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Abstract − In this study, firstly, Hamming pseudo-similarity of intuitionistic fuzzy parameterized 

intuitionistic fuzzy soft matrices (ifpifs-matrices) have been defined. Afterwards, a classifier 

based on Hamming pseudo-similarity of ifpifs-matrices (IFPIFS-HC) has been developed. The 

classifier's simulations have been performed using datasets provided in the UCI Machine 

Learning Database, and its performance results via the performance metrics accuracy, precision, 

recall, macro F-score, and micro F-score have been obtained. Thereafter, the results have been 

compared with those of the well-known methods. Then, the statistical evaluations of the 

performance results have been conducted using Friedman and Nemenyi post-hoc tests, and the 

critical diagrams of the Nemenyi post-hoc test are presented. The results and the statistical 

evaluations show that the proposed classifier has performed better than the others in 12 of 21 

datasets in terms of the five performance metrics, in 4 of 21 in terms of the four performance 

metrics, and 17 of 21 in terms of accuracy performance metric. Moreover, the mean accuracy, 

precision, recall, precision, macro F-score, and micro F-score results of Fuzzy kNN, FSSC, 

FussCyier, HDFSSC, and FPFS-EC for the 21 datasets are 84.90, 71.96, 67.95, 71.91, and 75.28; 

78.12, 68.01, 68.05, 66.53, and 67.68; 80.76, 68.63, 69.07, 68.36, and 70.65; 81.93, 69.43, 69.95, 

70.25, and 72.36; and 89.59, 80.27, 78.40, 81.20, and 83.60, while those of IFPIFS-HC are 90.59, 

82.88, 80.75, 82.89, and 85.48, respectively. Finally, the applications of ifpifs-matrices to machine 

learning have been discussed for further research. 

Subject Classification (2020): 15B15, 68T05 

1. Introduction 

Fuzzy sets are a mathematical tool put forward by Zadeh [1] to overcome the problems involving 

uncertainties in which classical sets are insufficient in modelling. Another mathematical tool 

propounded to model such problems is soft sets [2]. So far, many hybrid versions of these two concepts 

have been described [3-5]. Fuzzy parameterized fuzzy soft sets (fpfs-sets) [6], the general form of these 

hybrid versions, come to the fore with their ability to model situations where both parameters and 

alternatives (objects) are fuzzy. The concept of fuzzy parameterized fuzzy soft matrices (fpfs-matrices) 
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[7] has been defined to avail of the modelling capabilities of fpfs-sets and cope with a large number of 

data in decision-making. 

Recently, some soft decision-making (SDM) methods constructed through hybrid versions of fuzzy sets 

and soft sets in the literature have been configured into the fpfs-matrices space [8-12]. In addition, some 

of these configured SDM methods have been mathematically simplified, providing a great advantage in 

terms of the running time of the methods [13-18]. Also, Memiş et al. [19] have proposed a classification 

algorithm employing the Hamming pseudo-similarity of fpfs-matrices and successfully applied it to the 

classification problem related to the medical datasets including “Breast Cancer Wisconsin (Diagnostic)”, 

“Immunotherapy”, “Pima Indian Diabetes”, and “Statlog Heart”. Moreover, Memiş and Enginoğlu [20] 

developed a classification algorithm by utilising Chebyshev pseudo-similarity of fpfs-matrices and 

successfully applied this algorithm to a classification problem involving the medical data sets 

“Cryotherapy”, “Diabetic Retinopathy”, “Hepatitis”, and “Immunotherapy”. 

Despite these successes of fpfs-matrices, since fuzzy sets cannot model intuitionistic fuzzy [21] 

uncertainties, the concepts of intuitionistic fuzzy soft sets [22], intuitionistic fuzzy parameterized soft 

sets [23], intuitionistic fuzzy parameterized fuzzy soft sets [24], and fuzzy parameterized intuitionistic 

fuzzy soft sets [25] have been put forward. Then, the concept of intuitionistic fuzzy parameterized 

intuitionistic fuzzy soft sets (ifpifs-sets), which can model problems where both parameters and objects 

contain intuitionistic fuzzy uncertainties, has been defined and successfully applied to an SDM problem 

[26]. Recently, the concept of intuitionistic fuzzy parameterized intuitionistic fuzzy soft matrices (ifpifs-

matrices) [27] has been proposed and successfully applied to two SDM problems. Afterwards, Arslan 

and Enginoğlu [28] have defined the algebraic sum and algebraic product on ifpifs-matrices and 

propounded an SDM method. Moreover, they have applied this SDM method to a performance-based 

value assignment problem in image processing. 

Similar to the studies mentioned above, it is worth studying to construct new classification algorithms 

by defining similarity measures in the ifpifs-matrices space, thereby improving the capabilities of ifpifs-

matrices in SDM and classification problems. This study is a pioneer study related to similarity measures 

of ifpifs-sets/matrices. It is also substantial because it will lead to further studies on the definition of 

distance/similarity measures on ifpifs-matrices. 

In the second part of this study, some basic definitions to be required for the next section are provided. 

Section 3 defines the concept of pseudo-similarity over ifpifs-matrices space and proposes a new 

classification method using Hamming pseudo-similarity, i.e., IFPIFS-HC. In Section 4, the properties of 

21 UCI datasets [29], employed in the comparison of classification methods, are presented. Secondly, 

mathematical notations of performance metrics commonly used to measure the performance of 

classification methods are provided. Thirdly, the simulation results of IFPIFS-HC, the well-known and 

state-of-the-art classifiers such as Fuzzy kNN [30], FSSC [31], FussCyier [32], HDFSSC [33], and FPFS-EC 

[34] are obtained and presented using the aforesaid datasets and performance metrics. Fourthly, the 

performance results obtained from the simulation are statistically analysed using the Friedman test [35] 

and the Nemenyi post-hoc test [36], and their Nemenyi diagrams are presented. The last part discusses 

the need for further research on ifpifs-matrices.  

2. Preliminaries 

This section, firstly, presents the concept of ifpifs-matrices [27] and its some of basic properties. Across 

the present paper, let 𝐸 be a parameter set and 𝑈 be an alternative (object) set. 

Definition 2.1. [21] Let 𝐸 be a universal set and 𝜇, 𝜈: 𝐸 → [0,1] such that 𝜇(𝑥) + 𝜈(𝑥) ≤ 1, for all 𝑥 ∈ 𝐸. 

Then, the set {(𝑥, 𝜇(𝑥), 𝜈(𝑥)) ∶  𝑥 ∈ 𝐸} is called intuitionistic fuzzy set (if-set) over 𝐸. 
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Here, for all 𝑥 ∈ 𝐸, 𝜇(𝑥) and 𝜈(𝑥) are called the membership and non-membership degrees of 𝑥, 

respectively, and 𝜋(𝑥) = 1 − (𝜇(𝑥) + 𝜈(𝑥)) = 1 − 𝜇(𝑥) − 𝜈(𝑥) is the indeterminacy degree of 𝑥. 

