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Abstract

The covariant derivative is a kind of derivative along tangent vectors of a curve or a surface. The covariant derivative has many applications
in physics, kinematics, robotics, machine engineering, and other scientific areas. Additionally, a dual vector or screw-vector in the dual
space is an important tool widely used in kinematic and robotic studies to represent the space motion including the rotation and translation
transformations. The aim of this paper is to introduce the dual covariant derivative on time scales defined as an arbitrary nonempty closed
subset of the real numbers and to achieve unifying discrete and continuous forms. Consequently, some properties are analyzed.
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1. Introduction

W. K. Clifford (1873) first proposed the dual numbers which is defined by α = (η ,µ) = η + εµ combined with the real unit 1 and the
non-zero dual unit ε , with ε2 = 0 and ε ̸= 0. The dual numbers therefore constitute the elements of the set

D=
{

α = η + εµ |η ,µ ∈ R, and ε2 = 0, ε ̸= 0,
}
,

generated by 1 and ε . The addition operation in the set D is ‘+’ and defined by α1 +α2 = (η1 +η2,µ1 +µ2) = (η1 +η2)+ ε (µ1 +µ2),
while the multiplication operation in the set D is ‘.’ and described by α1.α2 = η1.η2 + ε (η1.µ2 +η2.µ1). The multiplication operation is
commutative, associative and distributive over the addition. Clifford showed that since dual numbers do not have any inverse elements,
they form an algebra and not a field. Therefore, the divisors of zero in the algebra of dual numbers are εµ(µ ∈ R). No εµ numbers
have an inverse in the algebra of the dual numbers. The conjugate of the dual number α = η + εµ is represented by ᾱ and defined
by ᾱ = η − εµ; hence, α.ᾱ = η2. The division of the dual number ”α1 = η1 + εµ1” by the dual number ”α2 = η2 + εµ2” becomes
α1
α2

= α1.α2
α2.α2

= η1
η2

+ ε
η2µ1−η1µ2

η2
2 where η2 ̸= 0. Hence, if η2

2 ̸= 0, the division α1
α2

becomes possible and unambiguous. The modulus

of the dual number α is |α| and defined by |α|2 = α.ᾱ = η2. In other words, for a dual number ”α = η + εµ”, the modulus |α| is
replaced by η to allow the modulus of the dual number to be positive, zero, or negative. The dual plane is defined by the set of all
dual number α ∈ D. The distance between two points of the dual plane as α and α1 is denoted by d (α,α1) and satisfies the conditions
d (α,α1) = |α1 −α|= |η1 −η | or d2 (α,α1) = (α1 −α)(α1 −α). In 1891, E. Study regarded using associative algebra as an ideal way to
describe the group of motions of three-dimensional space [5,6,8,11,13]. Yaglom (1969) and Veldkamp (1976) studied on the dual numbers
for getting more details on the other algebraic properties, see also in [15, 16]. The Taleshian (2009) studied on the dual covariant derivative
in the dual space [14]. In addition, Messelmi (2013) developed a theory concerning the holomorphic dual functions using the dual-variable
functions in the dual space [12]. The researcher also offered other properties that can be used in the analysis of the dual functions. On the
other hand, the time scale calculus theory, which is of great importance and use to the unification of discrete and indiscrete analyses was
developed by Hilger (1990) and Aulbach and Hilger (1990) at an earlier date [2]. The preliminaries for the timescale can be established by
referring to [3,7]. The paper published by Bohner and Guseinov focused on the complex functions on the time scales [4]. By taking T1 and
T2 as the time scales, T1 + iT2 was introduced a time scale complex plane. Then the classical Cauchy-Riemann equations on the time scales
were derived and the complex-valued functions with a complex time scale variable were investigated. Aktan et al. introduced the directional
nabla derivative on n-dimensional time scales [1]. Afterwards, Kuşak Samancı (2011) and (2018) introduced the concept of the delta nature
connection in the other words the delta covariant derivative and the dual-valued functions on time scales and gave some definitions and
theorems including the limit, derivative, partial differentiation and Cauchy-Riemann equation of the dual-variable functions on the time
scales [9,10]. In our paper, we define for the first time the covariant derivation of dual-valued functions parametrized by the products of two
time scales. We think that this study can lead to the emergence of new fields of study in geometry and physics.
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2. Preliminaries

