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Abstract 

In this study, the feasibility of a new launcher concept that provides range extension for outdated ballistic munitions by 

speeding up them before their ignition is examined in detail. To analyze the efficiency of the new concept, multi-variable 

and single-variable optimization processes are conducted using the Multi-Objective Genetic Algorithm Method in the 

ModeFrontier environment. Launch angle, ejection velocity of the munition from the launcher, and ignition delay of the 

rocket motor after the ejection process are determined as design variables. An in-house MATLAB script is prepared and 

validated to perform numerical solutions of the munition’s two-dimensional trajectory. As a result of the optimization 

processes, graphical results are prepared to examine the effects of each design variable on munition’s range and to make 

a comparison between the flight trajectories of the munitions which are launched from classical and accelerator launchers. 

It is concluded that usage of the accelerator launcher concept provides approximately 20% range extension for the generic 

munition examined in this research when compared to the classical launcher. Since this new concept can easily be adapted 

to different types of outdated ballistic munitions and the cost of the accelerator launcher development process will 

probably less than the cost required to develop new munitions, it will be reasonable to develop accelerator launchers such 

as electromagnetic accelerators or catapult launchers in near future. 

Keywords: Range Optimization, Accelerator Launcher Concept, 2-D Trajectory Solver, ModeFrontier 

1. Introduction 

Today, advanced military systems such as 

fighters, unmanned aerial vehicles, and 

rockets/missiles have been developed by many 

countries to ensure their security. Such systems are 

used for both defensive and offensive purposes. 

During military operations, the range of a munition 

has crucial importance since long-range systems 

provide an opportunity to attack under less amount 

of risk when compared with short-range systems. 

Therefore, different improvement and optimization 

studies on range improvement have been conducted 

so far. While some studies focused on trajectory 
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optimization, some of them focused on 

aerodynamic shape optimization and propulsion 

system concept optimization. 

Yang et al. optimized the range of a canard-

controlled missile by optimizing its aerodynamic 

shape benefiting from the genetic algorithm method 

[1]. Tanrıkulu and Ercan offered an optimal external 

configuration design method to optimize the range, 

stability, and warhead performance of missiles [2]. 

Li et al. performed a multiphase trajectory 

optimization process to optimize the downrange of 

a boost-glide missile [3]. Dilan, preferred the 

Genetic Algorithm Method in order to optimize 

trajectory optimization of a tactical missile [4]. 

Vasile et al. conducted an aerodynamic design 

optimization of control surfaces for a long-range 

projectile using the particle swarm optimization 

method [5]. Pue et al. performed a multidisciplinary 

concept optimization of a ballistic missile [6]. 

Şumnu et al. used the Multi-objective Genetic 

Algorithm to optimize the aerodynamic shape of a 

missile in order to determine the optimum lift and 

drag coefficients [7]. 

Technological improvements in defense systems 

push designers to improve the capability of the 

munitions in use since the improvement of already 

developed systems is generally much cheaper than 

the development of new munitions. For example, it 

is possible to improve the hitting accuracy of the air 

to ground classical munitions by modifying them 

with laser-guided kits such technology has been 

used to modify the classical MK-82 bombs in 

Turkey. Similarly, with the technological 

improvements, it will be possible to extend the 

range of outdated ballistic munitions with the 

assistance of special launcher concepts such as 

catapult systems or electromagnetic launchers in 

near future. Those launchers will provide an initial 

ejection velocity to the munitions during launch to 

further extend their range. For instance, it will be 

possible to provide a range extension for classical 

ballistic munitions such as TR-107 or TR-122 

rockets which are widely used by the Turkish Army.  

In literature, different studies on electromagnetic 

guns have been conducted so far. The majority of 

them focus on the development or optimization of a 

coilgun concept to accelerate a bullet or a projectile 

using electromagnetic rails [8-10]. Some studies 

focus on the aerodynamic analysis of hypersonic 

projectile geometries launched from 

electromagnetic launchers [11]. Neither of the 

studies in literature aims to extend the range of the 

classical ballistic munitions benefiting from 

electromagnetic launchers. This research will be the 

first one that analyzes the feasibility of accelerator 

concept on range maximization of ballistic 

munitions. To analyze the feasibility of this new 

concept, multivariable and single variable 

optimization processes are conducted. 