Moreover, for all 𝑥 ∈ 𝐸, 0 ≤ 𝜋(𝑥) ≤ 1 is straightforward.  

In the present paper, the set of all if-sets over 𝐸 is denoted by 𝐼𝐹(𝐸) and 𝑓 ∈ 𝐼𝐹(𝐸).  For brevity, the 

notation 𝑥𝜈(𝑥)
𝜇(𝑥)

 is used instead of (𝑥, 𝜇(𝑥), 𝜈(𝑥)). In other words, an if-set over 𝐸 is denoted by 𝑓 =

{ 𝑥𝜈(𝑥)
𝜇(𝑥)

∶  𝑥 ∈ 𝐸}. Furthermore, we do not display the element 𝑥1
0  in an if-set. 

Definition 2.2. [26] Let 𝑈 be a universal set, 𝑓 ∈ 𝐼𝐹(𝐸), and 𝛼 be a function from 𝑓 to 𝐼𝐹(𝑈). Then, the 

set {( 𝑥𝜈(𝑥)
𝜇(𝑥)

, 𝛼 ( 𝑥𝜈(𝑥)
𝜇(𝑥)

)) : 𝑥 ∈ 𝐸} being the graphic of 𝛼 is called an intuitionistic fuzzy parameterized 

intuitionistic fuzzy soft set (ifpifs-set) parameterized via 𝐸 over 𝑈 (or briefly over 𝑈).  

Hereinafter, the set of all the ifpifs-sets over 𝑈 is denoted by 𝐼𝐹𝑃𝐼𝐹𝑆𝐸(𝑈). In 𝐼𝐹𝑃𝐼𝐹𝑆𝐸(𝑈), since the 

graph(𝛼) and 𝛼 generate each other uniquely, the notations are interchangeable. Therefore, if it causes 

no confusion, we denote an ifpifs-set graph(𝛼) by 𝛼. In addition, for convenience, we do not display the 

elements ( 𝑥1
0 , 0𝑈) in an ifpifs-set. Here, 0𝑈 is the empty if-set over 𝑈. 

Example 2.3. Let 𝐸 = {𝑥1, 𝑥2, 𝑥3, 𝑥4} and 𝑈 = {𝑢1, 𝑢2, 𝑢3}. Then, 

𝛼 = {( 𝑥10
1 , { 𝑢10.2

0.7 , 𝑢20.4
0.3 }), ( 𝑥20.5

0.5 , { 𝑢20.7
0.1 , 𝑢30

1 }), ( 𝑥41
0 , { 𝑢10.5

0.5 , 𝑢20
0.9 , 𝑢30.4

0 })} 

and 

𝛽 = {( 𝑥20.2
0.6 , { 𝑢10.3

0.3 , 𝑢20.1
0.7 , 𝑢30.6

0.2 }), ( 𝑥30.5
0 , { 𝑢10.1

0.8 , 𝑢30.8
0.1 }), ( 𝑥40

0.7 , { 𝑢20
1 })} 

are two ifpifs-sets over 𝑈. 

Definition 2.4. [27] Let 𝛼 ∈ 𝐼𝐹𝑃𝐼𝐹𝑆𝐸(𝑈). Then, [𝑎𝑖𝑗] is called ifpifs-matrix of 𝛼 and is defined by 

[𝑎𝑖𝑗] ≔

[
 
 
 
 
 
 
 
𝑎01 𝑎02 𝑎03 … 𝑎0𝑛 …

𝑎11 𝑎12 𝑎13 … 𝑎1𝑛 …

⋮ ⋮ ⋮ ⋱ ⋮ ⋮

𝑎𝑚1 𝑎𝑚2 𝑎𝑚3 … 𝑎𝑚𝑛 …

⋮ ⋮ ⋮ ⋱ ⋮ ⋱]
 
 
 
 
 
 
 

 

such that for 𝑖 ∈ {0, 1, 2, … } and 𝑗 ∈ {1, 2, … }, 

𝑎𝑖𝑗 ≔ {
,

𝜈(𝑥𝑗)

𝜇(𝑥𝑗) 𝑖 = 0

𝛼 ( 𝑥𝑗𝜈(𝑥𝑗)

𝜇(𝑥𝑗) ) (𝑢𝑖), 𝑖 ≠ 0
 

or briefly 𝑎𝑖𝑗 ≔ .𝜈𝑖𝑗

𝜇𝑖𝑗  Here, if |𝑈| = 𝑚 − 1 and |𝐸| = 𝑛, then [𝑎𝑖𝑗] has order 𝑚× 𝑛. 

In this paper, as long as it causes no confusion, the membership and non-membership functions of [𝑎𝑖𝑗], 

i.e., 𝜇𝑖𝑗  and 𝜈𝑖𝑗 , will be represented by 𝜇𝑖𝑗
𝑎  and 𝜈𝑖𝑗

𝑎 , respectively. Moreover, the set of all the ifpifs-matrices 

parameterized via 𝐸 over 𝑈 is denoted by 𝐼𝐹𝑃𝐼𝐹𝑆𝐸[𝑈] and [𝑎𝑖𝑗], [𝑏𝑖𝑗], [𝑐𝑖𝑗] ∈ 𝐼𝐹𝑃𝐼𝐹𝑆𝑆𝐸[𝑈]. 

Example 2.5. The ifpifs-matrices of 𝛼 and 𝛽 provided in Example 2.3 are as follows: 
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[𝑎𝑖𝑗] =

[
 
 
 
 
 
 0
1  0.5

0.5  1
0  1

0

 0.2
0.7  1

0  1
0  0.5

0.5

 0.4
0.3  0.7

0.1  1
0  0

0.9

 1
0  0

1  1
0  0.4

0 ]
 
 
 
 
 

 and [𝑏𝑖𝑗] =

[
 
 
 
 
 
 1
0  0.2

0.6  0.5
0  0

0.7

 1
0  0.3

0.3  0.1
0.8  1

0

 1
0  0.1

0.7  1
0  0

1

 1
0  0.6

0.2  0.8
0.1  1

0 ]
 
 
 
 
 

 

3. Proposed Classification Method: IFPIFS-HC 

This section, firstly, provides the basic notations to be needed for proposed classification method based 

on ifpifs-matrices. Throughout the study, let 𝐷 = [𝑑𝑖𝑗]𝑚×(𝑛+1) denotes a data matrix whose last column 

contains class labels of the data, where 𝑚 and 𝑛 represent the number of samples and the number of 

attributes in data matrix, respectively. (𝐷𝑡𝑟𝑎𝑖𝑛)𝑚1×𝑛, 𝐶𝑚1×1, and (𝐷𝑡𝑒𝑠𝑡)𝑚2×𝑛 stand for a training matrix, 

class matrix of the training matrix, and the testing matrix obtained from the data matrix 𝐷, respectively, 

such that 𝑚1 +𝑚2 = 𝑚. Let 𝑈𝑘×1 be a matrix consisting of unique class labels of 𝐶𝑚1×1. 𝐷𝑖−𝑡𝑟𝑎𝑖𝑛 and 

