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ABSTRACT. In this paper, some Hermite-Hadamard type inequalites for s-convex functions in the third sense are
studied. It is established several new inequalities for functions whose derivative in absolute value and pth power
of its derivative in absolute value are s-convex in the third sense. In addition, these inequalities are used to find an
upper bound for error in numerical integration for this type of functions.
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1. INTRODUCTION

Convex functions play an important role in many branches of mathematics, accordingly in other areas of science
as well. In parallel with the developments in the fields of science, many different generalizations of the concept of
convexity have been introduced [1-3,6-9, 16, 18, 19,23]. s-Convexity in the third sense studied in [14] is one of them.

On the other hand, one of the most important properties of convex functions is that they satisfy certain inequalities
such as Jensen and Hermite-Hadamard inequalities. The Hermite-Hadamard inequality is known in the literature as

b
f(a+b)s ﬁff(x)dxs f@+f®) (1.1)

2 2

where f : [a,b] — R is a convex function on the interval [a, b].

In literature, the Hermite-Hadamard inequality for the generalizations of the convex functions is obtained by many
researchers [4,10-12,24]. As a continuation of these works, the extensions and refinements of the Hermite-Hadamard
inequality for these functions satisfying certain condations have been the subject of many studies [5,13,15,17,20-22,
25].

In this study, we will focus on Hermite-Hadamard type inequalities for the functions whose absolute value of its
derivative is s-convex functions in the third sense and obtain some bounds for the difference of the average integral and
left expression, also for the difference of the average integral and right expression in the inequality (1.1).

The class of s-convex functions in the third sense is defined on a special set given below, namely p-convex set.
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Definition 1.1. [7]Let U CR"and 0 < p < 1. If for each x,y € U, A, u > O such that A7 + u? = 1, Ax + uy € U, then
U is called a p-convex set in R”.

Not every convex set in R is p-convex. p-Convex sets are intervals that accept 0 as the boundary point. In line
with [14] the concept of p-convex set given in Definition 1.1 is hereinafter referred to as s-convex set.

Definition 1.2. [14] Let s € (0, 1] and U C R" be a s-convex set. A function f : U — R is said to be s-convex function
in the third sense if the inequality

FQUx + pry) < A5 f(0) + 7 £(7) (1.2)
is satisfied for all x,y € U and A, 4 > 0 such that 2° + u* = 1.
The inequality (1.2) can also be expressed in the following ways:

FEx+ 1=y <47 f) + (1= D7 ()

or
1 1 L

fAx+ (1 =2%)5y) < A5 f(0) + (1 =22 f(y)

where A € [0, 1] and x,y € U. The class of these functions is denoted by Kf

An example of s-convex functions in the third sense is given below.

Example 1.3. [14] Let s € (0,1] and a,b,c € R with b < 0 and a, ¢ < 0. The function

a, ifx=0
bxs +c, ifx>0

fx) = {

is s-convex function in the third sense on (0, o). By adding extra condition ¢ < a, we can say f is s-convex function in
the third sense on [0, c0).

Not every convex function is an s-convex function in the third sense. Although the function f(x) = —x? on (0, c0)
is not convex, it is s-convex function in the third sense. Similarly, not every s-convex function in the third sense is a
convex function. Although the function f(x) = e¢* on (0, o) is a convex function, it is not an s-convex function in the
third sense.

A Hermite-Hadamard type inequality for the s-convex function in the third sense is given in the following theorem.

Theorem 1.4. [24] Let f : R, — R, be an integrable s-convex function in the third sense. For a,b € R, with a < b,
the following inequality holds

a+

b
1 b 1 1 1 1
22 7 < f f(x)dxs—(— [f(@b + fB)a] B, =) + s [fB)b + f(a)a]
25 (s+1D\s s2 s

where the function B is the Beta function defined as

1
B(x,y) = f 1 -y dt
0

where x,y > 0.

