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Abstract. We construct a finite difference scheme for a first-order linear sin-

gularly perturbed Volterra integro-differential equation (SPVIDE) on Bakhva-
lov-Shishkin mesh. For the discretization of the problem, we use the inte-

gral identities and deal with the emerging integrals terms with interpolating

quadrature rules which also yields remaining terms. The stability bound and
the error estimates of the approximate solution are established. Further, we

demonstrate that the scheme on Bakhvalov-Shishkin mesh is O(N−1) uni-

formly convergent, where N is the mesh parameter. The numerical results are
also provided for a couple of examples.

1. Introduction

In this present work, we are specifically consider the following class of the sin-
gularly perturbed linear Volterra integro-differential equations (SPVIDEs)

Lu := εu′ + a(x)u+ λ

∫ x

0

K(x, t)u(t)dt = f(x), x ∈ I = [0, ℓ], (1)

subject to

u(0) = A, (2)

where 0 < ε ≪ 1 is a small perturbation parameter. We assume a(x) ≥ α > 0,
f(x)(x ∈ I) and K(x, t)((x, t) ∈ I × I) are sufficiently smooth functions such
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that the initial layer for the solution u(x) occurs at x = 0 for small values of ε.
Volterra integro-differential equations (VIDEs) are an important class of equations
which are extensively used to model many sciencitific problems such as population
dynamics [13], filament streching [5] and epidemics [37]. Many techniques have
been introduced to solve VIDEs analytically. The variational iteration method,
the Adomian decomposition method and the homotopy perturba-tion method are
some well-known analytical methods to solve VIDEs( [40], [9], [17]). Recently, a
new approach on the variational analytical method has been introduced to solve
Volterra-Fredholm Integral equations which does not require construction of the
variational principle [18]. Further, a finite difference scheme is utilized to examine
the numerical solutions of a non-linear VIDE in [11].

Singularly perturbed differential equations, which have the highest order de-
rivative term multi- plied with a small positive number ε, possess solutions with
interior or boundary layers. Boundary layers are regions where rapid changes oc-
cur which makes solving such problems more challenging. Since standard schemes
fail to give the accurate results for problems with boundary layer for small ε
values, numerical solutions of such problems have been of interest to many re-
searchers( [12], [15], [16], [22], [28], [29], [31], [34], [38], [35]). Singularly perturbed
Volterra integro-differential equations (SPVIDEs) have been widely used to model
problems in many science fields such as epidemic dynamics, synchronous control
systems, filament stretching and heat transfer ( [6], [7], [14], [20], [21], [32], [33]).
A review on the literature of the SPVIDEs was given in [25]. Further, asymp-
totic expansions derivation of the solutions to SPVIDEs are studied in [6], [7], [25].
In [32] a problem of nonlinear SPVIDE modelling the elongation ratio of filament is
studied and the qualitative properties of the solution is discussed under some phys-
ically interesting assumptions. In [5], a specific integro-differential equation with
a boundary layer which describes filament stretching process is considered and the
leading order behavior of the problem is examined by an asymptotic method. Sin-
gularly perturbed integro differential equations have been also an interest to many
researchers. In [23] and [24], the numerical solutions of singularly perturbed integro-
differential and integro-differential-algebraic equations are analyzed by the implicit
Runge-Kutta methods. An exponential finite difference method is applied for the
inner and outer layers and a type of implicit Runge-Kutta method is performed to
obtain the outer layer solutions of SPVIDEs in [36]. A finite Legendre expansion
is constructed to solve different kinds of integral equations and integro-differential
equations [26]. In [19], tension spline collocation methods are utilized to numerically
discretize singularly perturbed Volterra integral and integro-differential equations.
In [39], the authors present different types of exponential schemes to solve SPVIDEs
and the stability analysis of the schemes is examined. Fitted difference schemes are
also proven to provide accurate results in the solution process of different types of
singularly perturbed problems. In [2], an exponentially fitted difference method
is designed on a uniform mesh to solve linear SPVIDEs. First-order convergent
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finite difference schemes are developed to solve linear first order SPVIDEs with
delay in [4], [27]. In [3], using a fitted difference operator a second-order difference
scheme is constructed on a piecewise uniform mesh to solve linear SPVIDEs.