During the range improvement, it is quite 

significant to determine the sensitivity of launch 

parameters on munition’s range. After the munition 

is ejected from the launcher, it will be ignited in a 

very short time. Therefore, besides the launch angle 

(θ), two more parameters those are ejection velocity 

of the munition from the launcher (V0) and ignition 

delay after the ejection from the launcher (tfire) will 

gain importance during the development of new 

generation launcher systems and during the range 

optimization of the munitions. 

Within the content of this work, range 

optimization of a generic ballistic munition that is 

ejected from an accelerator launcher is performed. 

Launch angle (θ), ejection velocity of the munition 

from the launcher (V0), and ignition delay after the 

ejection from the launcher (tfire) are selected as 

design variables (optimization parameters) to 

maximize the munition’s range. Results of the 

multivariable optimization process are used to make 

a comparison between the results of the classical 

munition launch process. Additionally, independent 

single variable optimization processes are 

conducted and graphical results are prepared in 

order to examine the effects of each design variable 

on munition’s optimum range. Numerical solution 

of the problem is performed using an in-house 

MATLAB script. Optimization processes are 

prepared and conducted in ModeFrontier software. 

2. Methodology 

This part aims to summarize the basic 

mathematical model to solve the 2-D trajectory 

motion of the ignited generic munition just after it 

is ejected from the accelerator launcher. The 

solution of the trajectory can be divided into three 

different phases: 

• Phase 1: Coasting (Before Ignition)   

• Phase 2: Powered Flight  

• Phase 3: Coasting (After Burnout) 
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In the first phase, the munition is ejected from 

the launcher with an initial V0 velocity and it 

performs short coasting until the munition’s solid 

rocket motor is ignited. With the ignition of the solid 

rocket motor, the second phase of the flight 

(powered flight) is started and this phase ends up 

whenever the solid rocket motor burns out. Then, a 

second coasting phase which corresponds to “Phase 

3” starts and lasts until the munition hits the ground. 

All of the flight phases are illustrated in Figure 1. 

 

Figure 1. Flight phases of the munition ejected 

from accelerator launcher concept 

The two-dimensional, flight trajectory of the 

munition can be calculated by applying Newton’s 

second law to each of the flight phases for both of 

the x and y directions. Throughout the solutions, it 

is assumed that the aerodynamic lift force generated 

by the munition is negligible. 

2.1. Phase-1: Costing Before Ignition 

During Phase-1, since the munition is not 

ignited, the mass of the system is constant and equal 

to the total mass of the munition. There is not any 

thrust or lift force, but gravitational and 

aerodynamic drag forces are present as shown in 

Figure 2. Using Figure 2 and applying Newton’s 

Second Law in x and y directions, Equations 1 and 

2 can be written sequentially. 

 

Figure 2. Free body diagram of munition for 

Phase-1 and Phase-3 

−𝐹𝐷 cos(𝜃) =  𝑚�̈� (1) 

−𝑚𝑔 − 𝐹𝐷 sin(𝜃) =  𝑚�̈� (2) 

where θ represents the launch angle, 𝑔 corresponds 

to gravitational acceleration, 𝑚 represents the 

instant mass of the munition, and 𝐹𝐷 corresponds to 

the instant drag force. 𝑥 and 𝑦 symbolize 

accelerations corresponding to x and y axes. 

The drag force depends on the velocity of the 

munition (𝑣), the density of air (𝜌𝑎𝑖𝑟), drag 

coefficient (𝐶𝐷), and reference area (𝐴𝑓) of the 

munition. It can be calculated using Equation 3. 

𝐹𝐷 =  𝐶𝐷𝐴𝑓𝜌𝑎𝑖𝑟

𝑣2

2
 (3) 

Since the altitude of the munition is variable with 

time, the density of the air is also variable. Using the 

altitude information, the density of the air is 

calculated with Equation 4. 

𝜌𝑎𝑖𝑟 = 𝜌0. 𝑒
−ℎ

ℎ𝑠𝑐𝑎𝑙𝑒
⁄

 (4) 

where ρ0 defines sea-level density of the air (1.225 

kg/m3), h and hscale correspond to the altitude and 

density scale height (7500 m) sequentially. 

The drag coefficient is another variable in 

Equation 3. It varies with the velocity of the 

munition and it depends on the shape of the 

munition. In some studies, the drag coefficient is 

assumed as constant; but, within the content of this 

work it is taken as variable, and variation of the drag 

coefficient with Mach number is illustrated in 

Figure 3. 

