt

! /
: e kTR

. sinG(l-‘rsinZG)K(l)m . (cosOJrsinG)ZK(l)/,iC cos0+sin6(ﬁ)
pe=a VA2 +u? T VAZ+p?r T NRVZEESTERE S

Kcy . ( cos0 + sinb

+—F——tc
N RN/ T

+«"sincos® — (

) ((K“L” —«'1) (cos + t(cos6 — C()xze))

/

K;;- )'5in26 + cosB (cos6 + sinf) (((%)NK)/ +

K‘”‘L’;QZKJ‘L’/ )/))

cos0(cosO + sinb)
O

222+ 12

(K"t—2K'7")

and cy, ¢, ¢3, ¢4

sint0\2 [ Ak —sin6 , 1 Ak —sin20 .\
Y ()

Au Aurt

PR i in? T2 sin2 _in?
o (\/k +u sin29<(lk sin 6)//7(11( sin 9)(1),,>7(\//1 +u sinzﬂ(lk sin*0 1),7().1c sin 9)/)/>

A2 rut Au T A2 Au )(; Aut

(D dy - Arpey)).

Au Aut

$in%0 Ak — sin%6 Ak —sin%0. 1 sin%0
o= (G (=) - A0 (") 424 (5)

<(2,K—Sin29)(l)/7 (/IK—sinze),) <(lk—sin29)z+(‘vin29)z)>

Au rut rut AT

(mji#e((“;fjnze)(%),— (AK*Sinze)/)> +(\/msmze((lkfsin29)u_ (lesinZG)(l)/v

A2 Aut A2 Aut Au T

_(\/Wsmze((llcifjnzﬂ)(%),_ (AK;;Z!ZG)/))) <(sj{i-9)<(lrcfsin26)”_ (;LK;;MZG)(%)H))

Aurt
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sin%0 Ak —sin?0.,,1 Ak — sin0 1 Ak —sin?0 ., Ak —sin0 sin0.9,1
o = (IO (PO Ly (RO Ly ) (PO Ay (0 L)

(sin29> ((lk—sinze)(l)/i (AK—sinZG)/>> (msinze((“_s"”ze)(l)’, (),K—sinz(-))/)>

A2 Au Aut A2 Al rut

+<\/msin29((lk—sin29)//7 (lx—sinze)(l)//> 7(\/msin26((lk_sm26)(l)/f (JLK—sinze)/>)’

A2 rut Au T A2 A T Aut

sin*@ <(7LKfsin26)/(l)u (lkfsinzﬂ)u(l)/)
A2 AUt T rut T '
Proof. By making use of eq.(1.6), we can write the vector W, of eq.(2.1) in terms of the Bertrand curve o as
1
Wy = ———=W
N e

Applying the eq.(1.8) we evaluate the first derivative of this vector with respect to T

1
Dr,Wy = D(cmeusinoB)(WW)

= cosODr ( W) + sinODB(

;W)
PN
_ <cos9+sin9)DB +(c0s9+sin6 1 ')W

o/l N/EETeae

1
/A2

and the second derivative of Wy as

$in0(cos6 + sinb) DAW 4+ 2s5inB(cosO + sin6)

AN/cEaria /e

(cos® 4 sin)? (l)”W N cos0(cosO + sin6)

NZEESTRY: 222+ 42

1
DiW, = (;)’DBW—i- ("t —2(7))T

c0s0(cosO + sind)

2/ A2+ pu?

cos6(cosB + sinB)

/A2 +u?

(k7 —K'T)N+ («"t—2K'7)B.
(2.5)

By the similar method we obtain the third derivative of Wy as follows

i 26(6‘059 +sin9) 3sin29(cos9 +sin9) 1 sin@ (ZsinZG +2sin20 + 1) 1 sin@(l +sin26) 1
Dw, - n DAW + e Npaw 4 Ly
W oAt e S &) N/ e A/ el £

/

KTt K) - ((%)2)/517129 + cos6 (cosB +sin) ((%)”’L’)/

cos0 + sinb

+7
e

1
) ((%)lsinﬂcose +cosO (cos@ — 1) (K’L” - K"L’) (

't —2(7)?
=

. K cosO + sind k1" .
+cas9(cose+sm9)( )l— (;)COSZG(K'T,—KJT)>T+(W><( P )cosBsmB-&-cosG(l —cos@)((Kr/—K’r)’

- ! ! !
+ L’L'KT) + (T )sin20 — (k" 7)cosbsind — () sin20 + (1) (72 ~2(7)cos’d

Jr(?Kz) (T”‘L’*Z(’L'/)z)

! M Ayl ol s
+cos@(cos9+sin9)(KT K'L')/_COSZG(K“L' 2K‘L')> (cox9+sm6

VAZ+u?

