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1. Introduction

Fractional calculus, dealing with derivatives and integrals to an arbitrary order, has been applied successfully in
the modelling of many problems in science and engineering [20, 21]. For the advantages of the fractional differential
equations over the models of integer order, we refer the reader to [22]. Up to a recent time, when we take into account
the high importance of oscillation theory, the number of published works about fractional differential and difference
equations is still limited, see for example [1–5,7,10,13–16,23–25]. To the best of our knowledge, the results of Grace
et al. in [16] are considered as the first about the study of oscillation theory for fractional differential equations, the
results in [7] are the first in the frame of discrete fractional calculus, and the article in [1] is the first in the q-fractional
case.

The conformable derivative was first introduced by Khalil et al. in [19] and then explored by Abdeljawad in [6].
Later, in [8], Anderson et al. modified the conformable derivative by using the proportional derivative so that when the
order of it tends to zero we get the function itself. He gave the following definition:

Definition 1.1. [8] For ν ∈ [0, 1], let the functions η0, η1 : [0, 1] × R → [0,∞) be continuous such that for all t ∈ R,
we have

lim
ν→0+
η1(ν, t) = 1, lim

ν→0+
η0(ν, t) = 0, lim

ν→1−
η1(ν, t) = 0, lim

ν→1−
η0(ν, t) = 1,

and η1(ν, t) , 0, ν ∈ [0, 1), η0(ν, t) , 0, ν ∈ (0, 1]. Then, the proportional derivative of order ν is defined by

Dνθ(t) = η1(ν, t)θ(t) + η0(ν, t)θ′(t). (1.1)
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We will restrict ourselves to the case when η1(ν, t) = 1 − ν and η0(ν, t) = ν. Then, (1.1) becomes

Dνθ(t) = (1 − ν)θ(t) + νθ′(t). (1.2)

Note that limν→0+ Dνθ(t) = θ(t) and limν→1− Dνθ(t) = θ′(t). Hence, derivative (1.2) is more general than the conformable
derivative which does not tend to the original function as ν→ 0+.

Recently, Jarad et al. [18] have introduced a nonlocal fractional proportional derivative or generalized proportional
fractional (GPF) derivatives in the both Riemann-Liouville and Caputo senses. The GPF derivatives and integrals
possess kernels involving exponential functions. The advantage of such newly defined derivatives is that their corre-
sponding proportional fractional integrals possess a semi-group property in the fractional index α used to replace the
iterated number n, and they result in the existing Riemann-Liouville and Caputo fractional derivatives for the particular
case ν = 1.

In this paper, motivated by [9], we study the oscillation of GPF integro-differential equation of the form Dα,νa x(t) = r(t) −
∫ t

a Ψ(t, s)Λ(s, x(s)) ds, t ≥ a ≥ 0, 0 < α < 1, 0 < ν ≤ 1,
limt→a+ I1−α,ν

a x(t) = b1 ,
(1.3)

where r (the forcing term), Ψ, and Λ are continuous functions, b1 ∈ R, and Dα,νa and I1−α,ν
a denotes the left GPF

derivative and integral operators in the Riemann-Liouville setting, respectively.
Throughout this article, we only consider those solutions of Eq. (1.3) which are nontrivial and continuable in any

neighborhood of infinity. Such a solution is said to be oscillatory if it has arbitrarily large zeros on (0,∞); otherwise,
it is called nonoscillatory. Eq. (1.3) itself is said to be oscillatory if all of its solutions are oscillatory. Or simply, the
solution is called nonoscillatory, if it does not change its sign after some time.

2. Preliminaries

In this section, we recall some definitions and essential lemmas that will be used to proceed in proving the main
results in this paper.

Definition 2.1. [18] For ν ∈ (0, 1], α ∈ C with Re(α) > 0, the left GPF integral of θ is defined by

Iα,νa θ(t) :=
1

ναΓ(α)

∫ t

a
e
ν−1
ν (t−s)(t − s)α−1θ(s)ds = ν−αe

ν−1
ν t Iαa (e

1−ν
ν tθ(t)),

where Iαa is the Riemann-Liouville fractional integral operator ( see [21] ).

Definition 2.2. [18] For ν ∈ (0, 1], α ∈ C with Re(α) ≥ 0, the left GPF derivative of Riemann-Liouville type of θ of
order α is defined by

Dα,νa θ(t) := Dn,νIn−α,ν
a θ(t)

=
Dn,ν

t

νn−αΓ(n − α)

∫ t

a
e
ν−1
ν (t−s)(t − s)n−α−1θ(s)ds,

where n = [Re(α)] + 1.