2. MAIN REsuLrs

By using the following lemma, we will determine an upper bound for the right side of Hermite-Hadamard inequality
for s-convex functions in the third sense:

Lemma 2.1. Leta,b € Rwitha < b, f:[a,b] CR — R be a differentiable function. If f’ is integrable on [a, b], then
the following equality holds:

f@+fb)
2

1 b 1 ! 1 1 ,o1 1
b_afaf(x)dx=mj; la+b-20b+1-Da)|f &b+ -1"a)

(7' - (= nd]ar.
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Proof. Using the partial integration formula and changing the variable as x = t§b+(1 —t)ﬁa, we get the desired equality
as follows:

1
—ZS(; b)f la+b-20b+ (-0 a)| @b+ -0t b= -1n""d|at
- 0

la+b-20b+ (-0 a)|fib+(1-1):a) i

1
2(a - b)

-1
s b)ff(tb+(1—t) a)|[r b - (1 -1 a|dt
f(a)+f(b) f food. 0

Theorem 2.2. Let a,b € R witha < b and f : R — R be differentiable function such that |f’| is integrable on [a, b)
and s-convex function in the third sense on R. Then the following inequality holds:

‘f(a);f(b) f Fodd <

Proof. Using Lemma 2.1, triangle inequality and the s-convexity of |f’|, we have

flay+fd) 1 (P
' 5 _b—afa f(x)dx

1 ! |
< — 2+
< 3 a)f|a+b (t5h + (

(Ia] + |b1)? (

f(@)]+

W Fo)) @1

~nta)[r b - (-0t d ar

-1 LZ _ \Lz
S2s(b—a)f ‘a+b 2tb +(1=1)f b-(1-0" ’(t + (1= 1) )dt
1
1
< 25— el + 16D (el + 16D [f f(l -0 ]
0
3s
= (| + 1) (|f @] + | ®)]). .

22+ Db -a)

It is clear that the sharper versions for the inequality (2.1) can be obtained. It is given in the following theorems
three sharper versions for this inequality:

Theorem 2.3. Let a,b € Rwitha < b and f : R — R be differentiable function such that |f’| is integrable on [a, b]
and s-convex function in the third sense on R. Then the following inequality holds:

flay+fw)y 1 P
7 _b—af f(x)dx

< S
= 2(a-b)

- (al + 1) (|

Q)+ 5 (1r

1
(al + b)) (|af’ ()| + Ibf'(a)I)B(;, =)

f)]

]
" %G+ Db-a)

1 ) 21
Moy e G D LS

1 , 111
sy labl (| £ ()] + )B(; + 500 2.2)
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Proof. If we put g(r) := -~ 'b — (1 —#s"'a and h(t) =a+b- 2(#19 +(1- t)la) then we have
fl@+ fb) f
' 3 F@dx| < 5 (b 1-1)} a)' di
2 _ 52
<5 (b f |h(t)g<r)| z +(1-n7|f (a)l) 2.3)
Using triangle inequality, we have
Ih(t)g(®)|
= ’(ab + D)0 = (@ +ab)(1— 1) = 202 4 2ab(t5 (1 = ) = 571 = ) + 231 — 1) *1|
< (labl + B2) 57"+ (@ + labl) (1 = 3 + 26207 + 20abl (1= 5+ 67 A=) + 2251 -0 Q24

Multiplying (2.4) with (ts% (b)) + (1 — t)si2 |f’(a)|), expanding and integrating on [0, 1] with respect to ¢ and using

properties of the Beta function B, we get

1 1
f Ih(Dg(®) (r?
0

+(1-pF

)

2
s 4
- (al + 16D (

)+

11
- (al + ) (|af’(b)| +[of @) BS. )

(7

a2)

Cl+

"2 +1( )B(_’_)

+2 |ab| (|f"

1
)+ )

When this inequality is used in the inequality (2.3), (2.2) is obtained.

