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ABSTRACT In this study, time delayed form of Lorenz system is introduced, and exemplary applications of the
time delayed Lorenz system are performed. Firstly, the time delayed Lorenz system is numerically solved by
considering the Lorenz system as a system of time delayed differential equations. Then, time series and phase
portraits of the state variables of the time delayed system are obtained. After then, circuit implementation of
the time delayed system is carried out with discrete analog components. Finally, a random number generator
application is carried out by selecting different number of bits obtained from the state variables of the time
delayed system. The results of all the applications are sufficiently good that the time delayed system can be
used in engineering applications.
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INTRODUCTION

There are many new chaotic systems proposed in the literature
after chaos phenomenon and chaotic systems are emerged as a field
of study. However, the Lorenz system, one of the most popular
chaotic system, has been still studied (Lorenz 1963). Although the
Lorenz system retains its popularity, the use of the Lorenz chaotic
system in engineering applications like circuit implementation
is not very easy. Moreover, the introduction of different time
delay for each state variable will make harder to solve the system
numerically and to implement as a circuit. In this study, different
amount of time delays for each state variable is considered.

Time delayed differential equations are very important for
chaotic systems and their engineering applications (Hale and Lunel
2013). Hence, there are many different studies of time delayed
chaotic systems in the literature. For example, stability analyses
of time delayed differential equations were discussed (Deng et al.
2006). There are also studies of synchronization of such time de-
layed systems (Cheng et al. 2008). In another study, a time delayed
chaotic system was obtained from Logistic-map system (Acho
2017). In (Qin-Qin 2015), a parameter defining problem was con-
sidered for a general time delayed chaotic system and its analyses
were performed. In (Pham et al. 2016), a novel time delayed chaotic
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system with hidden attractors was proposed. A parameter defin-
ing problem was investigated in (Tang et al. 2009) to determine
unknown parameters of a time delayed chaotic system. There are
also studies in which applications of time delayed systems were
realized for sliding-mod (Liu and Yang 2015) and active control
(Tang 2014).

If the realized engineering applications of the chaotic systems
are investigated, the most of these applications are focused on
circuit implementation (Pehlivan et al. 2019; Adiyaman et al. 2020;
Kacar et al. 2018; Jahanshahi et al. 2018; Liu et al. 2020) and random
number generator (RNG) (Akgul et al. 2019; Moysis et al. 2020;
Alcin et al. 2021; Agarwal 2021; Kaçar 2016; Vaidyanathan et al.
2018). Accordingly, it will be sufficient to realize these two appli-
cations of a proposed chaotic system to show the usability of the
chaotic system in engineering applications. Hence, a circuit imple-
mentation and RNG applications of the proposed Time Delayed
Lorenz System (TDLS) are realized in this study. The contribution
of this study to the literature can be explained as follows. In this
study, the different time delays are used for each state variable
simultaneously and chaotic behaviour is observed after solving
the time delayed differential equations numerically. Then, to the
best of the authors’ knowledge, a time delayed chaotic system is
modelled using discrete circuit components for the first time in the
literature. Finally, four different pseudo random number generator
(PRNG) applications are realized by selecting different bits of the
state variables.
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The organization of the article is as follows. In the second sec-
tion, the proposed TDLS is introduced. In the third section, circuit
implementation of the TDLS is given. In the fourth section, the
PRNG applications of the TDLS are presented. Finally, conclusion
is given in the fifth section.

TIME DELAYED LORENZ SYSTEM

In this section, the time delayed form of Lorenz chaotic system
is presented. The time delayed Lorenz system (TDLS) is given in
Equation 1. The most important aspect of the proposed system is
that each state variable has a different amount of time delay.

ẋ = a(y(t − τy)− x(t − τx))

ẏ = x(t − τx)(b − z(t − τz))− y(t − τy)

ż = x(t − τx)y(t − τy)− cz(t − τz)

(1)

Equation 1, the system parameters are a = 10, b = 28, and
c = 8/3, the initial conditions are x(0) = 10, y(0) = −10, and
y(0) = 15, the time delays are τx = 0.0014, τy = 0.01, and τz = 0.05.
The obtained time series and phase of the TDLS when numerically
solved for these given values are given in Figure 1 and 2, respec-
tively. The used algorithm for numerical solution of Equation
1 tracks discontinuities and integrates with the explicit Runge-
Kutta (2,3) pair and interpolant (Shampine and Thompson 2001;
Jacek Kierzenka and Thompson 2021). Also, in the used numerical
solution, the step intervals are selected longer than the (Shampine
and Thompson 2001; Jacek Kierzenka and Thompson 2021).

When Figure 1 is examined, it can be said that the obtained
time series of the TDLS are varied randomly and nonperiodically.
When Figure 2 is examined, it can be said that the orbits of the
phase portraits in accordance with chaotic behaviour and the phase
portraits of TDLS are very different from the original Lorenz sys-
tem. Accordingly, the system exhibits chaotic behaviour for the
given parameters, initial conditions, and time delay values and
it is understood that the time delays introduce differences in the
dynamical behaviour of the system.