2.1. Some Basics of Time Scale Calculus

Now, we will give some preliminaries about the time scale concept. Let T be an arbitrary timescale. The forward jump operator σ :T→T and
backward jump operator ρ : T→ T are denoted by σ (t) = inf{s ∈ T : s⟩ t,∀t ∈ T} and ρ (t) = sup{s ∈ T : s⟨t , ∀t ∈ T}, respectively. If T
have a left-scattered maximum t1 and a right-scattered minimum t2, then the sets will be Tκ =T−{t1}, (otherwise Tκ =T) and Tκ =T−{t2}
(otherwise Tκ = T), respectively. The delta-derivative of the function f on the time scale is introduced by f ∆ (t) = lim

s→t
f (σ(t))− f (s)

σ(t)−s for t ∈ Tκ .

Suppose that the functions f ,g : T → R are delta differentiable at the time scale variable t ∈ Tκ . Then the equations satisfy following
equations:

1)(α f +βg)∆ (t) = α f ∆ (t)+βg∆ (t) ,
2)( f g)∆ (t) = g(t) f ∆ (t)+ f (σ (t))g∆ (t) = g∆ (t) f (t)+ f ∆ (t)g(σ (t)) ,

3)
(

f
g

)∆

(t) = g(t) f ∆(t)−g∆(t) f (t)
g(σ(t))g(t) , g ̸= 0,

for α,β ∈ R [2,3]. On the other hand, we will give some basic concepts of the dual variable functions. Let the set D be a dual plane and
Ω be an open subset of the dual plane D. Additionally, the set O is called the generator of Ω, if there exists a subset O ⊂ R such that
Ω = O×R. Therefore, a dual-variable function f which is a mapping from a subset Ω ⊂ D to D. The dual-variable function f : Ω → D,
z0 = x0 + εy0 → f (z0) is called a homogeneous dual function if the function f (real (z)) ∈ R. The -variable function f is continuous at
z0if lim

z→z0
f (z) = f (z0). Moreover, the function is continuous in Ω ⊂ D if it is continuous at every point of Ω. The function f is called to

be a differentiable function at z0 = x0 + εy0, since the limit d f
dz (z0) = lim

z→z0

f (z)− f (z0)
z−z0

is satisfied. Since the function f is a differentiable

function for all points in a neighborhood of the point z0 then the dual-variable function f is called holomorphic at z0. Additionally, if it is
holomorphic at every point of Ω, then the dual-variable function f is holomorphic in Ω ⊂ D. Assume that the dual-variable functions f and
g are differentiable at the dual point z ∈ D for c ∈ D, n ∈ Z. Then following equations

1) d( f+cg)
dz = d f

dz + c dg
dz

2) d( f ·g)
dz = d f

dz g+ f dg
dz

3)
d
(

f
g

)
dz =

d f
dz g− f dg

dz
g2 , g ̸= 0

4) d(hog)
dz = dh

dz (g)
dg
dz

are satisfied using the differentiation of the dual-variable functions. On the other hand, the dual-variable function f in Ω ⊂ D can be
written with its real and dual parts as f (z) = ϕ (x,y)+ εψ (x,y). Moreover, the function f is called holomorphic in Ω ⊂ D if and only if the
differentiation of f is provided d f

dz = ∂ f
∂x = ∂ϕ

∂x + ∂ψ

∂x ε . Let the dual variable function can be written as f = ϕ +εψ and assume that the partial

derivatives of f exist. Then f is holomorphic in Ω ⊂ D if and only if its partial differentiations hold ε
∂ f
∂x = ∂ f

∂y , or ∂ϕ

∂x = ∂ψ

∂y and ∂ϕ

∂y = 0.
The other properties of the dual-variable functions can be obtained from the reference [12]. Now, we will give some information concerning
the dual covariant derivative, see in [14]. Assume that ζ = (ζ1, ...,ζn) and ξ = (ξ1, ...,ξn)be two vector fields at the point Q in Rn with C∞.
Therefore, each ξi is a C∞ real valued function on the domain of ξ which includes Q. As we know that the covariant derivative of ξ in the
direction ζ is ∇ζ ξ |Q =