O

Theorem 2.4. Let a,b € R witha < b and f : R — R be differentiable function such that |f’| is integrable on [a, b)

and s-convex function in the third sense on R. Then the following inequality holds:

‘f(a);rf(b) f Food

max{|g(0)l, [g(DI, lg(zI} - max{|a(0)], |h(D)], |a(z2)I} (

ST o “lrel)

where ] 1 ] 1
gt)y=t""b—(1-0H""'a and h(t)=a+b-2(tb + (1 - 1) a)
as in the proof of the above theorem and for a # 0
1Y)
T ;
’ h:{ (1+|;| ) if s#1

. \-1
b| T3 :
WL (1H1ETF) i s e
0or1 if s= 0 if s=1
fora=0,t,t equalto 0 or 1.

[SIER SIS

Proof. Lets# 1and s # % From Lemma 2.1, as in the proof of Theorem 2.2, we have

b
|f(a);f() f e f ool (7

g0 =1"b— (1= a, b)) =a+b-2rb+(1-D'a).

Y

@l)ar

where

Let a # 0. In search of extremum points of g and 4 it is seen that while g < 0and g > 0, g and h have one extremum
point in [0,1], i.e. g and k are unimodal functions on [0,1], respectively. In other cases g and # will be monotone
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functions. So g and & take extremum values either at the points #; and #, for proper values of a, b, respectively, or at the
points t = 0 or = 1 in common.

If we take |§| in the expression of #; and #,, we can express the largest values that can be reached in the [0,1] interval,
regardless of the sign of g as follows.

Thus
lg(I < max{|g(O)[, (D], lg(z)I} (2.5)
and
|h(O] < max{|h(0)[, |A(D)I, [A(z2)]} (2.6)
is derived.

For the case a = 0, extremum values are obtained for ¢t = 0, r = 1, which is included in the inequality above.

If s = 1, in this case, k() = (1 —2t) (b — a) is a linear decreasing function and it attains extremum values at ¢ = 0
or t = 1. Also, although #, is undefined for s = 1, we can calculate t, when s — 1~. Taking into consideration that
|§| > 1, we have

b 1

e
) -o

s—1-

t) = lim (1+
a

This means that in case s = 1, (2.6) is true.
Ifs = % in this case, g(f) = #(b + a) — a is a linear monotone function and it attains extremum values at t = 0 or
t = 1. Also, although ¢ is undefined for s = 1

3, we can calculate t; when s — % Taking into consideration that |§| > 1,
we have

s =1 s o —1

b 121) =1and 11m (1 + ’l—? ]25) =0.
a 1 - a
Whichever of the limits is used as #;, it makes (2.5) true.
Thus, in a similar way in the proof of Theorem 2.2, by using the s-convexity of |f’|, we get the desired result for

lim (1 +
each s € (0, 1]. m]

1+
s %

By making use of the Holder inequality, some kind of extensions of the above theorems can be obtained as in the
following theorems.

Theorem 2.5. Leta,b € Rwitha < b, p € (1,), f : R — R be differentiable function such that |f’|’ is integrable on
[a, b] and s-convex function in the third sense on R. Then the following inequality holds:

fla) + f(b) 52
' 2 ff(x)dx—z(b a)(52

Proof. Using Lemma 2.1, triangle and Holder inequality and the s-convexity of |f’|”, we have

b 1 b
lf(a);f()_b—aff(x)dx

1
)p

) (lal + 1B)* (|

l ! 1 1 11 19 g, L 1
smfo 'a+b—2(pb+(1—t).sa)Ht.x b—(1-ndl|re 1—t)sa)|dt
| | B ;
e — — s .&_1 - 4 % % p
S f a+b 2t h—2(1 - 1) a)| 't b—(1 -0 ] [f a)| dt]
0 0

p-1
1 -1

P 1 1%
1 %1 p‘%l = , p
= f (lal + [b] + 21b] + 2lal) (16| + lal) dt] [ f (r f@| )dt]
0 0

1
1
)”. O

Fo+a-n*

3 s2 0 \r )
S2s(b—a)(s2+1) (al + 161" (
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Theorem 2.6. Let a,b € R witha < b and f : R — R be differentiable function such that |f’|\P is integrable on [a, b]
with p > 1 and s-convex function in the third sense on R. Then the following inequality holds:

‘f(a);rf(b) f o
B S 'maxu Ol 1g(D) 1g(en)I} - max{[(O)], |x(D)], la(e)]} (| ”)ﬁ
Sub-a\2+1 SR8t 2

where g, h and t1,t, are defined as in Theorem 2.4.