𝐷𝑖−𝑡𝑒𝑠𝑡 denote 𝑖𝑡ℎ rows of  𝐷𝑡𝑟𝑎𝑖𝑛 and 𝐷𝑡𝑒𝑠𝑡, respectively. Similarly, 𝐷𝑡𝑟𝑎𝑖𝑛−𝑗 and 𝐷𝑡𝑒𝑠𝑡−𝑗 denote 𝑗𝑡ℎ rows 

of  𝐷𝑡𝑟𝑎𝑖𝑛 and 𝐷𝑡𝑒𝑠𝑡, respectively. Moreover, 𝑇𝑚2×1 represents predicted class labels of the testing 

samples, 𝐼𝑛 ≔ {1,2,3,… , 𝑛}, and 𝐼𝑛
∗ ≔ {0,1,2,… , 𝑛}. 

Definition 3.1. Let 𝑢, 𝑣 ∈ ℝ𝑛. Then, the function 𝑃:ℝ𝑛 × ℝ𝑛 → [−1,1] defined by 

𝑃(𝑢, 𝑣) ≔
𝑛∑ 𝑢𝑖𝑣𝑖

𝑛
𝑖=1 − (∑ 𝑢𝑖

𝑛
𝑖=1 )(∑ 𝑣𝑖

𝑛
𝑖=1 )

√[𝑛∑ 𝑢𝑖
2𝑛

𝑖=1 − (∑ 𝑢𝑖
𝑛
𝑖=1 )

2
] [𝑛∑ 𝑣𝑖

2𝑛
𝑖=1 − (∑ 𝑣𝑖

𝑛
𝑖=1 )

2
]

 

is called the Pearson correlation coefficient between 𝑢 and 𝑣. 

Definition 3.2. Let 𝑢 ∈ ℝ𝑛. Then, the vector  �̂� ∈ ℝ𝑛 defined by 

�̂�𝑖 ≔

{
 
 

 
 𝑢𝑖 −min

𝑘∈𝐼𝑛
{𝑢𝑘}

max
𝑘∈𝐼𝑛

{𝑢𝑘} − min
𝑘∈𝐼𝑛

{𝑢𝑘}
, max

𝑘∈𝐼𝑛
{𝑢𝑘} ≠ min

𝑘∈𝐼𝑛
{𝑢𝑘}

1, max
𝑘∈𝐼𝑛

{𝑢𝑘} = min
𝑘∈𝐼𝑛

{𝑢𝑘}

 

is called normalizing vector of 𝑢. 

Definition 3.3. Let 𝐷 = [𝑑𝑖𝑗]𝑚×(𝑛+1) be a data matrix, 𝑖 ∈ 𝐼𝑚, and 𝑗 ∈ 𝐼𝑛. Then, the matrix �̃� = [�̃�𝑖𝑗]𝑚×𝑛 

defined by 

�̃�𝑖𝑗 ≔

{
 
 

 
 

𝑑𝑖𝑗 − min
𝑘∈𝐼𝑚

{𝑑𝑘𝑗}

max
𝑘∈𝐼𝑚

{𝑑𝑘𝑗} − min
𝑘∈𝐼𝑚

{𝑑𝑘𝑗}
, max

𝑘∈𝐼𝑚
{𝑑𝑘𝑗} ≠ min

𝑘∈𝐼𝑚
{𝑑𝑘𝑗}

1, max
𝑘∈𝐼𝑚

{𝑑𝑘𝑗} = min
𝑘∈𝐼𝑚

{𝑑𝑘𝑗}

 

is called column normalized matrix (feature-fuzzification matrix) of 𝐷. 

Definition 3.4. Let (𝐷𝑡𝑟𝑎𝑖𝑛)𝑚1×𝑛 be a training matrix obtained from 𝐷 = [𝑑𝑖𝑗]𝑚×(𝑛+1). Then, the matrix 

�̃�𝑡𝑟𝑎𝑖𝑛 = [�̃�𝑖𝑗−𝑡𝑟𝑎𝑖𝑛]𝑚1×𝑛
 defined by 

�̃�𝑖𝑗−𝑡𝑟𝑎𝑖𝑛 ≔

{
 
 

 
 
𝑑𝑖𝑗−𝑡𝑟𝑎𝑖𝑛 − min

𝑘∈𝐼𝑚
{𝑑𝑘𝑗}

max
𝑘∈𝐼𝑚

{𝑑𝑘𝑗} − min
𝑘∈𝐼𝑚

{𝑑𝑘𝑗}
, max

𝑘∈𝐼𝑚
{𝑑𝑘𝑗} ≠ min

𝑘∈𝐼𝑚
{𝑑𝑘𝑗}

1, max
𝑘∈𝐼𝑚

{𝑑𝑘𝑗} = min
𝑘∈𝐼𝑚

{𝑑𝑘𝑗}

, 𝑖 ∈ 𝐼𝑚1
 and 𝑗 ∈ 𝐼𝑛  

is called column normalized matrix (feature-fuzzification matrix) of 𝐷𝑡𝑟𝑎𝑖𝑛. 
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Definition 3.5. Let (𝐷𝑡𝑒𝑠𝑡)𝑚2×𝑛 be a training matrix obtained from 𝐷 = [𝑑𝑖𝑗]𝑚×(𝑛+1)
. Then, the matrix 

�̃�𝑡𝑒𝑠𝑡 = [�̃�𝑖𝑗−𝑡𝑒𝑠𝑡]𝑚2×𝑛
 defined by 

�̃�𝑖𝑗−𝑡𝑒𝑠𝑡 ≔

{
 
 

 
 
𝑑𝑖𝑗−𝑡𝑒𝑠𝑡 − min

𝑘∈𝐼𝑚
{𝑑𝑘𝑗}

max
𝑘∈𝐼𝑚

{𝑑𝑘𝑗} − min
𝑘∈𝐼𝑚

{𝑑𝑘𝑗}
, max

𝑘∈𝐼𝑚
{𝑑𝑘𝑗} ≠ min

𝑘∈𝐼𝑚
{𝑑𝑘𝑗}

1, max
𝑘∈𝐼𝑚

{𝑑𝑘𝑗} = min
𝑘∈𝐼𝑚

{𝑑𝑘𝑗}

, 𝑖 ∈ 𝐼𝑚2
 and 𝑗 ∈ 𝐼𝑛  

is called column normalized matrix (feature-fuzzification matrix) of 𝐷𝑡𝑒𝑠𝑡. 

