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Abstract

In [7], Enomoto et al. identified the concept of super edge magic total labeling of graphs by getting motivation from the idea of edge-magic
labeling of graphs that was brought into light by Kotzig and Rosa [20]. An edge magic total labeling of a graph G is a one to one map φ from
V (G)∪E(G) onto the set {1,2, . . . , |V (G)|+ |E(G)|} with the property that, there is an integer constant α such that φ(u)+φ(uv)+φ(v) = α

for any (u,v) ∈ E(G). Moreover if φ(V (G)) = {1,2, . . . , |V (G)|}, then edge magic total labeling is called super edge magic total labeling. In
this paper, we study the super edge magic total labeling of generalized comb graph.
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1. Introduction

In this paper, we consider only finite, simple and undirected graphs. We denote the vertex set by V (G), edge set by E(G) of a graph G and
their cardinalities by p and q respectively, i.e. |V (G)|= p and |E(G)|= q. A labeling of a graph is a map that carries the graph elements
to numbers (usually positive integers). In this paper the domain will usually be the set of all vertices and edges, such labelings are called
total labeling. Some labelings use the vertex-set only, or the edge-set only, this type of labeling is called vertex-labeling and edge-labeling
respectively. Other domains are also possible like the set of faces of the graph. There are many types of labelings namely, graceful labeling,
alpha labeling, antimagic labeling etc [1,2].
In this paper, we focus on one type of labeling called edge-magic total labeling. An edge magic total labeling of a graph G is a bijection
φ : V (G)∪E(G)→{1,2, . . . , p+q} such that φ(x)+φ(xy)+φ(y) is constant, for every edge xy ∈ E(G). A graph with an edge magic total
labeling is called edge magic graph. An edge magic total labeling φ is called super edge magic total if φ(V (G)) = {1,2, . . . , p}. A graph
with super edge magic total labeling is called a super edge magic graph[14,15,16,17] .
Graph theory can be applied to a wide range of fields and problems. In chemistry and physics graph theory can be used to study molecules
or chemical reactions. A graph makes a natural model for a molecule, where vertices represent atoms and edges bonds. Graph theory has
applications in cheminformatics, medicinal chemistry, biology, and biochemistry[6]. This approach is especially used in computer processing
of molecular structures, ranging from chemical editors, database searching, find similarity functions, sub-structure searching, all of which are
important in drug design algorithms [7,8]. Zhang et. al [9, 10, 11] discuss the topological indices of generalized bridge molecular graphs,
Carbon Nanotubes and product of chemical graphs. Zhang et. al [12, 13, 14] provided the physical analysis of heat for formation and entropy
of Ceria Oxide
The subject of edge-magic total labeling of graph has its origin in the work of Kotzig and Rosa [20], on what they called magic valuations of
graphs. The notation of super edge-magic labeling was introduced by Enomotp et al. in [7] as super edge magic total labeling. A number of
classification studies on super edge-magic total graphs has been intensively investigated. More detail, the results on edge magic and super
edge magic labeling of some graphs can be seen in [9,10,11,12,13] and a complete survey [15] and for more details see [3, 4, 5]. In this
paper, we mainly focussing on the comb and star graphs.

2. The generalized comb graph

A generalized comb graph is obtained from a path Pn+1 having vertices u0,1,u1,1,u2,1,u3,1, . . . ,un,1 by joining n new paths Pi ;1 ≤ i ≤ n
of order ti with vertices u1,1,u2,1,u3,1, . . . ,un,1 respectively and is denoted by Cbn(t1, t2, . . . , tn−1, tn). So the vertex set and the edge set of
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generalized comb graph are defined as follows:

V (Cbn) = {ui, j : 1 ≤ i ≤ n, 1 ≤ j ≤ ti}∪{u0,1},

E(Cbn) = {(ui−1,1 ui,1) : 1 ≤ i ≤ n}∪{(ui, j ui, j+1) : 1 ≤ i ≤ n, 1 ≤ j ≤ ti −1}

with |V (Cbn)|= 1+
n
∑

i=1
ti and |E(Cbn)|=

n
∑

i=1
ti.