Figure 1 Time series of the state variables

Figure 2 Phase portraits of the state variables

CIRCUIT IMPLEMENTATION

In this section, circuit implementation of the TDLS is given. In the
literature, there are many studies in which the chaotic systems were
realized with electronic circuits (Pehlivan et al. 2019; Adiyaman
et al. 2020; Kacar et al. 2018; Jahanshahi et al. 2018; Liu et al. 2020).
However, to the best of the authors’ knowledge, there are no circuit
implementation of time delayed chaotic systems in the literature.
In this paper, electronic circuit implementation of the time delayed
circuit is achieved.

The circuit for the time delay is given in Figure 3. Time delay
is realized with a source follower and an LC circuit as shown in
Figure 3. In the figure x(t) is the state variable and x(t − d) is the
time delayed form of x(t) by d seconds.

Figure 3 Time delay circuit

In the circuit, the time delay in seconds is

d =
√

L1C1 (2)

and the time delay must be lesser than or equal to one over
the bandwidth of the signal x(t) since the LC circuit will suppress

higher frequency terms greater than
1√

L1C1
.

d ≤ 1/Bx(t) (3)

Here Bx(t) is bandwidth of the signal in rad/s.
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Before the circuit implementation of the TDLS, the state
variables of the TDLS must be scaled as it is seen in Figure 1
that the amplitude of the state variables are quite high. The state
variable x,y, and z are scaled down by the factor of 5,10, and 20,
respectively. Since the state variables are scaled down, the initial
values are also scaled down by the same factors. Hence, the initial
conditions are x(0) = 2, y(0) = −1, and y(0) = 0.75 for the circuit
implementation.

For the scaling process of the state variables, let X = x/5,
Y = y/10, and Z = z/20. Then, the time derivatives are Ẋ = ẋ/5,
Ẏ = ẏ/10, and Ż = ż/20. By inserting these new state variables
into Equation 1, the system becomes

5Ẋ = a(10Y(t − τy)− 5X(t − τx))

10Ẏ = 5X(t − τx)(b − 20Z(t − τz))− 10Y(t − τy)

20Ż = 5X(t − τx)10Y(t − τy)− c20Z(t − τz)

(4)

By rearranging Equation 4, the scaled TDLS becomes

Ẋ = a(2Y(t − τy)− X(t − τx))

Ẏ = 0.5X(t − τx)(b − 2Z(t − τz))− Y(t − τy)

Ż = 0.125X(t − τx)Y(t − τy)− cZ(t − τz)

(5)

After scaling process of the state variables, the system is
scaled up in the frequency domain by the factor of 2500 to increase
bandwidth of the state variables and to decrease the run time of
the circuit. Since the frequency spectrum of the state variables
are scaled up by the factor of 2500, the time delays are scaled
down by the same factor. The circuit realization of system in
Equation 5 is realized for the system parameters values a = 10,
b = 28, and c = 8/3, the initial conditions are x(0) = 2, y(0) = −1,
and y(0) = 0.75, the time delays are τx = 0.4µs, τy = 4µs, and
τz = 20µs. The complete circuit realization of the system is given
in Figure 4.

Figure 4 Circuit implementation of the time delayed Lorenz system
for the system parameters values a = 10, b = 28, and c = 8/3, the
initial conditions are x(0) = 2, y(0) = −1, and y(0) = 0.75, the
time delays are τx = 0.4µs, τy = 4µs, and τz = 20µss

In the circuit, R1 = 20kΩ, R2 = 40kΩ, R3 = 29kΩ, R4 =
400kΩ, R5 = 4kΩ, R6 = 150kΩ, R7 = 16kΩ, R8 = R9 = R10 =
R11 = 100kΩ, L1 = 20µH, L2 = 200µH, L3 = 1000µH, C1 = C2 =
C3 = 1nF, C4 = 8nF, C5 = 80nF, C6 = 400nF.

The time series and phase portraits obtained from the simula-
tion of the circuit in Figure 4 are given in Figure 5 and 6, respec-
tively. The simulation is performed on ORCAD-PSpice platform.

Figure 5 The time series of the delayed Lorenz system for the sys-
tem parameters values a = 10, b = 28, and c = 8/3, the initial
conditions are x(0) = 2, y(0) = −1, and y(0) = 0.75, the time
delays are τx = 0.4µs, τy = 4µs, and τz = 20µss

Figure 6 The phase portraits of the delayed Lorenz system for the
system parameters values a = 10, b = 28, and c = 8/3, the initial
conditions are x(0) = 2, y(0) = −1, and y(0) = 0.75, the time
delays are τx = 0.4µs, τy = 4µs, and τz = 20µss

If the time series and phase portraits obtained from the spice
simulation are compared with the time series and the phase por-
traits obtained from solving the TDLS numerically, it can be said
that the circuit implementation of the TDLS is realized accurately.
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PRNG APPLICATIONS