 

Figure 3. Variation of drag coefficient with Mach 

Similar to the air density, gravitational 

acceleration also varies with altitude. Using the 

altitude information, it can be calculated as in 

Equation 5. 

𝑔 =
𝑔0   

1 + (ℎ
𝑅𝑒

⁄ )2
 (5) 
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where g0 defines gravitational constant at sea level 

(9.8066 m/s2), Re represents the radius of the Earth 

(6378 km), and h is the altitude. 

The munition velocity (v) can be calculated 

using Equation 6. 

𝑣 = √ �̇�2 + �̇�2  (6) 

where �̇� and �̇� define velocities in x and y 

directions. They can also be stated in Equations 7 

and 8. 

�̇� = 𝑣 cos(𝜃) (7) 

�̇� = 𝑣 sin(𝜃) (8) 

Thus, Equations 9 and 10 can be derived. 

cos(𝜃) =  
�̇�

𝑣
=  

�̇�

√�̇�2 +  �̇�2
 (9) 

sin(𝜃) =
�̇�

𝑣
=  

�̇�

√�̇�2 +  �̇�2
 (10) 

Finally, using Equations 1, 2, 3, 9, and 10; 

Equations 11, 12, 13, and 14 can be derived. 

�̈� = −
𝐶𝐷𝐴𝑓𝜌𝑎𝑖𝑟𝑣2

2𝑚
cos(𝜃) (11) 

�̈� = −
𝐶𝐷𝐴𝑓𝜌𝑎𝑖𝑟

2𝑚
�̇�√�̇�2 +  �̇�2 (12) 

�̈� =  
−𝑚𝑔 − 𝐹𝐷 sin(𝜃)

𝑚
 (13) 

�̈� =  −𝑔 −
𝐶𝐷𝐴𝑓𝜌𝑎𝑖𝑟

2𝑚
�̇�√�̇�2 +  �̇�2 (14) 

where m corresponds to total mass of the munition 

that is equal to m0. 

Numerical solution of Equations 12 and 14 with 

respect to time is accomplished using a Runge-

Kutta solver prepared in MATLAB environment. 

Thus, the trajectory solution of the first phase is 

completed. 

2.2. Phase-2: Powered Flight 

During Phase-2, since there is an ignition 

process, the thrust force is also added to the free 

body diagram as shown in Figure 4. On the other 

hand, the mass of the munition is decreasing with 

time due to the propellant burning process. Using 

Figure 4 and applying Newton’s Second Law in x 

and y directions, Equations 1, and 2 are updated as 

Equations 15, and 16. 

(𝐹𝑇 − 𝐹𝐷) cos(𝜃) =  𝑚�̈� (15) 

(𝐹𝑇 − 𝐹𝐷) sin(𝜃) − 𝑚𝑔−=  𝑚�̈� (16) 

where FT defines the thrust force. 

Within the content of this study, it is assumed 

that the munition’s solid rocket motor produces a 

constant (7500 N) trust during the powered flight 

phase. 

 

Figure 4. Free body diagram of munition for 

Phase-2 

On the other hand, the mass of the munition is 

decreasing during the powered flight and it can be 

calculated using Equation 17. 

𝑚(𝑡) =  𝑚0 − �̇� . 𝑡 (17) 

where t defines time and �̇� defines propellant 

mass flow rate. 

Assuming that the propellant mass flow rate is 

constant, the mass flow rate can be calculated using 

Equation 18. 

�̇� =
𝐹𝑇

𝐼𝑠𝑝. 𝑔0
 (18) 

where Isp represents the specific impulse of the solid 

rocket motor, and g0 corresponds to the gravitational 

constant at sea level.  

Applying a similar solution procedure with 

Phase-1 and using Equations 3, 9, 10, 15, and 16; 

Equations 19, 20, 21, and 22 are derived. 

�̈� =
1

𝑚
(𝐹𝑡 −

𝐶𝐷𝐴𝑓𝜌𝑎𝑖𝑟𝑣2

2
) cos(𝜃) (19) 

�̈� =
�̇�

𝑚. √�̇�2 +  �̇�2
∙ (𝐹𝑡 −

𝐶𝐷𝐴𝑓𝜌𝑎𝑖𝑟𝑣2

2
) (20) 

�̈� =  
(𝐹𝑇 −

𝐶𝐷𝐴𝑓𝜌𝑎𝑖𝑟𝑣2

2 ) sin(𝜃)

𝑚
− 𝑔 

(21) 
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�̈� =  
�̇� ∙ (𝐹𝑇 −

𝐶𝐷𝐴𝑓𝜌𝑎𝑖𝑟𝑣2

2
)

𝑚. √�̇�2 +  �̇�2
− 𝑔 (22) 

The numerical solution of Equations 20 and 22 

with respect to time is accomplished using the 

Runge-Kutta solver. 