Now, we investigate the super edge magic total labeling of generalized comb graph. In order to prove our main results, we will frequently
use the following lemma:

Lemma 2.1. [8] A (p,q) graph G is super edge magictotal if and only if there exists a bijective function φ : V (G)→{1,2, · · · , p} such that
the set S = {φ(x)+φ(y) : xy ∈ E(G)} consists of q consecutive integers. In such a case, φ extends to a super edge magictotal labeling of G
with magicconstant α = p+q+ s, where s = min(S).

Theorem 2.2. For n ≥ 3, t1 ≥ 3, the generalized comb Cbn(t1, t1 +1, t1 +2, . . . , t1 +n−2, t1 +n−1) admits super edge magictotal labeling.

Proof: By the construction of generalized comb, we find that
ti = t1 −1+ i, f or 2 ≤ i ≤ n, with |V (Cbn)|= n(2t1+n−1)+2

2 and |E(Cbn)|= n(2t1+n−1)
2 .

Now Its come to show that Cbn is super edge magic we define the labeling φ : V (Cbn) → {1,2,3, . . . , n(2t1+n−1)+2
2 } for 1 ≤ i ≤ n and

1 ≤ j ≤ ti as follows:

Case 1: when t1 is odd

(a) If i, j have same parity,

φ(ui, j) =


j+1
2 , if i = 1

∑
i−2

r=1
r≡1(mod2)

tr +
i+ j

2 , if 3 ≤ i ≤ n,odd

∑
i−1

r=1
r≡1(mod2)

tr +1+ i− j
2 , if 2 ≤ i ≤ n,even.

(b) If i, j have different parity and

(i) n is odd

φ(ui, j) =

 ∑
n−2

r=1
r≡1(mod2)

tr +∑
i−1

r=1
r≡1(mod2)

tr +
2n+t1+2− j

2 , if 2 ≤ i ≤ n,even

∑
n−2

r=1
r≡1(mod2)

tr +∑
i−2

r=1
r≡1(mod2)

tr +
2n+t1+1+ j

2 , if 3 ≤ i ≤ n,odd.

φ(u0,1) = ∑
n−2

r=1
r≡1(mod2)

tr + 2n+t1+1
2 , φ(u1, j) = ∑

n−2
r=1

r≡1(mod2)
tr +

2n+t1+1+ j
2 ,

It is easy to see that under the labeling φ the set of all edge-sums is
S1 =

{
1
2

[
∑

n−2
r=1

r≡1(mod2)
2tr +2n+ t1 +1

]
+ i; 1 ≤ i ≤ n(2t1+n−1)

2

}
(ii) n is even
φ(u0,1) = ∑

n−1
r=1

r≡1(mod2)
tr + n+2

2 , φ(u1, j) = ∑
n−1

r=1
r≡1(mod2)

tr +
n+2+ j

2 ,

φ(ui, j) =


∑

n−1
r=1

r≡1(mod2)
tr +∑

i−2
r=1

r≡1(mod2)
tr +

n+2+ j
2 , if 3 ≤ i ≤ n,odd

∑
n−1

r=1
r≡1(mod2)

tr +∑
i−1

r=1
r≡1(mod2)

tr +
n+3− j

2 , if 2 ≤ i ≤ n,even

It is easy to see that under the labeling φ the set of all edge-sums
S2 =

{
1
2

[
∑

n−1
r=1

r≡1(mod2)
2tr +n+2

]
+ i; 1 ≤ i ≤ n(2t1+n−1)

2

}
Case 2: when t1 is even

(a) If i, j have different parity,

φ(u0,1) =
t1+2

2 , φ(u1, j) =
t1+2− j

2 ,

φ(ui, j) =


1
4

[ i−1
∑

r=1
2tr +4+ i+2 j

]
, if 2 ≤ i ≤ n,even

1
4

[ i
∑

r=1
2tr +7+ i−2 j

]
, if 3 ≤ i ≤ n,odd

(b) If i, j have same parity and

(i) n is odd

φ(ui, j) =



1
4

[ n
∑

r=1
2tr +2t1 +n+5−2 j

]
, if i = 1

1
4

[ n
∑

r=1
2tr +

i
∑

r=1
2tr +n+6− i−2 j

]
, if 3 ≤ i ≤ n,odd

1
4

[ n
∑

r=1
2tr +

i−1
∑

r=1
2tr +n+5− i+2 j

]
, if 2 ≤ i ≤ n,even
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It is easy to see that under the labeling φ the set of all edge-sums is