(
ζQ[ξ1], ...,ζQ[ξn]

)
where ∇ is denoted by the covariant derivative operator. Now, suppose that ζ =

(
ζ 1, ...,ζ n

)
and ξ = (ξ 1, ...,ξ n) be the dual vectors at Q in Dn where each ξi is a C∞ dual-valued function on the domain of ξ which contains the point

Q. The dual covariant derivative of ξ in the direction ζ is defined by ∇̄
ζ

ξ |P =
(

ζ P[ξ 1], ...,ζ P[ξ n]
)

where ∇̄ is the dual covariant derivative

operator. Furthermore, the dual gradient operator ∇̄ = ∇+ ε∇∗ is a kind of a dual covariant derivative where ∇ and ∇∗ denote the gradient
derivatives. Let ζ and ξ are two dual vector fields at Q in Dn and let ξ = (ξ 1, ...,ξ n) and ξ i is a C∞ dual function on the domain of Ȳ which
includes Q. The dual covariant derivative of ξ in the direction ζ is the dual vector such that

∇̄
ζ

ξ |Q = (∇+ ε∇∗)
ζ

ξ

=
(〈

ζ ,(∇+ ε∇∗)ξ 1

〉
, ...,

〈
X̄ ,(∇+ ε∇∗)ξ n

〉)
|Q

=

(
n
∑

i=1
ζ i(∇ξ 1)+ ε

(
ζ i

(
∇ξ ∗

1 +∇∗ξ 1

)
+∇ξ 1(ζ

∗
i )
))

|Q
, ...,(

n
∑

i=1
ζ i(∇ξ n)+ ε

(
ζ i

(
∇ξ ∗

n +∇∗ξ n

)
+∇ξ n(ζ

∗
i )
))

|Q

see in [14]. Moreover, in for any two points A,B ∈ E, and s : E →V a screw is a vector field which admits some s ∈V s(A)− s(B) = s(A−B)
[11]. The function F(ζ ) = F(ζ + εζ ∗) = f (ζ ,ζ ∗)+ εg(ζ ,ζ ∗) is a dual-variable function where f (ζ ,ζ ∗) and g(ζ ,ζ ∗) are real functions of

the two real variables ζ and ζ ∗. Then the dual function F(ζ ) can be written by F(ζ ) = ∂ f
∂ζ

+ ε

(
ζ ∗ ∂ 2 f

∂ζ 2 +
∂ f ∗
∂ζ

)
and the derivative of dual

variable function can be calculated by ∂F(ζ )
∂ζ

= ∂ f
∂ζ

+ ε

(
ζ ∗ ∂ 2 f

∂ζ 2 +
∂ f ∗
∂ζ

)
[5].

3. Main Results

In this section we will give a definition of the dual covariant derivative on the time scales for the first time. Assume that T1 and T2 are two
arbitrary time scales. The addition set
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T1 + εT2 : {z = x+ εy : x ∈ T1,y ∈ T2} ,

is called the timescale dual plane where ε ̸= 0 and ε2 = 0 is the dual unit. Using the addition set the dual variable function f : T1 +εT2 →D
is defined by
f (z) = ϕ (x,y)+ εψ (x,y) for any dual variable z = x+ εy ∈ T1 + εT2,
where the real and dual part of the dual variable function f are ϕ : T1 ×T2 → R and ψ : T1 ×T2 → R, respectively. If the forward
jump operators for T1 and T2 are σ1 and σ2, respectively, the equations zσ1 = σ1 (t) + εy and zσ2 = x+ εσ2 (y) are provided for the
dual-variable z = x+ εy ∈ T1 + εT2, Similarly, if ρ1 and ρ2 are the backward jump operators for T1 and T2, respectively, the equations
zρ1 = ρ1 (t)+ εy and zρ2 = x+ ερ2 (y) are satisfied for z = x+ εy ∈ T1 + εT2.

Theorem 3.1. Suppose f and g are differentiable at the dual number z ∈ T1 + εT2 on the time scales, then the following conditions are
satisfied for the time scale dual number z ∈ T1 + εT2.