Definition 3.6. Let 𝐷𝑡𝑟𝑎𝑖𝑛 = [𝑑𝑖𝑗−𝑡𝑟𝑎𝑖𝑛]𝑚1×𝑛
 and 𝐶𝑚1×1 be a training matrix and its class matrix obtained 

from a data matrix 𝐷, respectively.  Then, the matrix 𝑖𝑓𝑤𝐷𝑡𝑟𝑎𝑖𝑛
𝜆𝑃 = [

𝜇1𝑗
𝜆𝑃

𝜈1𝑗
𝜆𝑃
] is called intuitionistic 

fuzzification weight matrix based on Pearson correlation coefficient of 𝐷𝑡𝑟𝑎𝑖𝑛 and is defined by 

𝜇1𝑗
𝜆𝑃 ≔ 1− (1 − |𝑃(𝐷𝑡𝑟𝑎𝑖𝑛−𝑗, 𝐶)|)

𝜆
 

and 

𝜈1𝑗
𝜆𝑃 ≔ (1 − |𝑃(𝐷𝑡𝑟𝑎𝑖𝑛−𝑗 , 𝐶)|)

𝜆(𝜆+1)
 

such that 𝑗 ∈ 𝐼𝑛 and 𝜆 ∈ [0,∞). 

Definition 3.7. Let �̃�𝑡𝑟𝑎𝑖𝑛 = [�̃�𝑖𝑗−𝑡𝑟𝑎𝑖𝑛]𝑚1×𝑛
 be a training matrix obtained from a data matrix 𝐷. Then, the 

matrix �̃̃�𝑡𝑟𝑎𝑖𝑛
𝜆 = [�̃̃�𝑡𝑟𝑎𝑖𝑛−𝑖𝑗

𝜆 ] = [
𝜇𝑖𝑗−𝑡𝑟𝑎𝑖𝑛
�̃̃�𝜆

𝜈𝑖𝑗−𝑡𝑟𝑎𝑖𝑛
�̃̃�𝜆

] is called intuitionistic fuzzification of �̃�𝑡𝑟𝑎𝑖𝑛 and is defined by 

𝜇𝑖𝑗−𝑡𝑟𝑎𝑖𝑛
�̃̃�𝜆 ≔ 1− (1 − �̃�𝑖𝑗−𝑡𝑟𝑎𝑖𝑛)

𝜆
 

and 

𝜈𝑖𝑗−𝑡𝑟𝑎𝑖𝑛
�̃̃�𝜆 ≔ (1 − �̃�𝑖𝑗−𝑡𝑟𝑎𝑖𝑛)

𝜆(𝜆+1)
 

such that 𝑖 ∈ 𝐼𝑚1
, 𝑗 ∈ 𝐼𝑛, and 𝜆 ∈ [0,∞). 

Definition 3.8. Let �̃�𝑡𝑒𝑠𝑡 = [�̃�𝑖𝑗−𝑡𝑒𝑠𝑡]𝑚2×𝑛
 be a testing matrix obtained from a data matrix 𝐷. Then, the 

matrix �̃̃�𝑡𝑒𝑠𝑡
𝜆 = [�̃̃�𝑡𝑒𝑠𝑡−𝑖𝑗

𝜆 ] = [
𝜇𝑖𝑗−𝑡𝑒𝑠𝑡
𝜆�̃̃�

𝜈𝑖𝑗−𝑡𝑒𝑠𝑡
𝜆�̃̃�

] is called intuitionistic fuzzification of �̃�𝑡𝑒𝑠𝑡 and is defined by 

𝜇𝑖𝑗−𝑡𝑒𝑠𝑡
𝜆�̃̃� ≔ 1− (1 − �̃�𝑖𝑗−𝑡𝑒𝑠𝑡)

𝜆
 

and 

𝜈𝑖𝑗−𝑡𝑒𝑠𝑡
𝜆�̃̃� ≔ (1 − �̃�𝑖𝑗−𝑡𝑒𝑠𝑡)

𝜆(𝜆+1)
 

such that 𝑖 ∈ 𝐼𝑚2
, 𝑗 ∈ 𝐼𝑛, and 𝜆 ∈ [0,∞). 

 



64 

 

Memiş et al. / JNRS / 10(2) (2021) 59-76 

Definition 3.9. Let (�̃�𝑡𝑒𝑠𝑡)𝑚2×𝑛
 be the column normalized matrix of a matrix (𝐷𝑡𝑒𝑠𝑡)𝑚2×𝑛 and �̃̃�𝑡𝑒𝑠𝑡

𝜆 =

[�̃̃�𝑡𝑒𝑠𝑡−𝑖𝑗
𝜆 ] = [

𝜇𝑖𝑗−𝑡𝑒𝑠𝑡
𝜆�̃̃�

𝜈𝑖𝑗−𝑡𝑒𝑠𝑡
𝜆�̃̃�

] be the intuitionistic fuzzification of �̃�𝑡𝑒𝑠𝑡. Then, the ifpifs-matrix [𝑎𝑖𝑗
�̃̃�𝑘−𝑡𝑒𝑠𝑡
𝜆

]
2×𝑛

is 

called the ifpifs-matrix obtained by 𝑘𝑡ℎ row of �̃̃�𝑡𝑒𝑠𝑡
𝜆  and 𝑖𝑓𝑤𝐷𝑡𝑟𝑎𝑖𝑛

𝜆𝑃  and is defined by 

𝑎0𝑗
�̃̃�𝑘−𝑡𝑒𝑠𝑡
𝜆

≔
𝜇1𝑗
𝜆𝑃

𝜈1𝑗
𝜆𝑃

    and   𝑎1𝑗
�̃̃�𝑘−𝑡𝑒𝑠𝑡
𝜆

≔
𝜇𝑘𝑗−𝑡𝑒𝑠𝑡
𝜆�̃̃�

𝜈𝑘𝑗−𝑡𝑒𝑠𝑡
𝜆�̃̃�

 

such that 𝑘 ∈ 𝐼𝑚1
 and 𝑗 ∈ 𝐼𝑛. 

 Definition 3.10. Let (�̃�𝑡𝑟𝑎𝑖𝑛)𝑚1×𝑛
 be the column normalized matrix of a matrix (𝐷𝑡𝑟𝑎𝑖𝑛)𝑚1×𝑛 and 

�̃̃�𝑡𝑟𝑎𝑖𝑛
𝜆 = [�̃̃�𝑡𝑟𝑎𝑖𝑛−𝑖𝑗

𝜆 ] = [
𝜇𝑖𝑗−𝑡𝑟𝑎𝑖𝑛
𝜆�̃̃�

𝜈𝑖𝑗−𝑡𝑟𝑎𝑖𝑛
𝜆�̃̃�

] be the intuitionistic fuzzification of �̃�𝑡𝑟𝑎𝑖𝑛. Then, the ifpifs-matrix 

[𝑏𝑖𝑗
�̃̃�𝑘−𝑡𝑟𝑎𝑖𝑛
𝜆

]
2×𝑛

is called the ifpifs-matrix obtained by 𝑘𝑡ℎ row of �̃̃�𝑡𝑟𝑎𝑖𝑛
𝜆  and 𝑖𝑓𝑤𝐷𝑡𝑟𝑎𝑖𝑛

𝜆𝑃  and is defined by 

𝑏0𝑗
�̃̃�𝑘−𝑡𝑟𝑎𝑖𝑛
𝜆

≔
𝜇1𝑗
𝜆𝑃

𝜈1𝑗
𝜆𝑃

   and   𝑏1𝑗
�̃̃�𝑘−𝑡𝑟𝑎𝑖𝑛
𝜆

≔
𝜇𝑘𝑗−𝑡𝑟𝑎𝑖𝑛
𝜆�̃̃�

𝜈𝑘𝑗−𝑡𝑟𝑎𝑖𝑛
𝜆�̃̃�

 

such that 𝑘 ∈ 𝐼𝑚2
 and 𝑗 ∈ 𝐼𝑛. 