In this present work, we mainly construct a uniform convergent difference scheme
on a Bakhvalov-Shishkin mesh for the problem (1)-(2). Bakhvalov-Shishkin mesh is
a mixed version of the Shishkin mesh and Bakhvalov mesh which are known to yield
accurate results for singularly perturbed problems with boundary layers. In [30],
the author demonstrated that the results from an upwind difference scheme on
Bakhvalov-Shishkin mesh applied to a linear convection-diffusion equation are more
accurate than the results from the upwind scheme on a Shishkin mesh. Further,
a finite difference scheme on Bakhvalov-Shishkin mesh is utilized to deal with a
singularly perturbed boundary value problem in [10].

The rest of the paper is organized in the following order. In Section 2, the
asymptotic estimates on the exact solution to (1)-(2) are established. In Section
3, we define the Bakhvalov-Shishkin mesh points according to the boundary layer
conditions of the problem (1)-(2) and derive a finite difference scheme utilizing the
integral identities with exponential basis functions and then applying interpolating
quadrature rules provided in [1] to the integral terms. In Section 4, we establish the
stability bounds and the error estimates of the numerical solution and as a result
we show that the scheme demonstrates O(N−1) uniform convergence with respect
to the perturbation parameter. We also provide the numerical results in Section 5.

2. Asymptotic Behavior of the Solution

In the following lemma, we establish a priori estimates for the asymptotic be-
havior of the solution to the problem (1)-(2).

Lemma 1. Let a, f ∈ C(I) and K ∈ C(I × I). The solution u to the problem
(1)-(2) holds

∥u∥∞ ≤ C, (3)

where

C = (A+ α−1∥f∥∞)eλK̄α−1ℓ,

and K̄ = max
I×I

|K(x, t)|. In addition, if a, f ∈ C1(I) and K ∈ C1(I × I) with∣∣∣ ∂
∂x

K(x, t)
∣∣∣ ≤ K̄1 < ∞, (4)

then the solution u(x) satisfies

|u′(x)| ≤ C
(
1 +

1

ε
e−

αx
ε

)
, x ∈ I. (5)

Proof. To establish the first estimate given in (3) we start by rewriting (1) as

εu′ + a(x)u = F (x), (6)
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where

F (x) = f(x)− λ

∫ x

0

K(x, t)u(t)dt. (7)

Solving the equation (6) with u(0) = A yields

u(x) = Ae
−
1

ε

∫ x

0

a(s)ds
+

1

ε

∫ x

0

F (ξ)e
−
1

ε

∫ x

ξ

a(s)ds
dξ,

and further we calculate

|u(x)| ≤ |A|e
−
1

ε

∫ x

0

a(s)ds
+

1

ε

∫ x

0

|F (ξ)|e
−
1

ε

∫ x

ξ

a(s)ds
dξ.

Since we have a(x) ≥ α > 0, it follows

|u(x)| ≤ |A|e
−
1

ε

∫ x

0

αds
+

1

ε

∫ x

0

|F (ξ)|e
−
1

ε

∫ x

ξ

αds
dξ

= |A|e
−
αx

ε +
1

ε

∫ x

0

|F (ξ)|e
−
α(x− ξ)

ε dξ.

(8)

Here, by the definition of F (x) in (7), we get

|F (x)| ≤ ∥f∥∞ + λK̄

∫ x

0

|u(t)|dt. (9)

Substituting (9) into (8) yields

|u(x)| ≤ |A|e
−
αx

ε +
1

ε

∫ x

0

(
∥f∥∞ + λK̄

∫ ξ

0

|u(t)|dt
)
e
−
α(x− ξ)

ε dξ

= |A|e
−
αx

ε +
1

ε
∥f∥∞

∫ x

0

e
−
α(x− ξ)

ε dξ +
λK̄

ε

∫ x

0

∫ ξ

0

|u(t)|dte
−
α(x− ξ)

ε dξ

We integrate by parts the last term with double integral here

|u(x)| ≤ |A|e
−
αx

ε + α−1∥f∥∞
(
1− e

−
αx

ε
)
+ α−1λK̄

(
1− e

−
αx

ε
)∫ x

0

|u(t)|dt

≤ |A|+ α−1∥f∥∞ + α−1λK̄

∫ x

0

|u(t)|dt.