S3 =
{

1
4

[ n
∑

r=1
2tr +n+7

]
+ i; 1 ≤ i ≤ n(2t1+n−1)

2

}
(ii) n is even

φ(ui, j) =



1
4

[n−1
∑

r=1
2tr +4t1 +3n+4−2 j

]
, if i = 1

1
4

[n−1
∑

r=1
2tr +

i
∑

r=1
2tr +2t1 +3n+5− i−2 j

]
, if 3 ≤ i ≤ n,odd

1
4

[n−1
∑

r=1
2tr +

i−1
∑

r=1
2tr +2t1 +3n+4− i+2 j

]
, if 2 ≤ i ≤ n,even

It is easy to see that under the labeling φ the set of all edge-sums is

S4 =
{

1
4

[n−1
∑

r=1
2tr +2t1 +3n+6

]
+ i; 1 ≤ i ≤ n(2t1+n−1)

2

}
Clearly, |S1| = |S2| = |S3| = |S4| = n(2t1+n−1)

2 . Therefore, by using Lemma 2.1, φ can be extended to a super edge-magictotal labeling.
Hence, the graph Cbn admits a super edge magictotal labeling.

Theorem 2.3. For n ≥ 5, the generalized comb Cbn(2,3,4, . . . ,⌊ n
2⌋;⌊ n

2⌋+ 1,⌊ n
2⌋+ 1;⌊ n

2⌋,⌊
n
2⌋− 1, . . . ;2) admits super edge magictotal

labeling.

Proof. By the definition of generalized comb, first we notice that

ti =



i+1, if 1 ≤ i ≤ ⌊ n
2 ⌋−1

⌊ n
2⌋+1, if i = ⌊ n

2 ⌋,⌊
n
2⌋+1

2⌊ n
2⌋+2− i, if ⌊ n

2⌋+2 ≤ i ≤ n and n even

2⌊ n
2⌋+2− i, if ⌊ n

2⌋+2 ≤ i ≤ n−1 and n odd

2, if i = n odd

|V (Cbn)|= n2+6n+4
4 , |E(Cbn)|= n2+6n

4 , for n even

|V (Cbn)|= n2+4n+7
4 , |E(Cbn)|= n2+4n+3

4 , for n odd

Now it comes to show that Cbn is super edge magic we define the labeling φ : V (Cbn)→{1,2,3, . . . , |V (Cbn)|} as follows:

φ(u0,1) = 1, φ(u1,2) = 2, φ(u2, j) =
2t1+1+ j

2 , i f 1 ≤ j ≤ t2, odd

φ(ui, j) =



1
4

[ i
∑

r=1
2tr +7+ i−2 j

]
, if 3 ≤ i ≤ ⌊ n

2 ⌋,odd

and 1 ≤ j ≤ ti,even

1
4

[ i−1
∑

r=1
2tr +4+ i+2 j

]
, if 4 ≤ i ≤ ⌊ n

2 ⌋+1,even

and 1 ≤ j ≤ ti,odd

Case 1: when n is odd

For 3 ≤ i ≤ ⌊ n
2 ⌋,odd and 1 ≤ j ≤ ti, odd

φ(ui, j) =
1
4

[n−2
∑

r=1
2tr +

i
∑

r=3
2tr +2⌊ n

2⌋+28−n− i
]
− j+1

2 ,

For 4 ≤ i ≤ ⌊ n
2 ⌋+1,even and 1 ≤ j ≤ ti,even

φ(ui, j) =
1
4

[n−2
∑

r=1
2tr +

i−1
∑

r=1
2tr +2⌊ n

2⌋+25−n− i
]
+ j

2 ,

For ⌊ n
2⌋+1 ≤ i ≤ n−2,odd

φ(ui, j) =


1
4

[ i
∑

r=1
2tr +2⌊ n

2 ⌋+7− i−2 j
]
, if 1 ≤ j ≤ ti,even

1
4

[n−2
∑

r=1
2tr +

i
∑

r=1
2tr +16−n+ i−2 j

]
, if 1 ≤ j ≤ ti,odd

For ⌊ n
2⌋+2 ≤ i ≤ n−1,even

φ(ui, j) =


1
4

[ i−1
∑

r=1
2tr +2⌊ n

2 ⌋+6− i+2 j
]
, if 1 ≤ j ≤ ti,odd

1
4

[n−2
∑

r=1
2tr +

i−1
∑

r=1
2tr +13−n+ i+2 j

]
, if 1 ≤ j ≤ ti,even
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φ(ui, j) =