Secondly, we define the concept of pseudo-similarity of ifpifs-matrices and propose Hamming pseudo-

similarity of ifpifs-matrices. 

Definition 3.11. Let 𝑠: 𝐼𝐹𝑃𝐼𝐹𝑆𝐸[𝑈] × 𝐼𝐹𝑃𝐼𝐹𝑆𝐸[𝑈] → ℝ be a mapping. Then, for all [𝑎𝑖𝑗], [𝑏𝑖𝑗], [𝑐𝑖𝑗] ∈

𝐼𝐹𝑃𝐼𝐹𝑆𝐸[𝑈], 𝑠 is a pseudo-similarity over 𝐼𝐹𝑃𝐼𝐹𝑆𝐸[𝑈] if and only if 𝑠 satisfies the following properties: 

i. 𝑠([𝑎𝑖𝑗], [𝑎𝑖𝑗]) = 1 

ii. 𝑠([𝑎𝑖𝑗], [𝑏𝑖𝑗]) = 𝑠([𝑏𝑖𝑗], [𝑎𝑖𝑗]) 

iii. 0 ≤ 𝑠([𝑎𝑖𝑗], [𝑏𝑖𝑗]) ≤ 1 

Proposition 3.12. The mapping 𝑠𝐻: 𝐼𝐹𝑃𝐼𝐹𝑆𝐸[𝑈] × 𝐼𝐹𝑃𝐼𝐹𝑆𝐸[𝑈] → ℝ defined by 

𝑠𝐻([𝑎𝑖𝑗], [𝑏𝑖𝑗]) ≔ 1 −
1

2(𝑚 − 1)𝑛
∑∑(|𝜇0𝑗

𝑎 𝜇𝑖𝑗
𝑎 − 𝜇0𝑗

𝑏 𝜇𝑖𝑗
𝑏 | + |𝜈0𝑗

𝑎 𝜈𝑖𝑗
𝑎 − 𝜈0𝑗

𝑏 𝜈𝑖𝑗
𝑏 | + |𝜋0𝑗

𝑎 𝜋𝑖𝑗
𝑎 − 𝜋0𝑗

𝑏 𝜋𝑖𝑗
𝑏 |)

𝑛

𝑗=1

𝑚−1

𝑖=1

 

is a pseudo-similarity over 𝐼𝐹𝑃𝐼𝐹𝑆𝐸[𝑈] and is called Hamming pseudo-similarity. 

Thirdly, we propose a new classification method referred to as Intuitionistic Fuzzy Parameterized 

Intuitionistic Fuzzy Soft Hamming Classifier (IFPIFS-HC). This method employs Definition 3.6 to obtain 

feature weight based on the effect of parameters on classification. It then constructs the training ifpifs-

matrix and the testing ifpifs-matrix using Definitions 3.4, 3.5, 3.7, 3.8, 3.9, and 3.10. Then, utilising the 

Hamming pseudo-similarity, a matrix of similarity values of the testing ifpifs-matrix to each training 

ifpifs-matrix is obtained. The class of the training sample with the highest similarity is assigned as the 

probable class of the test sample. This process proceeds similarly for all test samples. Finally, the 

predicted class matrix is generated for the test data. IFPIFS-HC’s flowchart (Figure 1) and algorithm 

steps (Algorithm 1) are as follows: 
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Figure  1. The flowchart of the IFPIFS-HC 
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Algorithm 1. Pseudocode of IFPIFS-HC Algorithm 

Input: (𝐷𝑡𝑟𝑎𝑖𝑛)𝑚1×𝑛, 𝐶𝑚1×1, (𝐷𝑡𝑒𝑠𝑡)𝑚2×𝑛, 𝜆1, and 𝜆2 

Output: 𝑇𝑚2×1 

1: procedure IFPIFS-HC(𝐷𝑡𝑟𝑎𝑖𝑛, 𝐶, 𝐷𝑡𝑒𝑠𝑡 , 𝜆1, 𝜆2) 

2: Compute 𝑖𝑓𝑤𝐷𝑡𝑟𝑎𝑖𝑛
𝜆1𝑃  using 𝐷𝑡𝑟𝑎𝑖𝑛 and 𝐶 

3: Compute feature fuzzification of 𝐷𝑡𝑟𝑎𝑖𝑛 and 𝐷𝑡𝑒𝑠𝑡, namely �̃�𝑡𝑟𝑎𝑖𝑛 and �̃�𝑡𝑒𝑠𝑡 

4: Compute feature intuitionistic fuzzification of �̃�𝑡𝑟𝑎𝑖𝑛 and �̃�𝑡𝑒𝑠𝑡, namely �̃̃�𝑡𝑟𝑎𝑖𝑛
𝜆2  and �̃̃�𝑡𝑒𝑠𝑡

𝜆2  

5: for 𝑘 from 1 to 𝑚2 do 

6:       Compute the test ifpifs-matrix [𝑎
𝑖𝑗

�̃̃�𝑘−𝑡𝑒𝑠𝑡
𝜆2

] using 𝑖𝑓𝑤𝐷𝑡𝑟𝑎𝑖𝑛
𝜆1𝑃  and �̃̃�𝑘−𝑡𝑒𝑠𝑡

𝜆2  

7:        for 𝑙 from 1 to 𝑚1 do 

8:             Compute the train ifpifs-matrix [𝑏
𝑖𝑗

�̃̃�𝑙−𝑡𝑟𝑎𝑖𝑛
𝜆2

] using 𝑖𝑓𝑤𝐷𝑡𝑟𝑎𝑖𝑛
𝜆1𝑃  and �̃̃�𝑙−𝑡𝑟𝑎𝑖𝑛

𝜆2  

9:             𝑠𝑚𝑙1 ← 𝑠𝐻 ([𝑎𝑖𝑗
�̃̃�𝑘−𝑡𝑒𝑠𝑡
𝜆2

] , [𝑏
𝑖𝑗

�̃̃�𝑙−𝑡𝑟𝑎𝑖𝑛
𝜆2

])                                  ⊳ [𝑠𝑚𝑙1] stands for similarity matrix 

10:      end for 

11:     𝑤 ← argmax
𝑙∈𝐼𝑚1

{𝑠𝑚𝑙1} 

12:     𝑡𝑘1 ← the class of 𝑤 

13: end for 

14: return 𝑇𝑚2×1 

15: end procedure 

4. Experimental Study 

This section provides the details of the 21 classification datasets in the UCI Machine Learning Repository 

[29]. It then presents five performance metrics for classification in machine learning. Afterwards, it 

performs a simulation to manifest that IFPIFS-HC is more efficient than Fuzzy kNN [30], FSSC [31], 

FussCyier [32], HDFSSC [33], and FPFS-EC [34]. Finally, it carries out statistical analyses of the 

simulation results utilising the Friedman test [35] and the Nemenyi post-hoc test [36]. 