(10)
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An application of the Gronwall’s inequality to (10) provides

|u(x)| ≤
(
|A|+ α−1∥f∥∞

)
eα

−1λK̄x

≤
(
|A|+ α−1∥f∥∞

)
eα

−1λK̄ℓ,

which leads to the desired result in (3).
For the next estimate provided in (5), we first differentiate the equation (1) and

have

εu′′ + a′(x)u+ a(x)u′ + λK(x, x)u+ λ

∫ x

0

∂

∂x
K(x, t)u(t)dt = f ′(x).

Then, letting

v(x) = u′(x),

and

g(x) = f ′(x)− a′(x)u− λK(x, x)u− λ

∫ x

0

∂

∂x
K(x, t)u(t)dt, (11)

we have

εv′ + a(x)v = g(x). (12)

In a similar manner to the previous work above, we solve (12)

v(x) = v(0)e
−
1

ε

∫ x

0

a(s)ds
+

1

ε

∫ x

0

g(ξ)e
−
1

ε

∫ x

ξ

a(s)ds
dξ.

Then, we have

|v(x)| ≤ |v(0)|e
−
1

ε

∫ x

0

a(s)ds
+

1

ε

∫ x

0

|g(ξ)|e
−
1

ε

∫ x

ξ

a(s)ds
dξ

≤ |v(0)|e
−
1

ε

∫ x

0

αds
+

1

ε

∫ x

0

|g(ξ)|e
−
1

ε

∫ x

ξ

αds
dξ

≤ |v(0)|e
−
αx

ε +
1

ε

∫ x

0

|g(ξ)|e
−
α(x− ξ)

ε dξ.

(13)



56 H. GUCKIR CAKIR, F. CAKIR, M. CAKIR

Here, by the formula of g(x) given in (11), from (3) and knowing that a, f ∈ C1(I),
K ∈ C1(I × I) and from (4) we obtain

|g(x)| ≤ ||f ′||∞ + ||a′||∞|u|+ λK̄|u|+ λK̄1

∫ x

0

|u(t)|dt

≤ ||f ′||∞ + C
(
||a′||∞ + λK̄1 + ℓ

)
,

(14)

which implies ||g||∞ ≤ C∗ for a C∗ ∈ R. Hence, utilizing this estimate on g(x) in
(13) provides

|v(x)| ≤ |v(0)|e
−
αx

ε +
1

ε
∥g∥∞

∫ x

0

e
−
α(x− ξ)

ε dξ

≤ |v(0)|e
−
αx

ε + α−1C∗(1− e
−
αx

ε ).

(15)

On the other hand, inserting x = 0 in (1) and since a, f ∈ C1(I) it follows that

|v(0)| = |u′(0)| = 1

ε
|f(0)−Aa(0)| ≤ c

ε
.

Substituting this into (15) yields

|v(x)| ≤ c

ε
e
−
αx

ε + α−1C∗(1− e
−
αx

ε ),

which provides the desired result. □

3. Difference Scheme

3.1. Notation. Before we proceed to the definition of the mesh points and dis-
cretization of the problem we provide the notation we use throughout the paper.
Let ω̄h = {0 = x0 < x1 < x2 < · · · < xN−1 < xN = ℓ} denote a non-uniform mesh
on [0, ℓ]. For each i = 0, · · · , N , let hi = xi − xi−1 denote the step size. For any
continuous mesh function vi defined on ωh we use the notation

vx̄,i =
vi − vi−1

hi

for backward difference.

3.2. Discretization. In this section, we construct our difference scheme based on
Bakhvalov-Shishkin mesh. According to this mesh construction, we divide the do-
main into two subintervals [0, σ] and [σ, ℓ], where σ is the transition parameter. For
a positive even discretization parameter N , we determine the transition parameter
σ as

σ = min
{ ℓ

2
, εα−1 lnN

}
. (16)



A NUMERICAL METHOD ON BAKHVALOV SHISHKIN MESH FOR SPVIDES 57

We assume ε ≪ N−1 as it is used in practice. We define a set of mesh points as
the following

xi =

{
−α−1ε ln[1− 2(1−N−1) i

N ], xi ∈ [0, σ], i = 0, 1, · · · , N
2 ,

σ +
(
i− N

2

)
h, h = 2(ℓ−σ)

N , xi ∈ [σ, ℓ], i = N
2 + 1, · · · , N.