Definition 2.3. [18] For ν ∈ (0, 1], α ∈ C with Re(α) ≥ 0, the left derivative of Caputo type of θ of order α is defined
by

C Dα,νa θ(t) :=
1

νn−αΓ(n − α)

∫ t

a
e
ν−1
ν (t−s)(t − s)n−α−1Dn,νθ(s)ds,

where n = [Re(α)] + 1.

Lemma 2.4. [18] Let Re(α) > 0, n = −[−Re(α)], θ ∈ L1(a, b), Iα,νa θ(t) ∈ ACn[a, b], and ν ∈ (0, 1]. Then

Iα,νa Dα,νa θ(t) = θ(t) − e
ν−1
ν (t−a)

n∑
j=1

(I j−α,ν
a θ)(a+)

να− jΓ(α + 1 − j)
(t − a)α− j. (2.1)

Lemma 2.5. [18] For ν ∈ (0, 1] and n = [Re(α)] + 1, we have

Iα,νa
C Dα,νa θ(t) = θ(t) −

n−1∑
j=0

D j,νθ(a)
ν j j!

(t − a) je
ν−1
ν (t−a). (2.2)
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Proposition 2.6. [18] Let α, ϱ ∈ C such that Re(α) ≥ 0 and Re(ϱ) > 0. Then, for any ν ∈ (0, 1], we have
(a)

Iα,νa (e
ν−1
ν t(t − a)ϱ−1) =

Γ(ϱ)
Γ(ϱ + α)να

e
ν−1
ν t(t − a)α+ϱ−1, Re(α) > 0, (2.3)

(b)

Dα,νa (e
ν−1
ν t(t − a)ϱ−1) =

ναΓ(ϱ)
Γ(ϱ − α)

e
ν−1
ν t(t − a)ϱ−1−α, Re(α) ≥ 0.

Proposition 2.7. [18] Let α, ϱ ∈ C such that Re(α) > 0 and Re(ϱ) > 0. Then, for any ν ∈ (0, 1] and n = [Re(α)] + 1,
we have

C Dα,νa (e
ν−1
ν t(t − a)ϱ−1) =

ναΓ(ϱ)
Γ(ϱ − α)

e
ν−1
ν t(t − a)ϱ−1−α, Re(ϱ) > n.

Lemma 2.8. [17] If S and T are nonnegative, then

S σ + (σ − 1)Tσ − σS Tσ−1 ≥ 0, σ > 1, (2.4)

and
S σ − (1 − σ)Tσ − σS Tσ−1 ≤ 0, σ < 1, (2.5)

with equality holds if and only if S = T.

3. Oscillation Criteria for the GPF Integro-differential Equations in the Riemann-Liouville Setting

Throughout this paper, we assume that the following conditions are satisfied without further mention:
(O1) r : (a,∞)→ R,Ψ : (a,∞) × (a,∞)→ R are continuous with Ψ(t, s) ≥ 0 for t > s;
(O2) there exist ξ1, ξ2 : (a,∞)→ [0,∞), which are continuous functions such that Ψ(t, s) ≤ ξ1(t)ξ2(s) for all t ≥ s;
(O3) Λ : (a,∞) × R → R with Λ(t, x) := g1(t, x) − g2(t, x) is continuous such that g1, g2 : (a,∞) × R → R are

continuous and that xgi(t, x) > 0, (i = 1, 2) for t ≥ a and x , 0;
(O4) there exist real constants ϱ, ε and q1, q2 : (a,∞)→ (0,∞) continuous such that

g1(t, x) ≥ q1(t)xϱ and g2(t, x) ≤ q2(t)xε, t ≥ a , x , 0.

Theorem 3.1. Assume that conditions (O1)-(O3) are satisfied with g2 = 0. If for every constant k > 0

lim sup
t→∞

Iα,νa [r(t) − kξ1(t)] = ∞

and
lim inf

t→∞
Iα,νa [r(t) + kξ1(t)] = −∞, (3.1)

then every solution of Eq. (1.3) is oscillatory.