2.3. Phase-3: Coasting After Burnout 

During Phase-3, since the propellant is burned 

out, there is not any thrust force exerted on the 

system. Additionally, the mass of the munition is 

constant and equal to the final mass (final mass = 

total mass – propellant mass). The free-body 

diagram of this last phase is identical with Phase 1 

and it was illustrated in Figure 2. The only 

difference between Phase 1 and Phase 3 is the mass 

of the munition. Thus, after placing the final mass 

(mf) into Equations 12, and 14; then solving it with 

the Runge-Kutta solver, the trajectory solution of 

the last phase is finalized. 

3. Validation 

An in-house MATLAB script is prepared to 

perform the numerical solution expressed in the 

previous section.  

Since the accelerator-type launcher concept is 

quite new, it is not possible to find out an 

experimental result covering a real rocket launch 

process from a catapult or from an electromagnetic 

launcher. Therefore, in order to validate the 

numerical solution procedure, experimental results 

presented in Nathan’s study are used [12]. In that 

research, the trajectory of a spinning and non-

spinning baseball is examined by conducting 

experiments [12]. Spinning baseball produces lift 

force due to Magnus Effect [12]. Since the 

munition’s aerodynamic lift force is neglected in 

this study, experimental results belonging to the 

non-spinning baseball trajectory of Nathan’s 

research are used to validate our numerical model. 

Properties of the baseball used for validation are 

listed in Table 1. 

The drag coefficient of the ball varies with 

respect to velocity and this property is taken from 

Adair’s book [13]. Figure 5 illustrates the variation 

of baseball’s drag coefficient with velocity. 

After the data is digitized and a suitable unit 

conversion process is accomplished, the in-house 

MATLAB script developed within the content of 

this research is updated in accordance with the 

experimental inputs in Nathan’s study [12]. 

Table 1. Properties of baseball [12] 

Property Value Unit 

Mass 0.145 kg 

Diameter 0.0728 m 

Initial velocity 44.704 m/s 

Launch angle 30 deg 

Initial vertical location 0.875405 m 

 

 

Figure 5. Variation of the drag coefficient [13] 

Figure 6 shows the comparison of numerical 

results belonging to this study with Nathan’s 

experimental results [12]. 

 

Figure 6. Validation of the numerical solution 

procedure [12] 

As it can be seen from Figure 6, there is a good 

agreement between the experimental and numerical 

results. This validation process shows that the 

developed in-house MATLAB script performs 

accurate calculations for the first and final phases of 

the real problem. However, it is unnecessary to 

perform further validation process for Phase 2 since 
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only the mass of the munition is varying with time 

and there is an additional constant positive thrust 

force component in the numerical solution process 

unlike the other flight phases, and adding or 

subtracting a force to the equation or solving the 

equation using variable mass does not change the 

numerical solution procedure. Thus, the developed 

in-house MATLAB script can be used for the range 

optimization process. 

4. Range Optimization 

This section aims to maximize the range of a 

generic munition by launching it from the 

accelerator launcher concept and determining the 

effects of design parameters on the range. Properties 

of the munition are listed in Table 2. 

Table 2. Properties of the generic munition 

Property Value Unit 

Total Mass 75 kg 

Final Mass 35 kg 

Diameter 0.122 m 

Specific Impulse 250 s 

Drag Coefficient Figure 3 - 

 

The drag coefficient of the munition varies with 

respect to velocity and its behavior was illustrated 

in Figure 3. Before the optimization process, the 

maximum range of the munition and the launch 

properties providing the maximum range are listed 

in Table 3. 

Table 3. Before the optimization process maximum 

range of the munition 

Property Value Unit 

Launch Angle 75.35 deg 

Range  145.314 km 

Flight Time 224.05 s 

 

The optimization process is divided into two 

different parts. In the first part, launch angle (θ), 

ejection velocity of the munition from the 

accelerator launcher (V0), and ignition delay after 

the ejection (tfire) are determined as design variables. 

