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Orthoptic Sets and Quadric Hypersurfaces
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Abstract

Orthoptic curves for the conics are well known. It is the Monge’s circle for ellipse and hyperbola, and for parabola
it is its directrix. These conics are level sets of quadratic functions in the plane. We consider level sets of
quadratic functions in higher dimension, known as quadric hypersurfaces. For these hypersurfaces we present
and study their orthoptic sets, which extend the idea of orthoptic curves for conics.
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1. Introduction

In the plane the orthoptic curve is the locus of the points by which pass two perpendicular tangents to the curve, in other words,
the locus of the points from which we “’see” the curve under a right angle. For the conics in the plane it is related to Monge’s
work [3].
2
For ellipse and hyperbola it is called the Monge’s circle. Given the ellipse ;‘—i + z—z = 1, the Monge’s circle is x> +y? = a® + b?,

while for the hyperbola ;‘—i — Zé =1, it is x> +y? = a® — b?, which exists only for a®> — b*> > 0. For the parabola y*> = 2px, the
orthoptic curve is its directrix x = —p/2. See for example [1], [2], [4] for more details.

For these examples in the plane we need two perpendicular tangents to a curve. So the two normal vectors to the tangent
planes, which are also normal vectors to the curve, are also orthogonal. One way to consider this locus in higher dimension is
to consider a set of tangent planes to the hypersurface such that the set of their normal vectors, to the given tangent planes, form
an orthogonal set.

In this paper we consider a natural way to define an orthoptic set associated to a quadric hypersurface. We first present,
in Section 2, the surface we are considering and define what we will consider as an orthoptic set. Then some notations are
introduced in Section 3. The next two sections contain the presentation and the proofs of our main results. In Section 4 we
consider ellipsoid and hyperboloid hypersurfaces. For ellipsoid, the technique in R? seems to be due to Monge, as reported in
[5] where it is referred to [3]. We present here that it can be extended not only to ellipsoid in R”, but also to hyperboloid in R”".
Moreover in Section 5 a variant of this technique is also used to determine the orthoptic set for paraboloid hypersurfaces. In the
last section, the conclusion, a summary is presented and some questions are raised for future research.

The contribution of this paper is to present results for orthoptic sets, not only for conics in R2 [4] and quadrics in R3 [5],
but also for quadric hypersurfaces in R”. Even thought it can be said that the technique for ellipsoid in R? can be extended to
higher dimension [5], we present this extension not only for ellipsoids, but also for hyperboloids and paraboloids. We will see
that it is a nice application of the trace operator of a matrix. Finally, one question remains unanswered. The results say that the
orthoptic sets are included in some sets, but are these sets exactly the orthoptic sets. This result is true in R” for n = 2,3, but for
n > 3 it is an open question.
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2. Preliminaries

2.1 Quadric hypersurfaces
The two quadratic functions we will study lead to ellipsoid or hyperboloid hypersurface defined by

I 2 J 42
X; Yj
f(xay): 7’,27]:1’
i=1 aiz j=1 b?
for (x,y) € RI*/, and to paraboloid surface defined by
I 2 J y% K
geya) =) 5= Y 35— Y =0,
i=19% =19 k=1

for (x,y,z) € RIF/FK,

2.2 Orthoptic surface

Based on the fact that in the plane each point of the orthoptic curve is associated to two normal vectors to the tangent planes
or also to the curve, the next definition is suggested for a generalization in multidimensional Euclidean spaces of the usual
orthoptic curve in the plane.

Definition. Let a hypersurface ./ defined by h(&) = 0 in RE. The orthoptic set is the set of points common to L tangent planes
to & under the condition that the L normals to the tangent planes form an orthogonal set.