1
4

[n−2
∑

r=1
2tr +2⌊ n

2 ⌋−n+17
]
+ i−1, if i = j = 1,2

n−2
∑

r=1
tr +5, if i = n, j = 1

1
4

[n−2
∑

r=1
2tr +2⌊ n

2 ⌋+13−n
]
, if i = n, j = 2

It is easy to see that under the labeling φ the set of all edge-sums is

S1 =
{

1
4

[n−2
∑

r=1
2tr +2⌊ n

2⌋+17−n
]
+ i; 1 ≤ i ≤ n2+4n+3

4

}
Case 2: when n is even

For 3 ≤ i ≤ ⌊ n
2 ⌋,odd and 1 ≤ j ≤ ti,odd

φ(ui, j) =
1
4

[n−1
∑

r=1
2tr +

i
∑

r=3
2tr +2⌊ n

2⌋+23−n− i
]
− j+1

2 ,

For 4 ≤ i ≤ ⌊ n
2 ⌋+1,even and 1 ≤ j ≤ ti,even

φ(ui, j) =
1
4

[n−1
∑

r=1
2tr +

i−1
∑

r=1
2tr +2⌊ n

2⌋+20−n− i
]
+ j

2 ,

For ⌊ n
2⌋+1 ≤ i ≤ n−1,odd

φ(ui, j) =


1
4

[ i
∑

r=1
2tr +2⌊ n

2 ⌋+7− i−2 j
]
, if 1 ≤ j ≤ ti,even

1
4

[n−1
∑

r=1
2tr +

i
∑

r=1
2tr +11−n+ i−2 j

]
, if 1 ≤ j ≤ ti,odd

For ⌊ n
2⌋+2 ≤ i ≤ n,even

φ(ui, j) =


1
4

[ i−1
∑

r=1
2tr +2⌊ n

2 ⌋+6− i+2 j
]
, if 1 ≤ j ≤ ti,odd

1
4

[n−1
∑

r=1
2tr +

i−1
∑

r=1
2tr +8−n+ i+2 j

]
, if 1 ≤ j ≤ ti,even

φ(ui, j) =


1
4

[n−1
∑

r=1
2tr +2⌊ n

2 ⌋−n+12
]
, if i = j = 1

1
4

[n−1
∑

r=1
2tr +2⌊ n

2 ⌋−n+16
]
, if i = j = 2

It is easy to see that under the labeling φ the set of all edge-sums is

S2 =
{

1
4

[n−1
∑

r=1
2tr +2⌊ n

2⌋+12−n
]
+ i; 1 ≤ i ≤ n2+6n

4

}
Clearly, |S1|= n2+4n+3

4 , |S2|= n2+6n
4 . Therefore by using Lemma 2.1, φ can be extended to a super edge-magictotal labeling. Hence, the

graph Cbn admits a super edge magictotal labeling.
In next theorems, we formulate super-edge magictotal labeling for disjoint union of generalized combs and star.

Theorem 2.4. For n ≥ 4, m ≥ 3, the graph G ∼=Cbn(2,3,4, . . . ,n−1,n,n+1)∪K1,m admits super edge magictotal labeling.

Proof. Let G ∼=Cbn(2,3,4, . . . ,n−1,n,n+1)∪K1,m, the vertex set and edge set of G are defined as follows.

V (G) = {ui, j : 1 ≤ i ≤ n, 1 ≤ j ≤ ti}∪{u0,1}∪{c,vl ;1 ≤ l ≤ m}, and

E(G) = {(ui−1,1 ui,1) : 1 ≤ i ≤ n}∪{(ui, j ui, j+1) : 1 ≤ i ≤ n, 1 ≤ j ≤ ti −1}∪{(cvl);1 ≤ l ≤ m}
with |V (G)|= n2+3n+2m+4

2 , |E(G)|= n2+3n+2m
2 .

Also, we observe that ti = 1+ i, f or 1 ≤ i ≤ n.