) ((KT’ — K’T) (cos9 +1(cos6 — coszﬂ)) +k""sin@cos6

! !

"o /
—( KT; )'5in28 + cos® (cos® +5inB) (((%)”K)l + (Krrizzm),))B

Now we may express the Frenet vectors T, N, B of the covariant derivatives Dz, Wy D2T7Wy and D%Wy in terms of W. In order to do this we use Frenet
formulae given in eq.(1.8). From the equalities
W =1T+«kB and DgW =1'T+«'B

we can write the vectors T and B as

/ /

K K -7 T
T= (7>DBW7 (7)W and B= (7)DBW+ (7)W
KT —K'T KT —K'T Kt — k't KT —K'T
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Putting these vectors into the second derivative of W given above, we write the vector N as follows

! 11

cos0 5 cosB(kt" — k''7) cosO (k"7 — k')
N = | DpW DgW w
((lfsine)(KT’fK’r)) 5 Jr((sinef1)(1(7:’77(’1')2) B Jr((sinef1)(1(1"71(’1')2)

It remains only to find out the counterparts of the coefficients cy1, ¢y, ¢y3, cya of the eq.(2.1). Applying the eq.(1.5) we can write the equivalent of these
coefficients ¢y, c2, ¢3, ¢4 as given above.
Finally we rearrange the linear combination of derivatives D3T7W7, D%ywy, Dr, Wy and then put their coefficients computed above gives us the desired

differential equation. O

Corollary 2.3. Suppose that (0., ) be a Bertrand curve pair with the angle 6 between the vectors Ty and T. According to Levi-Civita connection, Bertrand
partner curve Y is biharmonic curve if and only if tanf = —1.

Proof. From eq.(1.7), Laplace image of the vector Wy is AW, = fD:‘}YWy and from eq.(2.5) we get

sinB(cos6 +sinb) _, 2s5inB(cosO +sin6) 1, (cos® +sin@)? 1, cos0(cosO +sinb) , "
AW, = ——-—-F— DWW ——— (- )DgW - —F———— (=)' W - ————— (T 7-2(7)7)T
Y PN B /224 2 (1,-) B /224 2 (1,-) 2 /A2 + 12 ( (7))
_ cos8(cos® +sinb) _ cos8(cos +sinb)

(k' —k'T)N («"t—2K'7)B.

/A2 +u? 2 /A2+p?

Considering the case AWy = 0 of the Theorem 1.1, we obtain that cos€ + sin@ = 0, that is, tan@ = —1.

Example 2.4. Given that (a,y) be a Bertrand curve pair and suppose that the Bertrand curve o with the curvatures K and T is satisfying the condition

Ty K24+12\ K e
7% and IJ:( 171(2)+1:2 (/T)
(=%) (==

Then the differential equations of 'y can be evaluated as
1. According to Theorem 2.1:

2
6((’(}')//7’7— KY(TY)H) Dy, Wy + 9 ((KV)”TY_ KY(TY)”> Wy =0.

2. According to Theorem 2.2:

<( UK —At ),, 1 B uK—At ( 1 )u>2(cos(9+sin9)D -

T\/12+/.12 T\/7Lz+[.12 T\/12+;L2 ‘L'\/leruz /Zer‘uz B

(<( UK —At ),, 1 _ HK—AT ( 1 ),,>2(cos9+sin6) -7
VI EENTEAE AV E RN TERNE 2VS ERNTERE 2V ERNTE VA4t /ot

+(( UK —AT ) 1 _ px—Ar ( 1 )”))W*O
PN TV EENTE ST EENTE IEA N e =0.

Conclusion: By making use of Darboux vector instead of mean curvature vector we give all characterizations of Bertrand partner curve in terms of the
Bertrand curve. Thanks to this method we get elementary differential equations and also this method made it easier for us to comment the harmonicity of the
Bertrand partner curve. We hope that this paper inspire the geometers to make similar scientific studies in non-Euclidean spaces.
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