1)( f + cg)∆ (z) = f ∆ (z)+ cg∆ (z) ,
2)( f g)∆ (z) = f ∆ (z)g(z)+ f (σ (z))g∆ (z) = f (z)g∆ (z)+ f ∆ (z)g(σ (z)) ,

3)
(

f
g

)∆

(z) = f ∆(z)g(z)− f (z)g∆(z)
g(z)g(σ(z)) g ̸= 0 f or c ∈ D, n ∈ Z.

Proof. From the properties of the delta differentiation, we get the following results

1)( f + cg)∆ (z) = lim
z→z0

( f+cg)(σ(z))−( f+cg)(z0)
σ(z)−z0

= lim
z→z0

[ f (σ(z))− f (z0)]+c.[g(σ(z))−g(z0)]
σ(z)−z0

= lim
z→z0

[ f (σ(z))− f (z0)]
σ(z)−z0

+ lim
z→z0

[g(σ(z))−g(z0)]
σ(z)−z0

= f ∆ (z)+ cg∆ (z)
2)( f ·g)∆ (z) = lim

z0→z
f ·g(σ(z))− f ·g(z0)

σ(z)−z0

= lim
z0→z

f ·g(σ(z))− f ·g(z0)
σ(z)−z0

+ lim
z0→z

f (σ(z)).g(z0)− f (σ(z)).g(z0)
σ(z)−z0

= f (σ(z)) . lim
z0→z

g(σ(z))−g(z0)
σ(z)−z0

+g(z). lim
z0→z

f (σ(z))− f (z0)
σ(z)−z0

= f (σ(z)) .g∆(z)+g(z). f ∆(z)
3)T he proo f isobvious.

Definition 3.2. We say that a dual-valued function f : T1 + εT2 → D is a delta differentiable function at point z0 = x0 + εy0 ∈ Tκ
1 + εTκ

2 if
there exist a dual number A = A1 + εA2 such that

f (z0)− f (z) = A(z0 − z)+α(z0 − z)
f (zσ1

0 )− f (z) = A(zσ1
0 − z)+β (zσ1

0 − z)
f (zσ2

0 )− f (z) = A(zσ2
0 − z)+ γ(zσ2

0 − z)

for all z ∈Uδ (z0) where Uδ (z0) is a δ− neighborhood of z0 in T1 + εT2 . The coefficients α = α(z0,z) , β = β (z0,z) and γ = γ(z0,z) are
equal to zero at z0 = z, i.e. lim

z→z0
α(z0,z) = lim

z→z0
β (z0,z) = lim

z→z0
γ(z0,z) = 0 where they defined for z ∈Uδ (z0). Then the number A is called

the delta differentiation of the dual-variable function f at z0 and is denoted by f ∆(z0).

Theorem 3.3. Assume that the function f : T1 + εT2 → D, f (z) = ϕ(x,y)+ εψ(x,y) is delta differentiable and the functions ϕ(x,y)
and ψ(x,y) are completely delta differentiable at the dual number z0 = x0 + εy0 ∈ Tκ

1 + εTκ
2 . The dual-variable function is satisfied the

Cauchy-Riemann equations ∆ϕ

∆1x = ∆ψ

∆2y and ∆ϕ

∆2y = 0 at the dual number z0 = x0 + εy0. Therefore, the derivative formula f ∆(z0) can be

denoted by f ∆(z0) =
∆ϕ

∆1x + ε
∆ψ

∆1x .

Lemma 3.4. Suppose that f be a dual function in Ω ⊂ D, which can be denoted in terms of its real and dual parts as f = ϕ + εψ and the
partial derivatives of f exist on product of two time scales. Then

1. the dual variable-function f is holomorphic in Ω ⊂ D necessary and sufficient condition its partial derivatives on the time scales
satisfy ε

∂ f
∆1x = ∂ f

∆2y on timescale.
2. the dual variable function f is holomorphic in the subset Ω ⊂ D necessary and sufficient condition the below formula provides

∂ϕ

∆1x = ∂ψ

∆2y , ∂ϕ

∆2y = 0 on the time scales.

Theorem 3.5. The function f is holomorphic in the open subset Ω ⊂ D, if and only if there exist a pair of real functions ϕ and κ , such that
ϕ ∈Cσ1(Px(Ω)). dϕ

∆1x is delta1-differentiable in Px(Ω) and κ is delta1-differentiable in Px(Ω), where Px is the first projection, so that the dual
variable-function f is shown explicitly

f (z) = ϕ(x)+(
dϕ

∆1x
y+κ(x))ε, ∀z ∈ Ω. (3.1)

Remark 3.6. If, in particular, f is an homogeneous function, (3.1) gives κ ≡ 0. Thus f (z) = ϕ(x)+ ε
dϕ

∆1x y.