Proof. Assume that x(t) is a nonoscillatory solution of Eq. (1.3) with g2 = 0. Without loss of generality, let’s say that
x(t) > 0 for t ≥ T1 for some sufficiently large T1 > a. Hence, (O3) implies that g1(t, x(t)) > 0 for t ≥ T1. Now, from
Eq. (1.3), we have

Dα,νa x(t) = r(t) −
∫ t

a
Ψ(t, s)Λ(s, x(s)) ds

= r(t) −
∫ T1

a
Ψ(t, s)g1(s, x(s)) ds −

∫ t

T1

Ψ(t, s)g1(s, x(s)) ds. (3.2)

Letting κ := min{Λ(t, x(t)) : t ∈ [a,T1]} ≤ 0 and k := −κ
∫ T1

a ξ2(s) ds ≥ 0, it follows from (3.2) that

Dα,νa x(t) ≤ r(t) + kξ1(t).

Using the monotonicity property of Iα,νa , we see that

Iα,νa Dα,νa x(t) ≤ Iα,νa [r(t) + kξ1(t)],



Re
tra

ct
ed

Some Oscillation Criteria for Nonlocal Fractional Proportional Integro-differential Equations 242

and hence, from (2.1),

x(t) ≤
b1

να−1Γ(α)
e
ν−1
ν (t−a)(t − a)α−1 + Iα,νa [r(t) + kξ1(t)]. (3.3)

In view of (3.1), it follows from (3.3) that
lim inf

t→∞
x(t) = −∞,

which contradicts the assumption that x(t) > 0 eventually. The proof is similar if x(t) is eventually negative. □

Theorem 3.2. Assume that conditions (O1)-(O4) are satisfied with ϱ > 1 and ε = 1. If further, in addition to the
conditions presented in Theorem 3.1, we assume that∫ ∞

a

e
ν−1
ν (t−s)(t − s)α−1

ναΓ(α)

∫ s

a
Ψ(s, u)q

1
1−ϱ

1 (u)q
ϱ
ϱ−1

2 (u) duds < ∞, (3.4)

then every solution of Eq. (1.3) is oscillatory.

Proof. Assume that x(t) is a nonoscillatory solution of Eq. (1.3) with x(t) > 0 for t ≥ T1. From conditions (O3)-(O4)
with ϱ > 1 and ε = 1, we have

Dα,νa x(t) ≤ r(t) + kξ1(t) +
∫ t

T1

Ψ(t, s)[q2(s)x(s) − q1(s)xϱ(s)] ds,

for some k > 0. If in (2.4), we let σ = ϱ, S = q
1
ϱ

1 x, and T =
(

1
ϱ
q2q

−1
ϱ

1

) 1
ϱ−1

, then we get

q2x − q1xϱ ≤ (ϱ − 1)ϱ
ϱ

1−ϱ q
1

1−ϱ

1 q
ϱ
ϱ−1

2 , (3.5)

and hence

Dα,νa x(t) ≤ r(t) + kξ1(t) +
∫ t

T1

Ψ(t, s)(ϱ − 1)ϱ
ϱ

1−ϱ q
1

1−ϱ

1 (s)q
ϱ
ϱ−1

2 (s) ds. (3.6)

Applying the operator Iα,νa to (3.6), we see that

x(t) ≤
b1

να−1Γ(α)
e
ν−1
ν (t−a)(t − a)α−1 + Iα,νa [r(t) + kξ1(t)]

+

∫ t

a

e
ν−1
ν (t−s)(t − s)α−1

ναΓ(α)

∫ s

T1

Ψ(s, u)(ϱ − 1)ϱ
ϱ

1−ϱ q
1

1−ϱ

1 (u)q
ϱ
ϱ−1

2 (u) duds.

(3.7)

By applying the limit inferior on both sides of (3.7) as t → ∞, and using (3.1) and (3.4), we get

lim inf
t→∞

x(t) = −∞,

which contradicts the assumption that x(t) > 0 eventually. This completes the proof. □

Theorem 3.3. Assume that conditions (O1)-(O4) are satisfied with ϱ = 1 and ε < 1. Further, if in addition to the
conditions of Theorem 3.1, we suppose that∫ ∞

a

e
ν−1
ν (t−s)(t − s)α−1

ναΓ(α)

∫ s

a
Ψ(s, u)q

ε
ε−1
1 (u)q

1
1−ε
2 (u) duds < ∞,

then every solution of Eq. (1.3) is oscillatory.