Using MOGA-II (MultiObjective Genetic 

Algorithm II) solver of the ModeFrontier, 

munition’s range is maximized. In the second part, 

the effects of each design variable on munition’s 

range are examined separately by taking two of 

them as constant and one of them as a variable.  

The Multiobjective Genetic Algorithm Method 

is an efficient optimization method that can find out 

the global maximum or minimum point of the 

problem with high accuracy since it searches 

diverse regions of the solution space. The method is 

based on mimicking the biological evolution 

principle. An initial population is generated and 

subsequent generations are constructed following 

the genetic algorithm operators such as the 

probability of directional cross-over, probability of 

selection, probability of mutation, and DNA string 

mutation ratio. Iterative generation of new 

populations provides conversion of the optimization 

problem to its optimum point.  

The reason behind the selection of MOGA-II 

solver is due to its success in finding out the global 

maximum value (solver’s robustness) and its 

accuracy. 

4.1. Multi-variable Optimization 

This section presents range maximization of the 

munition by changing three design variables listed 

in Table 4. The only objective of the optimization 

process is summarized in Equation 23. 

min
𝑠∈𝑆

1

𝑅𝑎𝑛𝑔𝑒(𝑠)
 (23) 

The upper and the lower limits of the design 

variables are given in Equation 24 and listed in 

Table 4. 

𝑆 = {𝑠 ∈ ℝ | 𝑠𝐿 ≤ 𝑠 ≤ 𝑠𝑈} 

𝑠 = {𝜃, 𝑉0, 𝑡𝑓𝑖𝑟𝑒} 
(24) 

Table 4. Design variables and limits 

Design Variable sL sU Step Unit 

Launch Angle 35 75 0.1 deg 

Ejection Velocity 60  120  0.2  m/s 

Ignition Delay 0 1 0.01 s 
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The ejection velocity limits may seem to be high 

but usage of electromagnetic launchers or new 

generation catapult systems will provide those 

ejection velocities depending on both the size and 

mass of the munitions. Step size defines the 

increment or decrement step of the variable during 

the optimization process. For example, the launch 

angle can be taken as 42.8°; but it cannot be taken 

as 42.78° since the step size is determined as 0.1°.  

Workflow of the optimization process modeled 

in ModeFrontier environment is illustrated in Figure 

7. 

 

Figure 7. Multi-variable optimization workflow 

As can be seen from the figure, MOGA-II 

scheduling node manages the optimization process. 

Three design variables are defined at the top and 

numerical solver (in house MATLAB script) is 

defined as “Trajectory Calculator”. Runge-Kutta 

solver is stored as a function; therefore, it is given 

to the MATLAB node as “Support File”. MATLAB 

node performs a solution for each design and gives 

the “Range” output. Then as an objective, the range 

is maximized. 

After performing 562 runs, the optimization 

process is accomplished. Results of the multi-

variable optimization process are illustrated in 

Figure 8 and 9. The graphs shown in the figure are 

three-dimensional. While x and y axes correspond 

to launch angle (θ), and range; colored legends 

correspond to ejection velocity (V0) and ignition 

delay (tfire) for Figure 8, and 9 sequentially. In the 

legend, blue means lower, and red means higher 

values for ejection velocity and ignition delay 

parameters. 

Table 5 summarizes the optimum values of the 

design variables for the maximum range. 

 

Figure 8. Variation of range with launch angle and 

ejection velocity 

 

Figure 9. Variation of range with launch angle and 

ignition delay 

Table 5. Multi-variable optimization results 

Property Value Unit 

Launch Angle 61.3 Deg 

Ejection Velocity 120 m/s 

Ignition Delay 0 s 

Range 176.048 km 

Flight Time 242.94 s 

 

According to the optimization results, higher 

ejection velocity extends the range. In order to reach 

the farthest range, the ignition delay is set to 0 s 

(which means that the munition has to be 

immediately ignited) and the launch angle has to be 

set at 61.3°. Usage of accelerator launcher provides 

21.15% range extension. The optimum launch angle 

that provides maximum range is decreased from 

70.35° to 61.3° (12.86% decrement). On the other 

hand, there is 8.43% total flight time increment is 
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calculated with the usage of the accelerator launcher 

concept.  

The classical (traditional) launcher is a 

conventional missile/rocket launcher it can store the 

munition inside it and arrange its launch angle. On 

the other hand, the accelerator (new generation) 

launcher also provides initial ejection velocity to the 

munition during the launch process in addition to 

the properties of the classical launcher. The 

accelerator launcher concept benefits from the 

electromagnetic rails or catapult systems to speed 

up the munition. 