Proof. By applying the Holder inequality as in the proof of Theorem 2.5, then using the findings about the maximum

of h and g from the proof of Theorem 2.4, the desired inequality is obtained. O
By using the following lemma, we will determine an upper bound for the left side of Hermite-Hadamard inequality

for s-convex functions in the third sense:

Lemma 2.7. Leta,bc Rwitha <b, f :[a,b] CR — R be a differentiable function. If f’ is integrable on [a, b], then
the following equality holds:

a+b 1 b
1655 [ feas

1

1
ﬁ“b +((1=pt - l)a} 1t —“b +(1-0ta) [zi—‘—“b —(1- z)i—‘a] dt

a+b

f[b(tv D+1-pnidt? ]f(zb+(1—z)—)[—‘b—(1 7! ]dt 2.7)
s(b a)

Proof. 1f we apply partial integration to the integrals on the right side of equality (2.7) and make the necessary variable
substitution, we get

e —t)i—l)}f(tv—+(1—t) a)[ %b_a_t)%—la dt
b(f‘ ~D+ (-0 2 e b+(1—t)’a+b) ﬁ*lb_(l_t)%*lﬂ dt
s(b a) f ’ s >
1 |{a+b a+b E 1 a+b\ a+b [
e ( > )f( )—f S(x)dx +(b—a) [(b— 5 )f( 5 )_fﬁz;,f(x)dx}
a+b
= f( > )—mfaf(x)dx. o

Theorem 2.8. Leta,b € R witha < band f : R — R be differentiable function such that |f’| is integrable on [a, b]
and s-convex function in the third sense on R. Then the following inequality holds:

a+b 1 b
’f( 5 )—mfaf(x)dx

. s (3|a|+|b|)2
= (2 + )b -a) 2

N 5a* + 6 |ab| + 5b*
2

f(

a+b‘ (|a|+3|b|
7 )"
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Proof. From Lemma 2.7, triangle inequality and the s-convexity of |f”|, we have
a+b 1 b
’f( - f fd
1 a+b 1 b 1
na -0 =Dl T2 g - ;*1' 1-105
_s(b 1) Jal |t > (1-0"a + (1 -0sa)|dt
1 ia+t
— b-(1- dt
s(b —-a) ‘ ' (=2 '
jal + |b| i ,a+b' i
< 2 - 1-02
_S(b_a)f( +|a|) (r FEED| -0 [ @) ar
lal + Ibl
f wl) (1 o)+ -0 [ D) a
s(b —-a)
< s 3|a|+|b| +5a + 6|ab| + 5b* f,(a+b)’+ |a|+3|b| -
T(2+ Db -a) 2 2 2

Theorem 2.9. Let a,b € Ry, witha < b and f : Ry, — R be differentiable function such that |f’| is integrable on

[a, b] and s-convex function in the third sense on R. Let

a0 =12 . b (=0t = Da and g = bt =)+ (1 -t 2 ”’
o =128 40 and ) = b - (1 —t)rl‘”b.
Then
lf(“”’ - f fodx| < ﬁ(wl @] + 01 +w)f 2y 4, )
where
wi = max{lgi1(0)], [g1 (DI, g1 )I} - max{|ha (0)], |y (D], |1 (sDI},
wy = max{|g2(0)], |g2(1)I, Ig2(22)I} - max{|a2(0)], h2(D)], 12 (s2)I}
and