Definition 3.7. Let the real functions ϕ : [a,b]→ T1 and ψ : [a,b]→ T2 be continuous functions. A dual-variable function z = λ (t) =
ϕ(t)+ εψ(t), for t ∈ [a,b] ∈ T is defined a dual curve on the timescale plane T1 + εT2.
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If the dual-variable function f (z) is constant on the set T1 + εT2, then the real function ϕ(x,y) is constant and ψ(x,y) = 0. Moreover, the
Cauchy-Riemann equations of the dual-variable functions ∂ϕ

∆1x = 0 = ∂ψ

∆2x and ∂ϕ

∆2y = 0.

If the dual-variable function is given by f (z) = z = x+ εy = ϕ(x,y)+ εψ(x,y) on T1 + εT2, then the functions ϕ(x,y) = x and ψ(x,y) = y
functions satisfy the Cauchy-Riemann equations of the dual-variable functions ∂ϕ

∆1x = 1 = ∂ψ

∆2y and ∂ϕ

∆2y = 0. Since f ∆(z0) =
∂ϕ

∆1x + ε
∂ψ

∆1x =

1+ ε0, the derivation of f (z) = z becomes f ∆(z0) = 1 for z0 ∈ T1 + εT2.
Consider the dual-variable function f (z) = x2+ε2xy on the time scales T1+εT2. Therefore, the real functions ϕ(x,y) = x2 and ψ(x,y) = 2xy
provide the equations ∂ϕ

∆1x = x+σ1(x),
∂ψ

∆2y = 2x and ∂ϕ

∆2y = 0. Because of the Cauchy-Riemann equations of the dual-variable functions, the

conditions x+σ1(x) = 2x and ∂ϕ

∆2y = 0 are satisfied. Now we will give a new definition about the dual delta-covariant derivative on the time
scales.
Let ε ̸= 0 , ε2 = 0 be the dual unit. Then, n-dimensional dual time scale is defined by Λn = (T11 + εT12, ...,Tn1 + εTn2) where

Ti1 + εTi2 = {Zi = xi + εyi|xi ∈ Ti1,y ∈ Ti2, i = 1, . . . ,n} .

Any function F : Λn → Dn can be represented in the form of F = f + ε f ∗ where f : T11 × . . .×Tn1 → R is the real part of F and
f ∗ : T12 × . . .×Tn2 → R is the dual part of F. Furthermore, σi1 and σi2 are the forward jump operators, and also ∆i1 and ∆i2 are the delta
derivatives for Ti1 and Ti2, respectively.

Definition 3.8. Assume that Z = (Z1, . . . ,Zn) be a dual vector in Dn where Zi = xi + εx∗i i = 1,2, . . . ,n. The dual gradient operator with
respect to the dual vector Z = (Z1, . . . ,Zn) can be defined by ∇ = ( ∂

∆1Z1
, . . . , ∂

∆1Zn
). Since, F = f + ε f ∗ is a dual-variable function in Dn,

then the gradient operator of Fis described by ∇F = ( ∂F
∆1Z1

, . . . , ∂F
∆1Zn

). If we substitute the derivative of dual functions in above equation,
then we get

∇F =

(
∂ f

∆11x1
+ ε

(
x∗1

∂ 2 f
∆11x2

1
+

∂ f ∗

∆11x1

)
, . . . ,

∂ f
∆n1xn

+ ε

(
x∗n

∂ 2 f
∆n1x2

n
+

∂ f ∗

∆n1xn

))
.