3. Notations

Letx=(x1,...,x7) ERL,y=(y1,...,y7) €ER), z=(z1,...,2x) and p = (p1,...,px) ERK. Let N=I+Jand M =N +K =
I+J+K. Let us introduce the I’th order diagonal matrix A = diag(a;), the J’th order diagonal matrix B = diag(b;), and the
N’th order diagonal matrix

A O
P= { O 1B } ’
where 1 is the unit complex number such that 1> = —1. For any integer / € Z, we have

Al = diag(al) and B'= diag(bﬁ»),
and also
Al o
I _
F= [ o VB } '
For any (line vector) ¢ € RE, ¢' will be its (column vector) transpose. So, we can rewrite the quadratic form f (x,y) as
) 20 _ o p-2.t
fxy) =xA"x —yB~ 7y =vP~ 5V = f(v),

where v = (x,y) € RY, and the quadratic form g(x,y,z) as

g(x,y,2) =xA"% —yB~% —2p =vP~ ' —2p7 = g(w),

where w = (v,z) = (x,y,z) € R,

4. Ellipsoid and Hyperboloid hypersurfaces
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4.1 Tangent planes
For
fv)=vP~ 2V,

a row normal vector to the surface f(v) = 1 at a point v of this surface, noted V (vp), can be taken to be

1 _
V(vg) = EVf(V()) =P 2,
The tangent plane to f(v) = 1 at vy is given by the condition
V(vo)(v—1p) =0,

which gives
V(vo)V' =V (vo)vh = voP 2Vl = f(vo) = 1.

4.2 Orthoptic set

Let us suppose that there exists a finite sequence of points {v,}~_, such that f(v,) = 1forn=1,...,N, and {V (v,)}"_, is an
orthogonal set. Let us look for the common point to the N tangent planes to the surface f(v,) = 1 at v,, that is to say a point
v = (X,y) such that

V)V =1
forn=1,...,N. We have to solve the linear system
V(vl) 1
LoV =
V(VN) 1

Using the orthogonality property of the family of normal vectors, we get

-1

V(vi)
: :[ Vi(vy) Vi(vy) }
: vl V(o)
V(vy)
and then
_ i 1 )
V= V(va
|V ()

N 1 N 1
|’\;Iz = W = V(V )Vt(v ) -
3 [ZCS Z V()
Let us look at the inverse. We have
V(v)
_ . Vi) Vi)
= e Vi |
V(VN
and also
V(vl)
I — |: VI("I) . VI(VN) :
V(v v (vy)* :
V(vw)
y v
= ——— V' (vu)V(v)
Sve)
N

1 2
= P2y, P2,
2 n
=1 |V (V)] !




Orthoptic Sets and Quadric Hypersurfaces — 133/136

Let us observe that
1

N
P>=PIP= P Wy,P!,
r;l |V(Vn>|2 !
and taking the trace on both sides, we get
I J
Trace(P?) = Za? — Z b?,
i=1 =1
and
A
Trace(P*) = ) > Trace(P~ 'V, P™")
n=1 |V(Vn)|
i 1 2
= Trace(v,P~ v},
n=1 |V(Vn)|2 1
“Y )
n=1 |V(vn)|
g
V)P

where we used the fact that Trace(HH') = Trace(H'H). So we obtain the result we were looking for.

Theorem 4.1. Let the hypersurface, ellipsoid or hyperboloid, be defined by

in RN where N = I+J. The orthoptic set of this hypersurface, if it exists, is included in the hypersphere of radius

VXL, a’ —25:1 b? > 0 given by

~

b
=1

i.

1 J 1
YA+ Y=Y a -
i=1 j=1 i=1

5. Paraboloid hypersurface

5.1 Tangent planes
For

g(w) =vP~ 2 —2p,

a row normal vector to the surface g(w) = 0 at a point wy of this surface, noted W (wy), can be taken to be

Wowo) = 3Vg(w0) = (P2, —p).

The tangent plane to g(w) = 0 at wy is given by the condition
W (wo)(w—wp)" =0,

which gives

W (wo)w' = W (wo)wh = voP ™2V} — pzhy = g(wo) + pzhy = pzl.