We define the labeling φ : V (G)→{1,2,3, . . . , n2+3n+2m+4
2 } for 1 ≤ i ≤ n and 1 ≤ j ≤ ti as follows:

Case 1: when i, j have different parities,

φ(c) = 2, φ(u1,2) = 1, φ(u2,3) = 3, φ(u2,1) = 4, φ(u0,1) = 5,

φ(ui, j) =


1
4

[ i
∑

r=3
2tr +21+ i−2 j

]
, if 3 ≤ i ≤ n, odd

1
4

[ i−1
∑

r=3
2tr +18+ i+2 j

]
, if 4 ≤ i ≤ n, even

Case 2: when i, j have the same parity and
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(i) n is odd

φ(vl) =
1
4

[ n
∑

r=3
2tr +17+n+4l

]
, if 1 ≤ l ≤ m,

φ(ui, j) =
1
4

[ n
∑

r=3
2tr +21+n+4m

]
+ i−1, if i = j = 1,2

φ(ui, j) =


1
4

[ n
∑

r=3
2tr +

i
∑

r=3
2tr +n+4m+30− i−2 j

]
, if 3 ≤ i ≤ n,odd

1
4

[ n
∑

r=3
2tr +

i−1
∑

r=3
2tr +n+4m+29− i+2 j

]
, if 4 ≤ i ≤ n,even.

It is easy to see that under the labeling φ the set of all edge-sums is

S1 =
{

1
4

[ n
∑

r=3
2tr +n+25

]
+ i; 1 ≤ i ≤ n2+3n+2m

2

}
.

(ii) n is even

φ(vl) =
1
4

[n−1
∑

r=3
2tr +3n++20+4l

]
, if 1 ≤ l ≤ m,

φ(ui, j) =
1
4

[n−1
∑

r=3
2tr +24+3n+4m

]
+ i−1, if i = j = 1,2

φ(ui, j) =


1
4

[n−1
∑

r=3
2tr +

i
∑

r=3
2tr +3n+4m+33− i−2 j

]
, if 3 ≤ i ≤ n,odd

1
4

[n−1
∑

r=3
2tr +

i−1
∑

r=3
2tr +3n+4m+32− i+2 j

]
, if 4 ≤ i ≤ n,even

It is easy to see that under the labeling φ the set of all edge-sums is

S2 =
{

1
4

[n−1
∑

r=3
2tr +n+28

]
+ i; 1 ≤ i ≤ n2+3n+2m

2

}
.

Clearly, |S1|= |S2|= n2+3n+2m
2 . Therefore by using Lemma 2.1, φ can be extended to a super edge-magictotal labeling. So, the graph G

admits a super edge magictotal labeling. By now, the proof is complete.

Theorem 2.5. For n ≥ 5, m ≥ 3, the graph G ∼=Cbn(2,3;2⌈ i
2⌉+1)∪K1,m for 3 ≤ i ≤ n, admits super edge magictotal labeling.

Proof. Let G ∼=Cbn(2,3;2⌈ i
2 ⌉+1)∪K1,m, the vertex set and the edge set of G are defined as follows:

V (G) = {ui, j : 1 ≤ i ≤ n, 1 ≤ j ≤ ti}∪{u0,1}∪{c,vl ;1 ≤ l ≤ m}

E(G) = {(ui−1,1 ui,1) : 1 ≤ i ≤ n}∪{(ui, j ui, j+1)1 ≤ i ≤ n, 1 ≤ j ≤ ti −1}∪{(cvl);1 ≤ l ≤ m}

with |V (G)|= n2+4n+2m+3
2 , |E(G)|= n2+4n+2m−1

2 , for n odd

|V (G)|= n2+4n+2m+2
2 , |E(G)|= n2+4n+2m−2

2 , for n even

Also, we observe that

ti =
{

1+ i, if i = 1,2
2⌈ i

2⌉+1 if 3 ≤ i ≤ n

We define the labeling φ : V (G)→{1,2,3, . . . , |V (G)|} for 1 ≤ i ≤ n and 1 ≤ j ≤ ti as follows:

Case 1: when i, j have different parity

φ(c) = 2,φ(u2,3) = 1,φ(u1,2) = 4, φ(u2,1) = 5,φ(u0,1) = 3,
φ(u3,2) = 6, φ(u3,4) = 7,