Proof. Suppose that x(t) is a nonoscillatory solution of Eq. (1.3). Say that x(t) > 0 for t ≥ T1. From conditions
(O3)-(O4) with ϱ = 1 and ε < 1, we have

Dα,νa x(t) ≤ r(t) + kξ1(t) +
∫ t

T1

Ψ(t, s)[q2(s)xε(s) − q1(s)x(s)] ds,

for some k > 0. If we take in (2.5), σ = ε, S = q
1
ε

2 x, and T =
(

1
ε
q1q

−1
ε

2

) 1
ε−1

, then we get

q2xε − q1x ≤ (1 − ε)ε
ε

1−ε q
ε
ε−1
1 q

1
1−ε
2 , (3.8)
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and hence

Dα,νa x(t) ≤ r(t) + kξ1(t) +
∫ t

T1

Ψ(t, s)(1 − ε)ε
ε

1−ε q
ε
ε−1
1 (s)q

1
1−ε
2 (s) ds.

The rest of the proof is similar to that in Theorem 3.2, and hence we omit it. □

Theorem 3.4. Assume that conditions (O1)-(O4) are satisfied with ϱ > 1 and ε < 1. Further, if in addition to the
conditions of Theorem 3.1, we assume that there exists a continuous function ς : R→ (0,∞) such that∫ ∞

a

e
ν−1
ν (t−s)(t − s)α−1

ναΓ(α)

∫ s

a
Ψ(s, u)q

1
1−ϱ

1 (u)ς
ϱ
ϱ−1 (u) duds < ∞

and ∫ ∞

a

e
ν−1
ν (t−s)(t − s)α−1

ναΓ(α)

∫ s

a
Ψ(s, u)ς

ε
ε−1 (u)q

1
1−ε
2 (u) duds < ∞,

then every solution of Eq. (1.3) is oscillatory.

Proof. Assume that x(t) is a nonoscillatory solution of Eq. (1.3) with x(t) > 0 for t ≥ T1. Using the same procedure as
above, from conditions (O3)-(O4) with ϱ > 1 and ε < 1, we see that

Dα,νa x(t) ≤ r(t) + kξ1(t) +
∫ t

T1

Ψ(t, s)[ς(s)x(s) − q1(s)xϱ(s)] ds

+

∫ t

T1

Ψ(t, s)[q2(s)xε(s) − ς(s)x(s)] ds,

for some k > 0. Taking q2(s) = ς(s) in (3.5) and q1(s) = ς(s) in (3.8), we get

Dα,νa x(t) ≤ r(t) + kξ1(t) +
∫ t

T1

Ψ(t, s)(ϱ − 1)ϱ
ϱ

1−ϱ q
1

1−ϱ

1 (s)ς
ϱ
ϱ−1 (s) ds

+

∫ t

T1

Ψ(t, s)(1 − ε)ε
ε

1−ε ς
ε
ε−1 (s)q

1
1−ε
2 (s) ds.

The rest of the proof is similar to that in Theorem 3.2. □

The following example clarifies Theorem 3.1.

Example 3.5. Consider the integro-differential equation with Riemann-Liouville GPF derivative D1/3,1/2
0 x(t) =

e−tt2/3

3√2Γ(5/3)
− (t3 + 2t2 + 2t)e−t + 2t − t

∫ t

0
sx(s) ds,

limt→0+ I2/3,1/2
0 x(t) = 0 .

(3.9)

Comparing with Eq. (1.3) with g2 = 0, we have

α =
1
3
, ν =

1
2
, a = b1 = 0, g1(t, x) = x, r(t) =

e−tt2/3

3√2Γ(5/3)
− (t3 + 2t2 + 2t)e−t + 2t,Ψ(t, s) = ts.

Conditions (O1)–(O3) are satisfied and condition (3.1) does not hold. We have

r(t) ≥
e−tt2/3

3√2Γ(5/3)
− (t3 + 2t2 + 2t)e−t, t ≥ 0. (3.10)

Applying the operator I1/3,1/2
0 to (3.10), we see that

I1/3,1/2
0 r(t) ≥ te−t −

6 3√2
Γ(13/3)

t10/3e−t −
4 3√2
Γ(10/3)

t7/3e−t −
2 3√2
Γ(7/3)

t4/3e−t. (3.11)

Taking limit inferior on both sides of (3.11) as t → ∞, one can easily see that the right hand side is zero, so we get

lim inf
t→∞

I1/3,1/2
0 r(t) ≥ 0.
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Using Proposition 2.6 (b), it is easy to verify that x(t) = te−t is a nonoscillatory solution of Eq. (3.9). Here,

lim
t→0+

I2/3,1/2
0 (e−tt) = lim

t→0+

3√4
Γ(8/3)

t5/3e−t = 0.