>

tl:{(1+(%)m)_l if s#1 , tz:{(1+(%)H)—l P

1 if s=1 1 if s=1

Oorl if s=

[STESTIE
©
N}

2{ (1+( a;bb)z;l)_l if s#

Oorl if s=

[SIE ST

Proof. Lets # 1 and s # % According to first derivatives of functions g;, g2, /1, h, it is understood that these
functions are either monotonic or unimodal functions on [0, 1] with respect to values of a, b, s. The maximum values of
g1, g2, |h1(?)], |ho(2)| are attained at either boundary points of [0, 1] or extremum points. The extremum points
are determined as #;,t, 51,52. Incases s = 1 and s = %, the idea in the proof of Theorem 2.4 is used and indicated

values in the statement of the theorem are obtained. Thus

lgi(D] < max{|g;(0)], 1gi(DI, lgi(z)l} and |hi(1)] < max{|h;(O)], [A;(D)I, [Ri(si)]}.
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fori =1,2. From Lemma 2.7, we have

b
‘f(“”’)—%f fdx

< s(b + (1-05a) dt+ —)’dt
< b - )f max{|g1(0)], g1 (DI, Ig1(z)l} max{|A; (O)], [y (D], 171 (s)I} (ﬂ f( +(1—t)52 )dt
s(b a)f max{|g2(0)], 1g2(1)I, |g2(22)I} max{|h2 ()], |2 ()], |h2(52)|}(t2 (b)|+(1—t)2 f(—)‘)dt

)+W2

< m (Wl |f’(a)| + (wy + WZ)f’(

) o

Theorem 2.10. Let a,b € R witha < b and f : R — R be differentiable function such that |f’| is integrable on [a, b]
and s-convex function in the third sense on R. Then the following inequality holds:

a+b 1 b
|f< -5 [ s

s3s +2) ( )
S G2+ hb-ay\?

+ f’(ﬂﬂﬂ‘qauwnwz

(
)'<2+b2>+( )(

Hlr @2

|

))B( : 2)

, 21
f (b)l)) B(-. )

b‘ +b2)+'

1
TG+ 1)(b—a)(

f(@|+

I
+s(2s+1)(b—a)(
1 a+b‘(
a
2

+
s(b—a)
Proof. Let g1, g2, h and hy functions as in Theorem 2.9. Using triangle inequality, we have

11 1
)B(—,—+—2).
s S )

1O (0] = (ti-# H(1-p} - 1)a) (r“# - r)lla)
e U LR B (L E TR E)

s(azb) 31 ||’—'(f—'(1—t) o r U= )+ A= (1 =), 2.8)

62O (0] = |(b<r» CD+-ntdt b)(rilb— (1-pt1et b)‘

=P -+ b(“—)(ri”(l LR () KT ¢ B b (1 -1

a+b
( 2
<PV 1 1)+|b|’—'(f—1(l—t) + (1= g (1—:)*-1)+( )2(1 £l (2.9)

If we multiply inequalities (2.8) and (2.9) with (ﬁz
(@i a-n?

7]+ - 0¥ @) and

"(42)|), respectively using Lemma 2.7, integrating on [0,1], using the s-convexity of |f’| and
2 P y g g g
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properties of the Beta function B, we have

b 1 b
e )——ff(x)dx

< S(b f |g1<t)h1(t>|(z2

+— f |g2<t)hz<r>|(r@
f a+b

= s(b a)

'("2 (S

FEE2 )+(1—t)

@)ar
)

b‘(r%*l(l IR S L LT € ) k) B (¢ ) K ¢ z)il)]

+ (197

IaI

+(1-p? |f’(a)|)dt

! 2 1 a+b 2
+ [bz(zs1+r.v‘)+|b| @1 - +2(1—t)”1+t(1—t)”1)+( )2(1 t)sl]
s(b—a) 2
(r’ P+ a-® e ')dr
s(Bs+2) a+b