Definition 3.9. Let Z = (Z1, . . . ,Zn) be a dual vector in Dn where Zi = xi + εyi and F = (F1, . . . ,Fn) be a dual-variable function in Dn

where Fi = fi + ε f ∗i for i = 1,2, . . . ,n.
The dual delta-covariant derivative of F = (F1, . . . ,Fn) with respect to the dual vector Z = (Z1, . . . ,Zn) is defined by

∂F
∆Z

(P) = ∇Z∆ F =
n

∑
i=1

∂Fi

∆iZ
∂

∆iZi
(P) = (⟨∇F1,ZP⟩ , . . . ,⟨∇Fn,ZP⟩)P

where ∇Fi =
∂ fi

∆11x1
+ ε

(
x∗1

∂ 2 fi
∆11x2

1
+ ∂ fi

∗

∆11x1

)
, . . . , ∂ fi

∆n1xn
+ ε

(
x∗n

∂ 2 fi
∆n1x2

n
+ ∂ fi

∗

∆n1xn

)
, for i = 1,2, . . . ,n. Some special cases of the time scale as

following:

1. If we take all time scales as Ti1 = T1 and Ti2 = T2 for i = 1,2, . . . ,n, then the dual delta-covariant derivative will be

∂F
∆Z

(P) =



〈
∂ f1
∆1x1

+ ε

(
x∗1

∂ 2 f1
∆1x2

1
+ ∂ f1

∗

∆1x1

)
, . . . ,
∂ f1
∆1xn

+ ε

(
x∗n

∂ 2 f1
∆1x2

n
+ ∂ f1

∗

∆1xn

)
P

 ,ZP

〉
,

...〈
∂ fn
∆1x1

+ ε

(
x∗1

∂ 2 fn
∆1x2

1
+ ∂ fn

∗

∆1x1

)
, . . . ,
∂ fn
∆1xn

+ ε

(
x∗n

∂ 2 fn
∆1x2

n
+ ∂ fn

∗

∆1xn

)
P

 ,ZP

〉


P

2. If we take all Ti1 = Ti2 = T for i = 1,2, . . . ,n, then the dual delta-covariant derivative will be

∂F
∆Z

(P) =



〈
∂ f1
∆x1

+ ε

(
x∗1

∂ 2 f1
∆x2

1
+ ∂ f1

∗

∆x1

)
, . . . ,
∂ f1
∆xn

+ ε

(
x∗n

∂ 2 f1
∆x2

n
+ ∂ f1

∗

∆xn

)
P

 ,ZP

〉
,

...〈
∂ fn
∆x1

+ ε

(
x∗1

∂ 2 fn
∆x2

1
+ ∂ fn

∗

∆x1

)
, . . . ,
∂ fn
∆xn

+ ε

(
x∗n

∂ 2 fn
∆x2

n
+ ∂ fn

∗

∆xn

)
P

 ,ZP

〉


P
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3. If we take all Ti1 = Ti2 = R for i = 1,2, . . . ,n, then the dual delta-covariant derivative will be

∂F
∆Z

(P) =



〈
∂ f1
∂x1

+ ε

(
x∗1

∂ 2 f1
∂x2

1
+ ∂ f1

∗

∂x1

)
, . . . ,
∂ f1
∂xn

+ ε

(
x∗n

∂ 2 f1
∂x2

n
+ ∂ f1

∗

∂xn

)
P

 ,ZP

〉
,

...〈
∂ fn
∂x1

+ ε

(
x∗1

∂ 2 fn
∂x2

1
+ ∂ fn

∗

∂x1

)
, . . . ,
∂ fn
∂xn

+ ε

(
x∗n

∂ 2 fn
∂x2

n
+ ∂ fn

∗

∂xn

)
P

 ,ZP

〉


P

Theorem 3.10. Suppose F and G are differentiable at Z ∈ Dn and that c ∈ D, n ∈ Z. The following equalities are satisfied.

1) ∂ (F+cG)
∆Z (P) = ∂ (F)

∆Z (P)+ c ∂ (G)
∆Z (P)

2) ∂ (FG)
∆Z (P) = ∂ (F)

∆Z G(P)+F (σ (Z))(P) ∂ (G)
∆Z (P) = F(P) ∂ (G)

∆Z +
∂ (F)
∆Z (P)G(σ (Z))(P)

3)
∂( F

G )
∆Z (P) =

∂ (F)
∆Z (P)G(Z)−F(Z) ∂ (G)

∆Z (P)
G(Z)G(σ(Z)) , G ̸= 0

Proof. The proof is obvious from the delta derivative properties.