4.1.  UCI Datasets 
Table 1 presents the details of UCI classification datasets employed in the experiment herein: “Zoo”, 

“Coimbra”, “Teaching Assistant Evaluation”, “Wine”, “Sonar”, “Glass”, “Vertebral Column 3C”, “Leaf”, 

“Ionosphere”, “Dermatology”, “Wholesale Customers”, “Breast Cancer Wisconsin”, “HCV Data”, 

“Parkinson’s Disease”, “Vehicle”, “German Credit Data”, “Mice Protein Expression”, “Semeion 

Handwritten Digit”, “Car Evaluation”, “Wireless Indoor Localization”, and “Image Segmentation”. 
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Table  1. Details of UCI datasets (# represents “the number of ”) 

No. Dataset # Sample # Attribute # Class Balanced/Imbalanced 

1.  Zoo 101 16 7 Imbalanced 

2.  Coimbra  116 9 2 Imbalanced 

3.  Teaching Assistant Evaluation 151 5 3 Imbalanced 

4.  Wine 178 13 3 Imbalanced 

5.  Sonar  208 60 2 Imbalanced 

6.  Glass 214 9 6 Imbalanced 

7.  Vertebral Column 3C 310 6 3 Imbalanced 

8.  Leaf 340 14 36 Imbalanced 

9.  Ionosphere 351 34 2 Imbalanced 

10.  Dermatology 366 34 6 Imbalanced 

11.  Wholesale Customers 440 6 3 Imbalanced 

12.  Breast Cancer Wisconsin 569 30 2 Imbalanced 

13.  HCV Data 589 12 5 Imbalanced 

14.  Parkinson’s Disease 756 754 2 Imbalanced 

15.  Vehicle 846 17 4 Imbalanced 

16.  German Credit Data 1000 20 2 Imbalanced 

17.  Mice Protein Expression 1077 72 8 Imbalanced 

18.  Semeion Handwritten Digit 1593 265 2 Imbalanced 

19.  Car Evaluation 1728 6 4 Imbalanced 

20.  Wireless Indoor Localization 2000 7 4 Balanced 

21.  Image Segmentation (Segment) 2310 19 7 Balanced 

4.2.  Performance Criteria 

This subsection provides the mathematical notations of the performance criteria, namely accuracy 

(Acc), precision (Pre), recall (Rec), macro F-score (MacF), and micro F-score (MicF) [37, 38] to compare 

the aforesaid classifiers. Let 𝑋 = {𝑥1, 𝑥2,⋯ , 𝑥𝑛}, 𝕐 = {𝕐1, 𝕐2,⋯ , 𝕐𝑛}, �̂� = {�̂�1, �̂�2,⋯ , �̂�𝑛}, and 𝑘 be the 

set of 𝑛 samples to be classified, the set of ground truth class of the samples, the set of prediction class 

of the samples, and the number of the class of the samples, respectively. Then, 

Acc(𝕐, �̂�) ≔
1

𝑘
∑

𝑇𝑃𝑖 + 𝑇𝑁𝑖
𝑇𝑃𝑖 + 𝑇𝑁𝑖 + 𝐹𝑃𝑖 + 𝐹𝑁𝑖

𝑘

𝑖=1

 

Pre(𝕐, �̂�) ≔
1

𝑘
∑

𝑇𝑃𝑖
𝑇𝑃𝑖 + 𝐹𝑃𝑖

𝑘

𝑖=1

 

Rec(𝕐, �̂�) ≔
1

𝑘
∑

𝑇𝑃𝑖
𝑇𝑃𝑖 + 𝐹𝑁𝑖

𝑘

𝑖=1

 

MacF(𝕐, �̂�) ≔
1

𝑘
∑

2𝑇𝑃𝑖
2𝑇𝑃𝑖 + 𝐹𝑃𝑖 + 𝐹𝑁𝑖

𝑘

𝑖=1

 

MicF(𝕐, �̂�) ≔
2∑ 𝑇𝑃𝑖

𝑘
𝑖=1

2∑ 𝑇𝑃𝑖
𝑘
𝑖=1 + ∑ 𝐹𝑃𝑖

𝑘
𝑖=1 + ∑ 𝐹𝑁𝑖

𝑘
𝑖=1
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where 𝑇𝑃𝑖, 𝑇𝑁𝑖 , 𝐹𝑃𝑖 , and 𝐹𝑁𝑖  are the number of true positive, true negative, false positive, and false 

negative for the class 𝑖, respectively, and their mathematical notations are as follows: 

𝑇𝑃𝑖 ≔ |{𝑥𝑡 ∶ 𝑖 ∈ 𝕐𝑡 ∧ 𝑖 ∈ �̂�𝑡, 𝑡 ∈ 𝐼𝑛}| 

𝑇𝑁𝑖 ≔ |{𝑥𝑡 ∶ 𝑖 ∉ 𝕐𝑡 ∧ 𝑖 ∉ �̂�𝑡, 𝑡 ∈ 𝐼𝑛}| 

𝐹𝑃𝑖 ≔ |{𝑥𝑡 ∶ 𝑖 ∉ 𝕐𝑡 ∧ 𝑖 ∈ �̂�𝑡 , 𝑡 ∈ 𝐼𝑛}| 

𝐹𝑁𝑖 ≔ |{𝑥𝑡 ∶ 𝑖 ∈ 𝕐𝑡 ∧ 𝑖 ∉ �̂�𝑡, 𝑡 ∈ 𝐼𝑛}| 

4.3.  Simulation Results 

In this subsection, we concentrate mainly on comparing IFPIFS-HC with the well-known and state-of-

the-art classifiers based on fuzzy sets and soft sets, i.e., Fuzzy-kNN [30], FSSC [31], FussCyier [32], 

HDFSSC [33], and FPFS-EC [34]. We carry out a simulation utilising MATLAB R2021a software and a 

laptop with I(R) Core(TM) I5-3230M CPU @ 2.60GHz and 16 GB RAM. We use 5-fold cross-validation 

herein to split the data sets as training and testing. In 5-fold cross-validation, the datasets are split into 

5 parts of equal size. This process occurs randomly. While a part of these 5 parts is used as validation 

data (test data), the remaining 4 parts are used as training data to train the classifier. Because the cross-

validation process is repeated 5 times, each part is used as test data only once. Therefore, all samples in 

the dataset are used as both training and test data. In this phase, we record the mean results for 5 

iterations. In each iteration in 5-cross-validation, the training and testing phases are carried out 

independently from other stages (for more details about 𝑘-fold cross-validation, see [39,40]). We finally 

repeat this process 10 times and obtain the mean Acc, Pre, Rec, MacF, MicF, and running time results. 