Note that here κ = k = 0.

The following example clarifies Theorem 3.2.

Example 3.6. Consider the integro-differential equation with Riemann-Liouville GPF derivative D1/2,1/2
0 x(t) =

4
√

2
3
√
π

e−tt3/2 + t
(
4 + e−t (−4 − t (4 + t (2 + t)))

)
− t

∫ t

0
s
[
x(s) −

x(s)
s

]
ds,

limt→0+ I1/2,1/2
0 x(t) = 0 .

(3.12)

Comparing with Eq. (1.3), we have

α = ν =
1
2
, a = b1 = 0, g1(t, x) = x, g2(t, x) =

x
t
,

r(t) =
4
√

2
3
√
π

e−tt3/2 + t
(
4 + e−t (−4 − t (4 + t (2 + t)))

)
,

Ψ(t, s) = ts.

Conditions (O1)-(O4) are satisfied with ε = 1, ϱ = 2 and q1(t) = t−3, q2(t) = t. However, condition (3.4) is not satisfied
since

lim
b→∞

∫ b

0

√
2
π

es−t

√
t − s

(∫ s

0
su4du

)
ds = lim

b→∞

√
2
π

5

∫ b

0

s6es−t

√
t − s

ds = ∞.

Using Proposition 2.6 (b), it is easy to verify that x(t) = t2e−t is a nonoscillatory solution of Eq. (3.12). Here,

lim
t→0+

I1/2,1/2
0 (t2e−t) =

16
√

2
15
√
π

lim
t→0+

t5/2e−t = 0.

4. Oscillation Criteria for the GPF Integro-differential Equations in the Caputo Setting

In this section, we study the oscillation of the GPF integro-differential equations in the Caputo setting of the form{
C Dα,νa x(t) = r(t) −

∫ t
a Ψ(t, s)Λ(s, x(s)) ds,

Dk,νx(a) = bk ∈ R, k = 0, 1, ..., n − 1,
(4.1)

where n = ⌈α⌉, C Dα,νa is defined by Eq. (??), Dk,ν = DνDν . . .Dν︸        ︷︷        ︸
k-times

, and Dν is the proportional derivative.

Below, we provide corresponding results for Eq. (4.1). Since the arguments resemble the case of Riemann-Liouville,
we will only prove the first of the following theorems.

Theorem 4.1. Assume that conditions (O1)-(O3) are satisfied with g2 = 0. If for every constant k > 0

lim sup
t→∞

t1−nIα,νa [r(t) − kξ1(t)] = ∞

and
lim inf

t→∞
t1−nIα,νa [r(t) + kξ1(t)] = −∞, (4.2)

then every solution of Eq. (4.1) is oscillatory.

Proof. Assume that x(t) is a nonoscillatory solution of Eq. (4.1) with g2 = 0.Without loss of generality, assume that
x(t) > 0 for t ≥ T1. Proceeding as in the proof of Theorem 3.1, we get

C Dα,νa x(t) ≤ r(t) + kξ1(t). (4.3)
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R. Mert, S. Bayeğ, Turk. J. Math. Comput. Sci., 13(2)(2021), 239–247 245

Applying the operator Iα,νa to (4.3), we see from (2.2) that

t1−nx(t) ≤ t1−ne
ν−1
ν (t−a)

n−1∑
j=0

D j,νx(a)
ν j j!

(t − a) j + t1−n Iα,νa [r(t) + kξ1(t)]

≤ e
ν−1
ν (t−a)

( t − a
t

)n−1 n−1∑
j=0

|D j,νx(a)|
ν j j!

(t − a) j−n+1 + t1−n Iα,νa [r(t) + kξ1(t)]

≤

n−1∑
j=0

|D j,νx(a)|
ν j j!

(T2 − a) j−n+1 + t1−n Iα,νa [r(t) + kξ1(t)], t ≥ T2 > T1.

Now, from (4.2), it follows that
lim inf

t→∞
t1−nx(t) = −∞,

which is a contradiction to that x(t) > 0 eventually. Hence, the proof is complete. □

Theorem 4.2. Assume that conditions (O1)-(O4) are satisfied with ϱ > 1 and ε = 1. In addition to the conditions of
Theorem 4.1, if

lim
t→∞

t1−n
∫ t

a

e
ν−1
ν (t−s)(t − s)α−1

ναΓ(α)

∫ s

a
Ψ(s, u)q

1
1−ϱ

1 (u)q
ϱ
ϱ−1

2 (u) duds < ∞,

then every solution of Eq. (4.1) is oscillatory.