Orthoptic Sets and Quadric Hypersurfaces — 134/136

5.2 Orthoptic set
Let us suppose that there exists a sequence of points {w,, }_, such that g(wy,) =0 form = 1,...,M, and {W (w,,)}_, is an
orthogonal sequence. Let us look for the common point to the M tangent planes to the surface g(w;,) = 0 at wy,, that is to say a
point w = (X,y,Z) such that

VV("Vm)"T}1 = Pan

form=1,...,M. We have to solve the linear system
W(wi) Pz
. ~1 — .
W (wur) P2y

Using the orthogonality properties of the family of normal vectors, we get

-1

W (wi)
. _ [ Wilwy) W' (wy) }
: W (w1)|* W (war)[?
W(wu)
and then
W= f ! W' (W) pz,
m=1 |W(Wm)|2 "
and so ”
~t 2 t
pZ =—|p| —— Py
mgl |W(Wm)|2 "
Let us look at the inverse. We have
W(W])
[ — . [ W (wy) W (wwm)
: W (wy)? W (war)*
W(WM
and also
W(w1)
= [ W' (wy) W (wy) ] .
W (w)[? W (wag)|* :
W(WM)
M
= Z ﬁwt(wm)w(wm)

S
i
=
- =~

I
ng S

[ P~ 2iyP2 P Hip ]

WP L pvPTE P

3
I

Let us first observe that

pP=]0 p]l{o}

pl‘

¥ e [P P e ]T 0]
o= (W (wi))? pviP~ p'p p
M
=Y L oiort
2
m=1 |W( m)|
) g —
m=1 |W(Wm)|

SO
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Using any K’th order diagonal matrix Q = diag(gy) where g € R for k= 1,...,K, we have

P o]l [P O [P0
0 0*| |0 O 0 Q
|:P_1V§V1P_1 P_lvﬁpQ
= W (wm) 2 wm)| op'viP~t Qp'pQ |’

and taking the trace on both sides, we get

I J K
Trace(P*) + Trace(Q?) = Zal-z — Z b? + Z a;

M:

i=1 =1 k=1
and
M _ _ _
) — ' | F 1;;?\;1}111 P lﬁpQ
= W () op'viP op'pQ
& 1 1 1
=Y WP [Trace(P~'vi,vuP~") + Trace(Qp' pQ)]
m=1 m
M 1
=Y W [Trace(v,,P~ V!, ) + Trace(pQ?p')]
m=1 m
< 1 2.1 2
=Y —— [vuP N, + pQPp
L i |
M 1 )
= 21 W [P(Wi) +2pzl, + pQO°P']
m= m
y ! Y
=2Y ——pd,+p0p Y ——.
2 2
=t (W (w27 LW (wm)|
For QO = 0 we obtain
! J M
!
Z Z =2) ——— P2,
i=1 Jj=1 m=1 |W(Wm)|2 "

and for Q = I, since Trace(Q?) = Trace(I) = K and pQ%p' = pp' = |p|*, we get

W WATERDY y !

a; Pr+k=2Y ——p +p? Y —
= =1 ’ Wwa)* " =t W (W)
y '

—2Y —— pd g1
m=1 |W(Wm)|2

This is possible only for K = 1. So we obtain the result we were looking for.

Theorem 5.1. Let the hypersurface, a paraboloid, defined by

1 Jy]_
YLy
J

i=1 j=1

przk =0,

Ma

R ‘ Ra

k

1

inRM where M=N+K=I1I+J+K.

For K = 1, the orthoptic set might exist and, if it exists, is included in the hyperplane

» [ J
—-2lya-x5).
2= j=1
where we have considered p > 0.

For K > 1 the orthoptic set does not exist.
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Let us observe that the fact that K = 1 in this last theorem is not a surprise. Indeed for K > 1, since the last K entries of any
normal vectors are all equal to 1, it is not possible to find a set of M = I+ J + K orthogonal (normal) vectors to the paraboloid
as assumed to get the result.

6. Conclusion

We have introduced orthoptic sets for hypersurfaces associated to quadratic forms in R"”. At least one interesting question
remains: are the hypersphere in Theorem 4.1 or the hyperplane in Theorem 5.1 exactly the orthoptic surfaces ? In other words,
to any point on the given hypersphere or hyperplane does there exists a set of orthogonal normals for which the point is the
unique common point to the corresponding set of planes ? As an example, for Theorem 4.1 with N =2 and I =1 = J, if the
radius is 0, which means that a; = by, it is not possible to find a set of 2 orthogonal normals, except if we consider that the two
asymptotes are tangent at infinity to the hyperbola. So what happens in higher dimension ?
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