Table 2 shows the average Acc, Pre, Rec, MacF, MicF, and running time results of the classifiers for the 

datasets. In Table 2, it is observed that IFPIFS-HC has classified “Mice Protein” dataset in a maximum 

classification performance as in HDFSSC and FPFS-EC. Moreover, according to all performance metrics, 

the performance results of IFPIFS-HC for “Breast Cancer Wisconsin”, “Ionosphere”, “Parkinson’s 

Disease”, “Wine”, and “Zoo” datasets are over 95%, 90%, 93%, 97%, and 94%, respectively. On the other 

hand, although IFPIFS-HC does not produce the best results in all performance metrics in “Segment”, 

“Sonar”, and “Wireless” datasets, it produces the closest results to the best ones for these datasets. For 

“Segment” dataset, the approximate differences between the results are 0.06, 0.2, 0.2, 0.2, and 0.2, for 

“Sonar” datasets, 1.5, 1.74, 1.4, 1.46, and 1.5, and for “Wireless” datasets, 0.07, 0.14, 0.13, 0.14, and 0.13. 

Also, IFPIFS-HC has better performance values than the others in all performance metrics for “Car 

Evaluation”, “Coimbra”, “Glass”, “Leaf”, “Teaching Assistant Evaluation”, and “Wholesale Customers” 

datasets. Although IFPIFS-HC does not have the best performance according to some performance 

metrics in the other datasets, it produces the closest results to the best performances, except for Rec 

values in “HCV” and “German Credit” datasets. 

IFPIFS-HC achieves remarkable classification success by using the Hamming pseudo-similarity of ifpifs-

matrices based on the Pearson correlation coefficient and evaluating all training samples separately. On 

the other hand, evaluating all training samples separately leads to an increase in the running time of 

IFPIFS-HC. Therefore, IFPIFS-HC is generally a bit slower than the other classifiers. On the other hand, 

it takes approximately 0.02349 to 8.55762 seconds to classify all test samples in a considered dataset. 

The detailed numerical results mentioned above are presented in Table 2.  
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Table  2. Performance comparison of the classifiers for the 21 UCI datasets 

Datasets Classifiers Acc±SD Pre±SD Rec±SD MacF±SD MicF±SD Running Time±SD 

Breast 
Cancer 

Wisconsin 

Fuzzy kNN 92.17±2.37 92.19±2.53 91.11±2.74 91.52±2.59 92.17±2.37 0.00972±0.00203 
FSSC 93.61±2.05 93.41±2.25 92.99±2.29 93.14±2.20 93.61±2.05 0.00141±0.00191 
FussCyier 93.56±2.04 94.32±1.93 92.03±2.55 92.93±2.29 93.56±2.04 0.00074±0.00088 
HDFSSC 92.88±2.09 93.07±2.20 91.71±2.49 92.26±2.30 92.88±2.09 0.00105±0.00166 
FPFS-EC 95.18±1.66 94.99±1.77 94.78±1.93 94.84±1.80 95.18±1.66 0.11592±0.02538 
IFPIFS-HC(10,0.5) 95.65±1.55 95.53±1.67 95.22±1.77 95.33±1.67 95.65±1.55 0.45639±0.08281 

Car 
Evaluation 

Fuzzy kNN 94.26±0.71 79.00±3.20 62.29±4.63 66.97±4.85 88.52±1.42 0.04783±0.00367 
FSSC 72.11±1.37 37.98±1.64 56.78±4.10 34.18±2.25 44.21±2.74 0.00467±0.00077 
FussCyier 80.20±1.31 44.12±2.13 64.17±4.61 44.87±2.73 60.40±2.61 0.00142±0.00036 
HDFSSC 86.68±1.08 55.59±2.51 76.35±4.38 60.44±3.14 73.37±2.17 0.00288±0.00069 
FPFS-EC 97.48±0.55 90.17±3.25 89.11±3.64 89.30±3.25 94.95±1.09 0.99152±0.12451 
IFPIFS-HC(0.5,5) 98.02±0.51 90.88±2.88 90.47±3.58 90.40±2.74 96.05±1.03 4.10788±0.39287 

Coimbra  

Fuzzy kNN 55.11±9.51 54.61±10.31 54.28±9.52 53.60±9.79 55.11±9.51 0.00068±0.00033 
FSSC 62.93±8.09 67.69±8.92 64.89±7.89 61.85±8.73 62.93±8.09 0.00037±0.00019 
FussCyier 61.66±8.26 68.37±9.46 64.13±7.87 59.91±9.39 61.66±8.26 0.00021±0.0001 
HDFSSC 60.02±8.47 63.28±9.67 61.60±8.32 59.03±9.03 60.02±8.47 0.00027±0.00015 
FPFS-EC 68.00±9.42 68.66±9.79 67.83±9.38 67.33±9.60 68.00±9.42 0.0069±0.00206 
IFPIFS-HC(5,0.5) 69.81±8.93 70.28±9.20 69.82±9.09 69.32±9.19 69.81±8.93 0.02349±0.00692 

Dermatology 

Fuzzy kNN 91.33±1.22 77.82±4.26 72.07±4.41 72.21±4.34 74.00±3.67 0.00582±0.00973 
FSSC 99.17±0.53 97.42±1.70 97.22±1.77 97.21±1.79 97.52±1.60 0.00186±0.00201 
FussCyier 98.66±0.68 95.94±1.94 96.42±1.92 95.90±2.11 95.97±2.05 0.00064±0.00041 
HDFSSC 98.84±0.67 96.39±2.03 96.42±2.05 96.22±2.17 96.52±2.02 0.00126±0.00225 
FPFS-EC 97.89±0.78 93.73±2.32 93.49±2.45 93.20±2.49 93.68±2.34 0.05192±0.02404 
IFPIFS-HC(5,10) 99.20±0.56 97.38±1.95 97.30±1.89 97.20±2.01 97.59±1.69 0.19764±0.05524 