Figure 10 to 14 illustrate the comparison of 

trajectory simulation results belonging to both the 

classical and accelerator launchers. 

Figure 10 presents the variation of horizontal 

position with vertical position (altitude) of the 

munition. Figure 11, and Figure 12 show the 

variation of horizontal and vertical positions of the 

munition with time sequentially. Finally, variations 

of horizontal and vertical velocities of the munition 

with time are plotted in Figure 13, and Figure 14 

sequentially. 

 

Figure 10. Horizontal position - Altitude 

 

Figure 11. Horizontal position - Time 

 

Figure 12. Altitude - Time 

 

Figure 13. Horizontal velocity - Time 

 

Figure 14. Vertical velocity – Time 

According to the simulation results, after the 

ignition, there is a sudden increment in both vertical 

and horizontal velocity components. After the 

burnout, there is a sharp decrement in both of the 

velocity components at the vicinity of 13.08 s for 

both of the launch cases. The reasons for this 

situation are of course the drag and the gravitational 

forces. For the accelerated launch case at t=116.4 s, 

the munition reaches its highest altitude that is 

66040 m while for the classical launch case at 

t=110.9 s the munition reaches its highest altitude 

that is 55860 m. Finally, for the accelerated launch 
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case, the munition hits the ground at the end of 

242.94 s flight time with a vertical velocity of 640 

m/s and a horizontal velocity of 383.4 m/s while for 

the classical launch case those values are 224.05 s, 

342.3 m/s, and 595.8 m/s respectively. The range is 

calculated as 176.048 km for the accelerated launch 

case while the classical launcher provides 145.314 

km range. 

4.2. Single Variable Optimization 

In order to examine the effects of each design 

variable on munition’s range separately; single 

variable optimization processes are accomplished 

by taking two of them as constant and one of them 

as a variable. By changing constant values and 

repeating the optimization processes; graphical 

results are produced to compare the effects of 

differing the values of launch angle (θ), ejection 

velocity (V0) and, ignition delay (tfire) on optimum 

results. 

In order to examine the effect of ignition delay 

on optimum launch angle results, constant ejection 

velocity is taken as 90 m/s, and ignition delay is 

changed from 0 s to 1 s with 0.25 s intervals. Figure 

15 shows how the optimum launch angle is 

changing depending on different ignition delay 

parameters. 

 

Figure 15. Variation of optimum Launch Angle 

with different Ignition Delay values 

According to the results, the optimum launch 

angle decreases with the decrement of constant 

ignition delay. This can be understood from the 

slight shift of the curves from right to left with the 

decrement of the ignition delay. 

In order to make a detailed result evaluation, the 

left and right sides of the optimum launch angle can 

be examined separately. In Figure 15, the left side 

of the optimum launch angle illustrates that the 

decrement of the ignition delay increases the range. 

On the other hand, the right side of the optimum 

launch angle shows that increment of the ignition 

delay up to a certain threshold increases the range. 

If the munition is launched with low launch angles 

(such as 40°) without any thrust force, its nose 

immediately turns downward direction in less 

amount of time. This leads to less flight time and a 

shorter range. However, if the munition is launched 

with high launch angles (such as 70°) it takes a 

higher amount of time to turn down its nose in the 

downward direction. Thus, it is possible to extend 

its range by making a late ignition and so increasing 

its flight time. Although the horizontal velocity 

vector is small if the flight time is enough, the 

munition’s range can be further. 

Similarly, in order to examine the effect of 

ignition delay on ejection velocity results, constant 

launch angle is taken as 55° and ignition delay is 

changed from 0 s to 1 s with 0.25 s intervals. Figure 

16 shows how range is changing depending on 

different ignition delay and ejection velocity 

parameters. 

 

Figure 16. Variation of optimum Ejection Velocity 

with different Ignition Delay values 

According to the results, the range increases with 

the decrement of ignition delay. Ignition delay is 

much more effective for the lower ejection 

velocities since late ignition leads to the decrement 

of the munition velocity too much and this requires 

more time to speed up the munition in higher 

gravitational force. Therefore, ejection velocity 

increment is much more effective on munition’s 

range for higher ignition delay.   