(17)

To derive the difference approximation, we use the following integral identity

χ−1
i h−1

i

∫ xi

xi−1

Lu(x)φi(x)dx = χ−1
i h−1

i

∫ xi

xi−1

f(x)φi(x)dx, (18)

with the exponential basis function

φi(x) = e−
ai
ε (xi−x), i = 1, · · · , N,

where

χi = hi
−1

∫ xi

xi−1

φi(x)dx =
1− e−aiρi

aiρi
, ρi =

hi

ε
.

We remark that φi solves the equation

− εφi(x) + aiφi(x) = 0, xi−1 ≤ x ≤ xi (19)

φi(xi) = 1.

To obtain the difference scheme from (18), we proceed by evaluating the integrals
term by term applying the interpolating quadrature rules with weight functions
and obtain the remainder terms as provided in [1]. In the following, we handle the
differential term on the left-hand side of (18),

χ−1
i h−1

i

∫ xi

xi−1

[
εu′(x) + a(x)u(x)

]
φi(x)dx = χ−1

i h−1
i

∫ xi

xi−1

[εu′(x) + aiu(x)]φi(x)dx

+ χ−1
i h−1

i

∫ xi

xi−1

[a(x)− ai]u(x)φi(x)dx

= εθiux̄,i + aiui +R
(1)
i ,

(20)
where

θi =
aiρie

−aiρi

1− e−aiρi
, (21)

and

R
(1)
i = χ−1

i h−1
i

∫ xi

xi−1

[a(x)− ai]u(x)φi(x)dx. (22)

Further, applying the first quadrature rules provided in [1] to the integral term in
(18) twice we obtain

χ−1
i h−1

i λ

∫ xi

xi−1

φi(x)

∫ x

0

K(x, t)u(t)dtdx = λ

∫ xi

0

K(xi, t)u(t)dt+R
(2)
i , (23)
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where

R
(2)
i = λ

∫ xi

xi−1

∂

∂ξ

(∫ ξ

0

K(ξ, t)u(t)dt
)[

T0(x− ξ)− h−1
i (x− xi−1)

]
dξ, (24)

and T0(λ) = 1 for λ ≥ 0 and T0(λ) = 0 for λ < 0. Here, we apply the composite
right-side rectangle rule to the integral term in the right-hand side of (27) and get

λ

∫ xi

0

K(xi, t)u(t)dt = λ

i∑
j=1

hjK(xi, xj)uj +R
(3)
i , (25)

where

R
(3)
i = −λ

i∑
j=1

∫ xj

xj−1

(ξ − xj−1)
∂

∂ξ

(
K(xi, ξ)u(ξ)

)
dξ. (26)

Then, inserting (25) in (23) provides

χ−1
i h−1

i λ

∫ xi

xi−1

φi(x)

∫ x

0

K(x, t)u(t)dtdx = λ

i∑
j=1

hjK(xi, xj)uj +R
(2)
i +R

(3)
i .

(27)
On the other hand, the right-hand side of (18) gets the in the form

χ−1
i h−1

i

∫ xi

xi−1

f(x)φi(x)dx = fi +R
(4)
i , (28)

where

R
(4)
i = χ−1

i h−1
i

∫ xi

xi−1

[f(x)− f(xi)]φi(x)dx. (29)

Inserting the relations (20), (27) and (28) in (18), we obtain the difference problem
for the problem (1)-(2) as

εθiux̄,i + aiui + λ

i∑
j=1

hjK(xi, xj)uj = fi −Ri, i = 1, 2, · · · , N,

u0 = A,

(30)

where

Ri = R
(1)
i +R

(2)
i +R

(3)
i −R

(4)
i . (31)

As a result, neglecting the error term Ri in (30) provides the following difference
scheme

LNyi := εθiyx̄,i + aiyi + λ

i∑
j=1

hjK(xi, xj)yj = fi, i = 1, 2, · · · , N, (32)

y0 = A, (33)

where θi defined by (21).
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4. Stability, Error Estimates and Convergence Results

Here, we establish the stability bound and the error estimates of the approximate
solution y. Further, the convergence of the difference scheme provided in (32)-(33)
is analyzed.