Theorem 4.3. Assume that conditions (O1)-(O4) are satisfied with ϱ = 1 and ε < 1. In addition to the conditions of
Theorem 4.1, if

lim
t→∞

t1−n
∫ t

a

e
ν−1
ν (t−s)(t − s)α−1

ναΓ(α)

∫ s

a
Ψ(s, u)q

ε
ε−1
1 (u)q

1
1−ε
2 (u) duds < ∞, (4.4)

then every solution of Eq. (4.1) is oscillatory.

Theorem 4.4. Assume that conditions (O1)-(O4) are satisfied with ϱ > 1 and ε < 1. In addition to the conditions of
Theorem 4.1, assume that there exists a continuous function ς : R→ (0,∞) such that

lim
t→∞

t1−n
∫ t

a

e
ν−1
ν (t−s)(t − s)α−1

ναΓ(α)

∫ s

a
Ψ(s, u)q

1
1−ϱ

1 (u)ς
ϱ
ϱ−1 (u) duds < ∞

and

lim
t→∞

t1−n
∫ t

a

e
ν−1
ν (t−s)(t − s)α−1

ναΓ(α)

∫ s

a
Ψ(s, u)ς

ε
ε−1 (u)q

1
1−ε
2 (u) duds < ∞,

then every solution of Eq. (4.1) is oscillatory.

The following example clarifies Theorem 4.1.

Example 4.5. Consider the integro-differential equation with Caputo GPF derivative
C D3/2,1/2

0 x(t) =

√
2
π

e−t √t − (t4 + 3t3 + 6t2 + 6t)e−t + 6t − t
∫ t

0
sx(s) ds,

x(0) = 0, x′(0) = 0.
(4.5)

Comparing with Eq. (4.1) with g2 = 0, we have

α =
3
2
, ν =

1
2
, a = b0 = b1 = 0, r(t) =

√
2
π

e−t √t − (t4 + 3t3 + 6t2 + 6t)e−t + 6t,

g1(t, x) = x, and Ψ(t, s) = ts. Conditions (O1)–(O3) are satisfied, and condition (4.2) does not hold. We have

r(t) ≥

√
2
π

e−t √t − (t4 + 3t3 + 6t2 + 6t)e−t, t ≥ 0. (4.6)
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Applying the operator I3/2,1/2
0 to (4.6), we see that

I3/2,1/2
0 r(t) ≥ t2e−t −

48
√

2
Γ(13/2)

t11/2e−t −
36
√

2
Γ(11/2)

t9/2e−t −
24
√

2
Γ(9/2)

t7/2e−t −
12
√

2
Γ(7/2)

t5/2e−t

= −

√
2
π
e−tt2

(
1024t7/2 + 4224t5/2 + 12672t3/2 + 22176t1/2 − 3465

)
3465

,

and hence

t−1I3/2,1/2
0 r(t) ≥ −

√
2
π
e−tt

(
1024t7/2 + 4224t5/2 + 12672t3/2 + 22176t1/2 − 3465

)
3465

.

(4.7)

If we apply limit inferior on both sides of (4.7) as t → ∞, then we get

lim inf
t→∞

t−1I3/2,1/2
0 r(t) ≥ 0. (4.8)

Using Proposition 2.7, one can easily prove that x(t) = t2e−t is a nonoscillatory solution of Eq. (4.5).

5. Conclusion

Local fractional proportional derivatives, say of order ν ∈ [0, 1], were used in [18] to generate nonlocal fractional
proportional derivatives by adding a second index α instead of the number n which represents the number of iterations
in the fractionalizing process. The produced nonlocal fractional proportional operator aDα,ν, either in the Riemann-
Liouville or the Caputo sense, includes the exponential function in the kernel. In this work, we have investigated and
analyzed such a kernel to study the oscillation of certain nonlocal fractional proportional integro-differential equations.
The case in which ν = 1 reduces to the Caputo and Riemann-Liouville fractional operator ones and hence the results
in [9] are recovered. We have presented some examples to illustrate the applicability of our results. Since the structure
of the kernel used in the definition of a certain fractional operator affects the oscillatory analysis of the problem, we
believe that it will be of interest to study the current oscillation problem in the frame of the Mittag-Lefler law, where
the kernel is nonsingular [12], and for the fractal fractional operators [11].
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