φ(ui, j) =


1
2

[ i−1
∑

r=3
tr +10+ j

]
, if 5 ≤ i ≤ n,odd

1
2

[ i
∑

r=3
tr +11− j

]
, if 4 ≤ i ≤ n,even

Case 2: when i, j have same parity and

(i) n is odd

φ(vl) =
1
2

[n−1
∑

r=3
tr +2⌈ n

2 ⌉+10+2l
]
, if 1 ≤ l ≤ m

φ(ui, j) =
1
2

[n−1
∑

r=3
tr +2⌈ n

2⌉+2m+12
]
+ i−1, if i = j = 1,2

φ(u3, j) =
1
2

[n−1
∑

r=3
tr +2⌈ n

2⌉+2m+15+ j
]
, if 1 ≤ j ≤ t3 odd
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φ(ui, j) =


1
2

[n−1
∑

r=3
tr +

i−1
∑

r=3
tr +2⌈ n

2⌉+2m+15+ j
]
, if 5 ≤ i ≤ n, odd

1
2

[n−1
∑

r=3
tr +

i
∑

r=3
tr +2⌈ n

2⌉+2m+16− j
]
, if 4 ≤ i ≤ n, even

It is easy to see that under the labeling φ the set of all edge-sums is

S1 =
{

1
2

[n−1
∑

r=3
tr +2⌈ n

2 ⌉+14
]
+ i; 1 ≤ i ≤ n2+4n+2m−1

2

}
.

(ii) n is even

φ(ui, j) =


1
2

[ n
∑

r=3
tr +

i−1
∑

r=3
tr +2m+15+ j

]
, if 5 ≤ i ≤ n,odd

1
2

[ n
∑

r=3
tr +

i
∑

r=3
tr +2m+16− j

]
, if 4 ≤ i ≤ n,even

φ(vl) =
1
2

[ n
∑

r=3
tr +10+2l

]
, if 1 ≤ l ≤ m

φ(ui, j) =
1
2

[ n
∑

r=3
tr +2m+12

]
+ i−1, if i = j = 1,2

φ(u3, j) =
1
2

[ n
∑

r=3
tr +2m+15+ j

]
, if 1 ≤ j ≤ t3,odd

It is easy to see that under the labeling φ the set of all edge-sums is

S2 =
{

1
2

[ n
∑

r=3
tr +14

]
+ i; 1 ≤ i ≤ n2+4n+2m−2

2

}
Clearly, |S1|= n2+4n+2m−1

2 , |S2|= n2+4n+2m−2
2 . Therefore by using Lemma 2.1, φ can be extended to a super edge-magictotal labeling.

So, the graph G admits a super edge magictotal labeling.

Theorem 2.6. For n ≥ 6, even and

G ∼=Cbn(2,3,4, . . . ,n,n+1)∪C′bn(3,4,5;6,6,8,8, . . . ,n−2,n−2,n,n;n+2)

then the graph G admits super edge-magictotal labeling.

Proof. The vertex set and edge set of G are defined as follows:

V (G) = {ui, j : 1 ≤ i ≤ n, 1 ≤ j ≤ ti}∪{u0,1}∪{u′i, j : 1 ≤ i ≤ n, 1 ≤ j ≤ t ′i}∪{u′0,1}

E(G) = {(ui−1,1ui,1) : 1 ≤ i ≤ n}∪{(ui, jui, j+1) : 1 ≤ i ≤ n, 1 ≤ j ≤ ti −1}∪{(u′i−1,1u′i,1) : 1 ≤ i ≤ n}∪{(u′i, ju′i, j+1) : 1 ≤ i ≤ n, 1 ≤
j ≤ t ′i −1}

with |V (G)|= 2n2+7n+8
2 , |E(G)|= 2n2+7n+4

2

Also we find that ti = 1+ i, f or 1 ≤ i ≤ n

t ′i =


2+ i, if i = 1,2,3
2⌊ i

2⌋+2 if 4 ≤ i ≤ n−1
n+2, if i = n

We define the labeling φ : V (G)→{1,2,3, . . . , 2n2+7n+8
2 } as follows:

φ(u′0,1) = 1, φ(u0,1) = 2, φ(u1,2) = 3, φ(u2,1) = 4, φ(u2,3) = 5,

φ(ui, j) =



1
4

[ i
∑

r=2
2tr +15+ i−2 j

]
, if 3 ≤ i ≤ n,odd

and 1 ≤ j ≤ ti,even

1
4

[ i−1
∑

r=2
2tr +12+ i+2 j

]
, if 4 ≤ i ≤ n,even

and 1 ≤ j ≤ ti,odd

φ(u′i, j) =



1
4

[n−1
∑

r=2
2tr +

n
∑

r=i+1
2t ′r +14+3n+2 j

]
, if 3 ≤ i ≤ n−1,odd

and 1 ≤ j ≤ t ′i ,even

1
4

[n−1
∑

r=2
2tr +

n
∑

r=i
2t ′r +16+3n−2 j

]
, if 4 ≤ i ≤ n,even

and 1 ≤ j ≤ t ′i ,odd

For 3 ≤ i ≤ n−1,odd and 1 ≤ j ≤ ti,odd

φ(ui, j) =
1
4

[n−1
∑

r=2
2tr +

n
∑

r=3
2t ′r +

i
∑

r=3
2tr +37+3n− i−2 j

]
For 4 ≤ i ≤ n,even and 1 ≤ j ≤ ti,even
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φ(ui, j) =
1
4

[n−1
∑

r=2
2tr +

n
∑

r=3
2t ′r +

i−1
∑

r=3
2tr +36+3n− i+2 j

]
For 3 ≤ i ≤ n−1,odd and 1 ≤ j ≤ t ′i ,odd

φ(u′i, j) =
1
4

[n−1
∑

r=2
4tr +

n
∑

r=3
2t ′r +

n
∑

r=i+1
2t ′r +32+4n+2 j

]
For 4 ≤ i ≤ n,even and 1 ≤ j ≤ t ′i ,even

φ(u′i, j) =
1
4

[n−1
∑

r=2
4tr +

n
∑

r=3
2t ′r +

n
∑

r=i
2t ′r +34+4n−2 j

]
φ(u′2, j) =

n−1
∑

r=2
tr +

n
∑

r=3
t ′r +n+8+ j

2 , for 1 ≤ j ≤ 4, even

φ(u′1, j) =
n−1
∑

r=2
tr +

n
∑

r=3
t ′r +n+13− j+1

2 , for 1 ≤ j ≤ 3, odd

φ(ui, j) =
1
4

[n−1
∑

r=2
2tr +

n
∑

r=3
2t ′r +3n+28

]
+ i−1, i = j = 1,2

φ(u′2,3) =
1
4

[n−1
∑

r=2
2tr +

n
∑

r=3
2t ′r +3n+16

]
φ(u′1,2) =

1
4

[n−1
∑

r=2
2tr +

n
∑

r=3
2t ′r +3n+20

]
φ(u′2,1) =

1
4

[n−1
∑

r=2
2tr +

n
∑

r=3
2t ′r +3n+24

]
It is easy to see that under the labeling φ the set of all edge-sums is

S =
{

1
4

[n−1
∑

r=2
2tr +

n
∑

r=3
2t ′r +3n+32

]
+ i; 1 ≤ i ≤ 2n2+7n+4

2

}
Clearly |S|= 2n2+7n+4

2 . Therefore by using Lemma 2.1, φ can be extended to a super edge-magic total labeling. So, the graph G admits a
super edge magictotal labeling.

Conclusion:

In this paper, it has been shown the super edge-magicness of certain types of generalized comb as well as disjoint union of generalized combs
and star. Additionally, we prove the super edge-magicness of
G ∼=Cbn(2,3,4, . . . ,n,n+1)∪Cbn(3,4,5;6,6,8,8, . . . ,n−2,n−2,n,n;n+2)
for n, even only. However, much more effort is to be done in order to get a comprehensive understanding the super edge-magicness of
generalized comb. We encourage researchers to try to determine the super edge magic total labeling of other graphs for further research.
Therefor, we raise an open question.

Open problem: For n ≥ 5, odd and G ∼= Cbn(2,3,4, . . . ,n,n+ 1)∪Cbn(3,4,5;6,6,8,8, . . . ,n− 2,n− 2,n,n;n+ 2), Find the super edge
magictotal labeling of G.
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