Lemma 2. Assume that |Fi| ≤ Fi and Fi be a non-decreasing function. The
solution to the problem

ℓNvi := εθivx̄,i + aivi = Fi, 1 ≤ i ≤ N,

v0 = A.

|vi| ≤ |A|+ α−1Fi, 1 ≤ i ≤ N.

Proof. The proof follows from the maximum principle for difference operators. De-
tails can be found in [27]. □

Lemma 3. Let yi be the solution of the problem (32)-(33). Then, yi satisfies

∥y∥∞ ≤ C0

(
|A|+ ∥f∥∞

)
. (34)

Proof. The difference scheme equation given in (32) can be rewritten in the form

θiεyx̄,i + aiyi = Fi, (35)

where

Fi = fi − λ

i∑
j=1

hjK(xi, xj)yj .

For Fi, we have the estimate

|Fi| ≤ |fi|+ λ
∣∣∣ i∑
j=1

hjK(xi, xj)yj

∣∣∣
≤ |fi|+ λK̄

i∑
j=1

hj |yj |

≤ ∥f∥∞ + λK̄

i∑
j=1

hj |yj |.

Then, applying Lemma 2 to (35) and utilizing this estimate provide

|yi| ≤ |A|+ α−1∥f∥∞ + α−1λK̄

i∑
j=1

hj |yj |. (36)

Further, applying the difference analogue of the Gronwall’s inequality to (36) we
have

|yi| ≤
(
|A|+ α−1∥f∥∞

)
eα

−1λK̄ℓ,

which yields the result in (34). □



60 H. GUCKIR CAKIR, F. CAKIR, M. CAKIR

The error of the difference problem is given by the solution to the problem

LNzi = Ri, 1 ≤ i ≤ N, (37)

z0 = 0. (38)

Lemma 4. Suppose that zi be the solution of (37)-(38). Then, zi holds the estimate

∥z∥∞ ≤ C∥R∥∞. (39)

Proof. The result follows from Lemma 3 taking A = 0 and f = R. □

Lemma 5. Let a, f ∈ C1(I) and K ∈ C1(I × I) with

K̄ = max
I×I

|K(x, t)|, (40)∣∣∣ ∂
∂x

K(x, t)
∣∣∣ ≤ K̄1 < ∞, (41)

and ∣∣∣ ∂
∂t

K(x, t)
∣∣∣ ≤ K̄2 < ∞. (42)

Then, the truncation error Ri satisfies the estimate

∥R∥∞ ≤ CN−1. (43)

Proof. To establish the estimate given in (43), we proceed by bounding each term

in Ri provided in (31). For R
(1)
i , we have

|R(1)
i | ≤ χ−1

i h−1
i

∫ xi

xi−1

|(a′(s)(x− xi))u(x)|φi(x)dx,

where s ∈ [x, xi] comes from the Mean Value Theorem. Then, since a ∈ C1(I) and
from (3) we get

|R(1)
i | ≤ C1hi. (44)

Further, for R
(2)
i we take into account of (40), (41) and |T0(λ)| ≤ 1, so

|R(2)
i | ≤ λ

∫ xi

xi−1

∣∣∣(1 + h−1
i (x− xi)

) ∂
∂ξ

(∫ ξ

0

K(ξ, t)u(t)dt
)∣∣∣dξ

≤ 2λ

∫ xi

xi−1

∣∣∣ ∂
∂ξ

(∫ ξ

0

K(ξ, t)u(t)dt
)∣∣∣dξ. (45)

Then, applying the Leibnitz formula to (45) yields

|R(2)
i | ≤ 2λ

(∫ xi

xi−1

∣∣∣K(ξ, ξ)
∣∣∣∣∣∣u(ξ)∣∣∣)+ ∫ xi

xi−1

∫ ξ

0

∣∣∣ ∂
∂ξ

K(ξ, t)u(t)
∣∣∣dtdξ)

≤ 2λ(CK̄ + CK̄1)hi

≤ C2hi.