In this section, the realization of four different PRNG designs are
given. The PRNGs are obtained by solving the TDLS given in
Equation 1 numerically. In each designed PRNG, different bit
series obtained from the state variables of the TDLS are used.
The flowchart of the PRNG designs is given in Figure 7. As it is
seen in Figure 7, the state variables are obtained by solving the
system numerically, after setting the system parameters, initial
conditions, and time delays values. The state variables obtained by
numerical calculations are in floating point format are converted
into 32 bits binary format. Then, the random number bit series
are obtained by selecting certain appropriate number of least
significant bits (LSBs). Here, each PRNG is designed from different
state variables and with selecting different number of LSBs. In
this study, four different PRNGs are designed with this approach.
For the design of PRNG-1, a random bit series is generated by
selecting the first LSB from each state variable (x,y,z). For the
design of PRNG-2, PRNG-3, and PRNG-4, a random bit series is
generated by selecting the first four LSBs from each state variables
x,y, and z, respectively. For every PRNG, NIST-800-22 statistical
tests (Bassham et al. 2010) are performed when the size of the
generated bit series are reached 1000000 bits which is required by
the NIST tests.

The NIST test results for all the generated PRNGs are given in
Table 1. For a bit series to pass successfully from each NIST test,
the P-value obtained in each test must be between 0.001 and
1 (1 > P-value> 0.001). Here P-value is the probability that a
perfect RNG would have generated a sequence less random than
the sequence that was tested. The P-value equals to 1 indicates
that the sequence has perfect randomness, whereas P-value equals
to 0 indicates that the sequence is completely non-random. Fur-
thermore, when the P-value ≥ 0.001, the sequence is considered
as random with a confidence of 99.9%(Bassham et al. 2010). All the
NIST tests are performed on MATLAB environment.

If the results given in Table 1. are examined, it can be said
that all the designed PRNGs pass all the NIST tests successfully.
Accordingly, the proposed TDLS in Equation 1. has sufficient
randomness that it can be used in data security applications.

Figure 7 Flow diagram of the designed PRNGs

CHAOS Theory and Applications 7



■ Table 1 NIST-800-22 test results of TDLS based PRNGs

Statistical Tests PRNG -1 PRNG -2 PRNG -3 PRNG -4 Results

Frequency (Monobit)
Test

0.227047262346928 0.939419098199487 0.452051058788007 0.74896833055336 Successful

Block-Frequency
Test

0.420199408706029 0.12683780891 0.25828539912 0.18496247976 Successful

Cumulative-Sums
Test

0.40154501916006 0.954262689644538 0.657794646611129 0.580632315828042 Successful

Runs Test 0.809910815227043 0.78561757692 0.45239095310 0.20333669229 Successful

Longest-Run Test 0.699072314072508 0.0593326790453765 0.071698278949431 0.581605726274521 Successful

Binary Matrix Rank
Test

0.567418552088598 0.29417664507 0.36806531540 0.49848122628 Successful

Discrete Fourier
Transform Test

0.0183542134338342 0.186356486587195 0.0310440276996156 0.659590791427404 Successful

Non-Overlapping
Templates Test

0.0910820098687739 0.04581818944 0.00265744608 0.03188609869 Successful

Overlapping Tem-
plates Test

0.554865280067303 0.669055771344141 0.532900762615005 0.247345441097719 Successful

Maurer’s Universal
Statistical Test

0.679570957855461 0.80734843081 0.08350574528 0.92319905938 Successful

Approximate Entropy
Test

0.639684970544748 0.106378560917655 0.650943909676795 0.117260917143001 Successful

Random-Excursions
Test (x = -4)

0.703450581514076 0.37281099664 0.16507680806 0.28180552081 Successful

Random-Excursions
Variant Test (x = -9)

0.900334238396749 0.301103909474349 0.274949621155743 0.26897769139 Successful

Serial Test-1 0.498246191923405 0.13739086594 0.24094191226 0.51233919246 Successful

Serial Test-2 0.703867335568016 0.172244663440799 0.324188206506017 0.539500232899045 Successful

Linear-Complexity
Test

0.1748830988160720 0.98952603429 0.91278048851 0.46910323363 Successful
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CONCLUSIONS

In this study, the time delay form of Lorenz system which is one
of the most known and popular chaotic system is presented. The
most important aspect of the proposed time delayed system in here
is that the system still exhibits chaotic behaviour with different
dynamical properties after introducing different time delay to
each state variable. The first important result of this study is that
observing chaotic behaviour of the time delayed system by solving
numerically.

The most important contribution of this study to the literature
is successful analog circuit realization of time delayed system with
three different time delays. As it can be seen from the obtained
time series and phase portraits in MATLAB and PSpice environ-
ments, the circuit realization of the time delayed chaotic system is
successful. Another important application realized in this study is
designing four different PRNGs by selecting different number of
LSBs of the state variables. Moreover, all the designed PRNGs pass
the NIST tests successfully. According to the NIST tests results all
the generated bit series have considered to be random with a con-
fidence of 99.9%. This shows that, the designed RNGs are suitable
for multimedia security applications. As a result, the exhibition
of the chaotic behaviour of the proposed system is proved with
all the successfully realized applications and this shows that the
proposed system can be used in engineering applications.
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