Finally, to examine the effect of ejection velocity 

on optimum launch angle results, the constant 

ignition delay is taken as 0.5 s and ejection velocity 

is changed from 60 m/s to 90 m/s with 15 m/s 

intervals. Figure 17 shows how the optimum launch 
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angle is changing depending on different ejection 

velocity values. 

 

Figure 17. Variation of optimum Launch Angle 

with different Ejection Velocity values 

According to the results, optimum launch angle 

decreases with the increment of constant ejection 

velocity. Since it is possible to reach higher altitudes 

in less amount of time with higher ejection 

velocities, it is possible to extend the range of the 

munition with less amount of launch angle. On the 

other hand, if the launch angle is too high (such as 

75°) increment of the ejection velocity has a very 

small effect on the horizontal velocity component of 

the munition. Therefore, the distance between the 

ranges for higher and lower ejection velocities is 

quite small for very high launch angles. 

5. Conclusion 

Trajectory analysis and range optimization of a 

generic ballistic munition launched from an 

accelerator launcher concept are accomplished to 

analyze the feasibility of the accelerator launcher 

concept within the content of this work. 

Electromagnetic accelerator launchers and new 

generation catapult accelerators are examples of this 

concept. To simulate the trajectory, an in-house 

MATLAB script is prepared and validated. The 

optimization process is modeled in the 

ModeFrontier environment and during the 

optimization process, the Multi-Objective Genetic 

Algorithm II (MOGA-II) scheduler is used since it 

provides both robustness and accuracy. Range 

maximization is the only objective of the 

optimization process. To find out the optimum 

range, 3 design variables which are launch angle, 

ejection velocity, and ignition delay are changed in 

between certain intervals. Maximum range is 

achieved by minimizing the ignition delay, 

maximizing the ejection velocity, and setting the 

launch angle as 61.3°. 

21.15% range extension is provided with the 

usage of accelerator launcher concept instead of 

classical launcher for the generic ballistic munition 

examined within the context of current research. 

Flight time is increased by 8.43%. The optimum 

launch angle providing the maximum range is 

decreased from 70.35° to 61.3° with the usage of the 

accelerator launcher instead of the classical one. 

To make further examination on effects of each 

design variable on munition’s range separately; 

single variable optimization processes are 

performed. Graphical results of this process 

represent several results. Decrement of the ignition 

delay decreases the optimum launch angle. For 

launch angles that are smaller than the optimum 

value, the range can be extended by decreasing the 

ignition delay. For launch angles that are higher 

than the optimum value, the range can be extended 

by increasing the ignition delay. Ignition delay is 

more effective on munition’s range for lower 

ejection velocities since late ignition leads to the 

decrement of the munition velocity too much and 

more time is needed to speed up the munition in 

higher gravitational force. Ejection velocity 

increment is much more effective up to moderate 

launch angles (such as 60°) when compared with 

higher values (such as 75°) since its increment has 

negligible changes in horizontal velocity 

components of the munition for very high launch 

angles. Results of this research also show that the 

development of accelerator launchers provides a 

considerable amount of range extension for 

classical ballistic munitions as long as their launch 

angle is not too high. 

In conclusion, the development of accelerator 

launchers will make significant contributions to the 

range extension process of outdated ballistic 

munitions with low cost in near future. Results of 

this work give an idea about how much amount of 

range extension may be provided for some Turkish 

ballistic munitions. Considering approximately 

20% range extension will be provided by the 

accelerator launcher concept, the range of a T-122 

Sakarya rocket can be extended from 40 km to 48 

km. With the technological improvements, the 

range extension to cost ratio will further decrease 

gradually. 
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6. Symbols 

θ: Launch angle 

ρ0: Sea level density of air 

ρair: Density of air 

Af : Reference area 

CD: Drag coefficient 

FD: Instant drag force 

FT: Thrust force 

g: Gravitational acceleration 

g0: Gravitational acceleration at sea level 

h: Altitude 

hscale: Density scale height 

Isp: Specific impulse 

m: Instant mass of the munition 

mf: Final mass of the munition 

m0: Total mass of the munition 

�̇�: Propellant mass flow rate 

Re: Radius of the Earth 

sL: Lower limit of the design variables 

sU: Upper limit of the design variables 

t: Time 

tfire: Ignition delay 

v: Velocity of the munution 

V0: Ejection velocity 

�̇�: Velocity in x direction 

�̈�: Acceleration in x axis 

�̇�: Velocity in y direction 

�̈�: Acceleration in y axis 
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