(46)



A NUMERICAL METHOD ON BAKHVALOV SHISHKIN MESH FOR SPVIDES 61

On the other hand, by the Leibnitz formula and from (40), (42) and (5) we have

|R(3)
i | ≤ λ

i∑
j=1

∫ xj

xj−1

(∣∣∣ ∂
∂ξ

K(xi, ξ)u(ξ)
∣∣∣+ ∣∣∣K(xi, ξ)u

′(ξ)
∣∣∣)dξ

≤ λ

i∑
j=1

(
CK̄2 + K̄

∫ xj

xj−1

(
1 +

1

ε
e−

αξ
ε

))
dξ

= λ

i∑
j=1

(
CK̄2hj + K̄hj + α−1K̄

(
e−

αxj−1
ε − e−

αxj
ε

))
.

(47)

Then, by the Mean Value Theorem applied to the exponential term in (47) with
s ∈ [xj−1, xj ] it follows that

|R(3)
i | ≤ λ

i∑
j=1

(
CK̄2hj + K̄hj + α−1K̄hje

−αs
ε

)
≤ C∗

3 i|h∗|,

(48)

where h∗ = max
1≤j≤i

hj . Lastly, for R
(4)
i , similarly to the work above and since f ∈

C1(I) we have

|R(4)
i | ≤ χ−1

i h−1
i

∫ xi

xi−1

|f ′(s)(x− xi)|φi(x)dx

≤ C4hi,

(49)

where s ∈ [xi−1, xi] by the Mean Value Theorem.
Further in the proof, we need to evaluate each estimate above on the sub-intervals

[0, σ] and [σ, ℓ]. For this, we first establish the bounds on the step-size hi on each
interval. In the first sub-interval [0, σ] with σ ≤ ℓ

2 ,

xi = −α−1ε ln[1− 2(1−N−1)
i

N
], i = 1, · · · , N/2

and hence,

hi = −α−1ε ln[1− 2(1−N−1)
i

N
] + α−1ε ln[1− 2(1−N−1)

i− 1

N
].

Then, we apply the Mean Value Theorem to hi with i∗ ∈ [i− 1, i] and get

hi ≤ α−1ε
2(1−N−1)N−1

1− 2i∗(1−N−1)N−1
≤ CN−1. (50)

In the second sub-interval [σ, ℓ], we have

xi = σ +
(
i− N

2

)
h, i = N/2 + 1, · · · , N,
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where σ ≤ ℓ
2 and

hi =
2(ℓ− σ)

N
≤ CN−1. (51)

Inserting the bounds (50) and (51) in (44), (46), (48) and (49), we have

|R(k)
i | ≤ CN−1, k = 1, 2, 3, 4.

which implies the desired result (43). □

Theorem 1. Let u be the exact solution of (1)-(2) and y be the solution of (32)-
(33). If the assumptions on the functions a, f and K from Lemma 5 hold, then

∥y − u∥∞ ≤ CN−1.

Proof. The proof follows from Lemma 4 and Lemma 5. □

5. Algorithm and Numerical Results

In this section, we present the numerical results on an example with an exact
solution and an example with an unknown solution. The results include graphs
of the approximate solutions, error estimates and the convergence values of the
approximate solution to the exact solution. In our algorithm, we consider the
following elimination method

y
(n)
i =

1

εθi + hiai

[
εθiy

(n
i−1 + hi

(
fi − λ

i∑
j=1

hjK(xi, xj)y
(n−1)
j

)]
, (52)

y
(n)
0 = A, (53)

y
(0)
i = A. (54)

where y
(0)
i is the initial process.

Example 1. We study the following initial value problem

εu′(x) + u(x) +

∫ x

0

xu(t)dt = 2ε(x− 1) + (x− 1)2 − εxe−
x
ε +

x(x− 1)3

3

+ (ε− 1 + x)e−x + (ε− 2

3
)x, 0 ≤ x ≤ 2,

u(0) = 1.

The exact solution of this problem is

u(x) = e−
x
ε + (x− 1)2 − e−x.