2| g2
3 (a lf (@] +]f(

T (s+ D@2s+ )b - (Ial +1bl) + b7 |f’ (b)|)

b)‘(aZ +b) +

/ 4 1
(|a| | (@] + 161 | (b)l)) B~ )
2 1

)] B, )

11 1
)B(—,—+—2). O
s s N

1
TG+ 1)(b—a)(

1 , a+b 5
+s(2s+1)(b—a)[f( 2 )‘( ”’”( )(
1 a+b’(
B a

+
s(b—a)
Theorem 2.11. Let a,b € R witha < b, p € (1,0) and f : R — R be differentiable function such that |f’|’ is
integrable on [a, b] and s-convex function in the third sense on R. Then the following inequality holds:

a+b a+b
‘f( )——ff(x)dx Ty a)(2||+‘ D(II D(

[ R e [T

Proof. From Lemma 2.7, Holder inequality, triangle inequality and the s-convexity of |f’|’, we have
a+b 1 b
-— d
f(5=) b_aff(x) x
p=l
< (f O 017 i (f e ra-nta

P—

s(b (f lg2(Dh2(1)] 77 dt) (
1 [ !

< -
T stb-a)l|Jo

1
(f 'f’(ﬁ#ﬂl—t)%a)pdr
0

a+b

a+b

of).

N
Sl

po\P
dt)
1
p P
dt)
p-1

(tia;b (-1 - l)a)(ti"a;b -a —r)i-'a) ,, dt]

1
)p

1 1 b
FEb+ (-t
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1 ! 1 1a+b 1 1_1a+b ”%‘ g
+s(b—a)[fo (b(tf—l)+(1—t)<T)(tx b-—(1-1> 5 )’ dt]
I ARY:
(0 d
0
1 "la+b " (la+b AT
Ss(b—a)[fo( > ‘+2|a|) ( > ‘+|a|) dt]
1 5
e o)
0
1 ! a+b|\™ a+b|\™ v
+s(b—a)[£ (2|b|+ D (|b|+ 2 ‘) dt]

2
by 1 b |P »
[Epvot e

p-1

@b -0 0

b |P L
f’(%)' f(1-nt

$ a+b a+b ,a+b|P , pll?
sm(ZIaH T‘)(Ial+ 7 ‘)(f( > ) +f(a)|)

S a+b a+b ,a+b |P , pll’
+m(2lbl+'7')(lbl+ > D(f( 5 +f(b)|) . 0

Using the following lemma, we will determine an estimate of the integral of s-convex functions in the third sense as
a Hermite-Hadamard type inequality:

Lemma 2.12. Let a,b € Rwitha < b, f : [a,b] C R — R be a differentiable function. If f’ is integrable on [a, b),
then the following equality holds:
1

b
bf(b)—af(a)—ff(x)dx: %f[b%?-l —P A =0 v absT (1 - 1) —abt%(1—r)%-1]f’(t%b+(1—t)% a)dr.

0

Proof. Applying the partial integration formula and changing the variable as x = 15h+ a- t)§ a, then we have

1
1 f[bzt%—l —d (-0 abr™ (1= 0)F —abrs (1= 07| f(5b + (1= )7 adr
S

0
1
- f(t%b +(1 =05 a)f b+ -1 a)é(t%—lb — (1 -5 aydr
0
1
=[@ b+ =D a)fb+ (1 -1): a)]é - ff(z'sb +(1 -1 a)é(t%—lb —(1 - aydr
0
b
= bf(b) - af(a) - f Fdx. o

Theorem 2.13. Let a,b € R witha < b and f : R — R be differentiable function such that |f’| is integrable on [a, b]
and s-convex function in the third sense on R. Then the following inequality holds:

s (al + b1 (£ @] + | ®)])