4. Numeric Example

Let F = (F1, . . . ,Fn) = ( f1 + ε f ∗1 , f2 + ε f ∗2 ) be a dual function with the components f1 = 3x1 + x2, f ∗1 = x1 − 2x2, f2 = x2
1 + x2

2, f ∗2 =
2x2

1 − x2
2. If the dual point is given by Z = (Z1,Z2) = (x1 + εx∗1,x2 + εx∗2) = (2+ 3ε,4+ 5ε), then we will compute the dual covariant

derivative ∂F
∆Z (P) = ∇Z∆ F .

∂F
∆Z (P) = ∇Z∆ F = (⟨∇F1,ZP⟩ ,⟨∇F2,ZP⟩)P

=



〈 ∂ f1
∂x1

+ ε

(
x∗1

∂ 2 f1
∂x2

1
+ ∂ f1

∗

∂x1

)
,

∂ f1
∂x2

+ ε

(
x∗2

∂ 2 f1
∂x2

2
+ ∂ f1

∗

∂x2

)  ,ZP

〉
,

〈 ∂ f2
∂x1

+ ε

(
x∗1

∂ 2 f2
∂x2

1
+ ∂ f2

∗

∂x1

)
,

∂ f2
∂x2

+ ε

(
x∗2

∂ 2 f2
∂x2

2
+ ∂ f2

∗

∂x2

)  ,ZP

〉


=


〈(

3+ ε(x∗1 +0+1),
1+ ε(x∗2.0+(−2))

)
,ZP

〉
,〈(

(2x1 + ε(x∗1 +2+4x1),
2x2 + ε(2x∗2 −2x2))

)
,ZP

〉


= (⟨(3+ ε,1−2ε),ZP⟩ ,⟨(4+14ε,8+2ε),ZP⟩)

=

(
⟨(3+ ε,1−2ε),(2+ ε3,4+5ε)⟩ ,
⟨(4+14ε,8+2ε),(2+ ε3,4+5ε)⟩

)
= (10+8ε,40+88ε).

On the other hand we will compute this example on the time scales. Suppose that all time scales are equal and the derivative on time scale is
denoted by ∆.

∂F
∆Z (P) = ∇Z∆ F = (⟨∇F1,ZP⟩ , . . . ,⟨∇Fn,ZP⟩)P

=



〈 ∂ f1
∆x1

+ ε

(
x∗1

∂ 2 f1
∆x2

1
+ ∂ f1

∗

∆x1

)
,

∂ f1
∆x2

+ ε

(
x∗2

∂ 2 f1
∆x2

2
+ ∂ f1

∗

∆x2

)  ,ZP

〉
,

〈 ∂ f2
∆x1

+ ε

(
x∗1

∂ 2 f2
∆x2

1
+ ∂ f2

∗

∆x1

)
,

∂ f2
∆xn

+ ε

(
x∗2

∂ 2 f2
∆x2

2
+ ∂ f2

∗

∆x2

)  ,ZP

〉


=


⟨(3+ ε,1−2ε),ZP⟩ ,〈 (σ(x1)+2)+ ε

(
3
(

∂ (σ(x1))
∆x1

+1
)

+2(σ(x1)+2)

)
,

(σ(x2)+4)+ ε

(
5
(

∂ (σ(x2))
∆x2

+1
)

−(σ(x2)+4)

)
,ZP

〉
 .

If we take the time scale as T = R then σ(t) = t. Therefore the result will be
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∂F
∆Z (P) =


⟨(3+ ε,1−2ε),ZP⟩ ,〈

(x1 +2)+ ε

(
3
(

∂ (x1)
∆x1

+1
)

+2(x1 +2)

)
,

(x2 +4)+ ε

(
5
(

∂ (x2)
∆x2

+1
)

−(x2 +4)

)
 ,ZP

〉


= (⟨(3+ ε,1−2ε),ZP⟩ ,⟨(4+14ε,8+2ε),ZP⟩)

=

(
⟨(3+ ε,1−2ε),(2+ ε3,4+5ε)⟩ ,
⟨(4+14ε,8+2ε),(2+ ε3,4+5ε)⟩

)
= (10+8ε,40+88ε).

5. Conclusion

In current paper, we have researched the covariant derivative of dual-variable functions on time scales. In the literature, up to now, there has
been no any study about this concept. This research is a guideline for future work.
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