The exact error is calculated by the formula

eNε = ∥yN − u∥∞,
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Figure 1. The figure depicts the graphs for the exact solution and
the approximate solution for N = 32.

where yN is the numerical approximation of u for different N and ε values. We
compute the convergence rate by

rN =
ln
(
eN/e2N

)
ln 2

.

In Table 1, we provide the errors eN , e2N and the convergence rates of the approx-
imate solution for various N and ε = 2−i values.

Example 2. Consider the following test problem

εu′ + (x+ 1)u+

∫ x

0

xt(x− t)2u(t)dt = x− e2x, 0 ≤ x ≤ 2,

u(0) = 1.

The exact solution to this problem is not known. To compute the approximate solu-
tion and estimate the errors, we utilize the double mesh principle, that is calculating
the error of the approximate solution on mesh size N with the approximate solution
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Table 1. Errors eN , e2N , and rate of convergence r for Example 1.

ε N = 32 N = 64 N = 128 N = 256 N = 512

eN 0.065 181 2 0.036 774 9 0.018 718 3 0.009 187 0 0.004 326 4

2−12 e2N 0.029 862 0 0.016 962 6 0.008 791 5 0.004 253 9 0.001 871 4
r 1.126 145 3 1.116 368 7 1.090 268 5 1.110 475 2

eN 0.065 374 3 0.036 984 5 0.018 926 7 0.009 393 2 0.004 531 1

2−18 e2N 0.030 078 8 0.017 176 5 0.009 001 5 0.004 462 0 0.002 076 7
r 1.119 980 1.106 485 5 1.072 189 3 1.073 941 7

eN 0.065 377 7 0.036 987 8 0.018 929 9 0.009 396 4 0.004 534 3

2−24 e2N 0.030 082 1 0.017 179 8 0.009 004 8 0.004 465 2 0.002 080 0
r 1.119 883 7 1.106 332 4 1.071 911 6 1.073 390 5

computed on double mesh 2N , namely

eNε = ∥yN − y2N∥∞,

where yN is the approximate solution on mesh N and y2N is the approximate solu-
tion on mesh 2N . The convergence rate is calculated as it is in Example 1.

In Table 2, the errors and the convergence rates of the approximate solution for
various N and ε = 2−i values are presented.

Table 2. Errors eN , e2N , and rate of convergence r for Example 2.

ε N = 32 N = 64 N = 128 N = 256 N = 512

eN 0.031 218 4 0.015 601 2 0.007 796 0 0.003 895 5 0.001 946 6

2−12 e2N 0.015 601 2 0.007 796 0 0.003 895 5 0.001 946 6 0.000 972 9
r 1.000 741 7 1.000 858 3 1.000 922 3 1.000 865 3

eN 0.031 249 5 0.015 624 6 0.007 812 2 0.003 906 1 0.001 953 0

2−18 e2N 0.015 624 6 0.007 812 2 0.003 906 1 0.001 953 0 0.000 488 2
r 1.000 012 1 1.000 014 6 1.000 017 2 1.000 019 8

eN 0.031 250 0 0.015 625 0 0.007 812 5 0.003 906 3 0.001 953 1

2−24 e2N 0.015 625 0 0.007 812 5 0.003 906 3 0.001 953 1 0.000 976 6
r 1.000 000 2 1.000 000 2 1.000 000 3 1.000 000 3

6. Conclusion

To sum up, we constructed a finite difference scheme on a Bakhvalov-Shishkin
mesh to obtain the numerical solution of an initial value problem for a linear first-
order singularly perturbed Volterra integro-differential equation with a boundary
layer. We proved that the method is first-order uniformly convergent with respect
to the perturbation parameter. As we can see in Table 1, Table 2 and Figure 1, the
numerical results of the test problems are also consistent with the analysis on the
error estimates and convergence order and hence, it is confirmed that the conver-
gence order of the scheme O(N−1). For future work, we suggest that this difference
scheme method on Bakhvalov-Shishkin mesh can be applied to the singularly per-
turbed linear or non-linear problems with delay to obtain accurate numerical solu-
tions. Further, our proposed scheme can be modified to handle integro-differential
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equations with fractal derivatives which are studied in [8].
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