N

b
bf(b) - af(a) - f Jf(x)dx| <
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Proof. Using Lemma 2.12 and convexity of |f’|, we obtain

b
bf(b) - af(a) - f Jf(x)dx

a

1
=lf 2 - t)g_l“‘abf%_l(l—f)%—abf%(1—I)%_l]f'(t%b+(1—t)%a)dt
S
0
1 1
S§f|b2t‘ —d (=0 wabts (=5 —abts (L= Y |F@e b+ (1 -0 a)‘dt

0
1

<1 [ (el am i ot a- 0 ot -0 ) @)+ -0 | e
Ol
<+ [ a0 (75 )]+ (1 -0 |r @)
0
= o (al + b (| @] + ). -

Theorem 2.14. Let f : R — R be a differentiable function,a,b € R with a < b and p € (1, o) such that 1—1) <s IfIf')P
is s-convex in the third sense on R then the following inequality holds:

2

b
1
bf(b) - af(a) - f F(x)dx| < —( =
S\ +

1

r 1
1) (lal + BD* (f' B + 1" @) .
Proof. Using Lemma 2.12, Holder inequality, triangle inequality and the s-convexity of |f’|”, we have

b
b(B) - af(a) - f Fdx

I
1
= f[b%%*l —a*(1- t).z?*l +abt™! (- t)l? — abt* (1- l‘)%fl]f'(t%b L (- t)% a1
0

p-1

o\
'dt)

IA

1({ ! )
2 (f 'bzt%—l —lR A= abtt (1 =0t —abtt (1— )3
S \Jo

i gl

1 1 P v
- (f [P0 @ (1 =03+ lable ™ (1= 1) +lablrs (1= 1) ] dt)
0

N

p=1

IA

(fo 2O+ (1 -7 If'(a)l”dt)

% (f [bZ + 2 |ab| + az]ﬂj dt) (f tjzlf/(b)v; +(1 =07 |f/(a)|”dt)
0 0

| 2\ 1
~ s (szsﬁ) (lal + 16D (Lf @) + | (@) .

IA
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3. APPLICATIONS

Using some of the results given above, we can find an upper bound for error in numerical integration for the functions
whose absolute value of first derivatives are s-convex in the third sense via composite trapezoid rule.

Let f be an integrable function on [a, b] and P be a partition of the interval [a,b],i.e. P :a = xp < x] < -+ <
Xp—1 < X, = band Ax;;; = x;41 — x;. Then

b n—1
f FOodx = kZ: SOOI O g+ 07,y 3.1

where E(f, P) is called the error of integral with respect to P. There are some ways to estimate an upper bound for
E(f, P). For s-convex functions in the third sense we suggest the following proposition:

Proposition 3.1. Let f : R — R be differentiable function and |f’| be integrable on [a, b] and s-convex function in the
third sense on R. Suppose that P is a partition of [a, b]. Then

-1

|E(f, P)| < (AR
) k=0

3

FO0] + |f G

Proof. Applying Theorem 2.2 on [x, x+1], we have

Xk+1

J ) + f Gae) 1 3s
2 Xl — Xk ff(x)dx 2(5% + D(Xps1 — x1)

£ @] + | Gan)]) - (3.2)

(el + et D

Then using (3.1) and (3.2), we get the desired result as follows:

Z f () +f(xk+1) ff(x)dx

|E(f, P)|

1 X1
Z J () +f(xk+1)Axk+1 B ff(x)dx

k=0 2

-1

M

S G + f (gerr) +f(xk+1) Nt — ff(x)dx

f f(x)dx| . |

Xk

k=0

—_

n—

SO+ fa) 1

2 Xprl — Xx

Axpp1
-0

=~

Proposition 3.2. Let a,b be real numbers with a < b and f : R — R be differentiable function such that |f'|P is
integrable on [a, b] and s-convex function in the third sense on R. Suppose that P is a partition of [a, b]. Then

3( &\
IE(f.P)| < 2s( ) Z(|xk|+|xk+1|)2(

s2+1

+ | Ges)|” )
Proof. Applying Theorem 2.5 in a similar way to proof of the Proposition 3.1. O
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