German 
Credit 

Fuzzy kNN 61.71±2.80 52.33±3.50 52.08±3.15 51.97±3.31 61.71±2.80 0.02643±0.01081 
FSSC 63.44±3.02 62.09±2.82 64.22±3.33 61.20±2.99 63.44±3.02 0.00273±0.00403 
FussCyier 63.54±3.04 62.05±2.81 64.16±3.31 61.23±2.99 63.54±3.04 0.00103±0.00064 
HDFSSC 64.74±3.40 61.79±3.08 63.53±3.53 61.59±3.34 64.74±3.40 0.0025±0.00745 
FPFS-EC 69.00±2.84 63.11±3.31 62.96±3.33 62.94±3.29 69.00±2.84 0.44546±0.26546 
IFPIFS-HC(20,0.5) 69.91±2.66 63.69±3.41 62.83±3.20 63.09±3.26 69.91±2.66 1.79845±0.57353 

Glass 

Fuzzy kNN 89.18±1.74 56.95±9.72 55.93±8.62 67.87±7.07 63.66±5.95 0.00178±0.0015 
FSSC 79.87±1.92 48.22±7.77 49.36±7.12 48.08±6.44 39.61±5.75 0.00135±0.00091 
FussCyier 79.80±1.94 49.09±8.05 49.33±6.82 47.89±6.53 39.39±5.83 0.00047±0.00031 
HDFSSC 79.95±2.24 45.66±8.23 45.48±8.50 48.97±6.95 39.85±6.73 0.00079±0.00041 
FPFS-EC 89.33±1.99 67.50±9.26 65.56±8.76 69.56±7.73 68.00±5.97 0.02374±0.01285 
IFPIFS-HC(5,0.5) 90.87±1.96 70.72±9.6 69.3±9.17 72.47±7.78 72.62±5.89 0.09159±0.04064 

HCV Data 

Fuzzy kNN 97.12±0.59 54.67±10.84 47.26±11.14 66.49±9.29 92.81±1.48 0.00642±0.00076 
FSSC 97.18±0.87 63.90±11.02 62.87±11.36 69.93±8.95 92.94±2.17 0.00215±0.00068 
FussCyier 97.19±0.83 64.54±11.77 61.40±11.48 70.36±8.71 92.98±2.08 0.00068±0.00023 
HDFSSC 96.53±1.34 62.55±10.48 64.21±11.34 68.29±8.89 91.32±3.34 0.00125±0.00037 
FPFS-EC 97.03±0.54 59.19±13.22 45.85±9.26 80.01±9.97 92.58±1.34 0.12004±0.00989 
IFPIFS-HC(20,0.5) 97.29±0.54 72.68±13.76 49.61±11.06 78.21±9.39 93.22±1.34 0.49525±0.0394 

Ionosphere 

Fuzzy kNN 84.88±3.22 88.99±2.92 79.48±4.35 81.58±4.41 84.88±3.22 0.00629±0.0025 
FSSC 64.10±0.36 64.10±0.36 50.00±0.00 78.13±0.27 64.10±0.36 0.00125±0.00152 
FussCyier 64.10±0.36 64.10±0.36 50.00±0.00 78.13±0.27 64.10±0.36 0.00063±0.00033 
HDFSSC 64.10±0.36 64.10±0.36 50.00±0.00 78.13±0.27 64.10±0.36 0.00088±0.0007 
FPFS-EC 89.46±3.17 91.81±2.76 85.88±4.24 87.70±3.97 89.46±3.17 0.07383±0.03865 
IFPIFS-HC(0.5,5) 91.9±2.97 92.29±3.07 90.15±3.72 90.95±3.41 91.90±2.97 0.29221±0.12971 

Leaf 

Fuzzy kNN 96.18±0.24 32.05±5.36 31.89±4.11 61.48±4.21 32.43±4.09 0.00273±0.00061 
FSSC 97.42±0.36 66.55±5.98 61.85±5.46 70.69±4.18 61.35±5.37 0.00637±0.00117 
FussCyier 97.44±0.35 66.82±5.81 62.12±5.33 70.83±3.96 61.63±5.24 0.00122±0.00119 
HDFSSC 97.53±0.36 68.16±6.21 63.60±5.64 71.83±3.79 63.00±5.47 0.00313±0.00052 
FPFS-EC 97.82±0.30 71.41±5.14 67.32±4.74 74.38±3.37 67.23±4.57 0.04165±0.00366 
IFPIFS-HC(5,0.5) 98.1±0.32 76.11±4.94 71.08±4.86 76.89±3.9 71.46±4.85 0.16729±0.01129 

Mice 
Protein 

Fuzzy kNN 99.90±0.1 99.62±0.39 99.60±0.42 99.60±0.42 99.60±0.42 0.05815±0.06803 
FSSC 98.66±0.41 94.95±1.56 94.85±1.59 94.78±1.61 94.64±1.65 0.01023±0.01476 
FussCyier 98.73±0.41 95.24±1.51 95.14±1.56 95.07±1.58 94.90±1.63 0.00284±0.00274 
HDFSSC 100±0.00 100±0.00 100±0.00 100±0.00 100±0.00 0.00717±0.01646 
FPFS-EC 100±0.00 100±0.00 100±0.00 100±0.00 100±0.00 0.67986±0.58764 
IFPIFS-HC(20,20) 100±0.00 100±0.00 100±0.00 100±0.00 100±0.00 2.5347±1.9008 

Parkinson’s 
Disease  

Fuzzy kNN 70.52±3.12 60.54±4.02 59.84±3.66 60.02±3.76 70.52±3.12 0.4102±0.05782 
FSSC 37.87±6.48 46.85±4.35 47.03±4.43 37.25±6.11 37.87±6.48 0.01531±0.00212 
FussCyier 61.37±16.56 46.17±6.02 48.70±2.18 46.36±15.32 61.37±16.56 0.01376±0.0018 
HDFSSC 61.81±16.49 46.77±6.89 48.86±2.37 47.13±15.65 61.81±16.49 0.01465±0.00248 
FPFS-EC 93.76±2.07 91.94±2.83 91.70±3.00 91.75±2.75 93.76±2.07 0.86699±0.14823 
IFPIFS-HC(20,5) 95.09±1.94 93.99±2.70 93.06±2.89 93.45±2.62 95.09±1.94 3.60079±0.47408 
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Segment 

Fuzzy kNN 98.30±0.28 94.31±0.95 94.06±1.00 94.06±1.00 94.06±1.00 0.09524±0.03241 
FSSC 93.78±0.43 78.90±1.69 78.22±1.49 76.80±1.65 78.22±1.49 0.01163±0.00534 
FussCyier 94.60±0.69 81.26±2.53 81.11±2.42 80.99±2.48 81.11±2.42 0.00289±0.00124 
HDFSSC 92.48±0.53 73.60±1.87 73.67±1.86 73.12±1.88 73.67±1.86 0.00673±0.00318 
FPFS-EC 99.34±0.20 97.73±0.70 97.70±0.71 97.70±0.71 97.70±0.71 1.91221±0.36154 
IFPIFS-HC(5,0.5) 99.28±0.18 97.53±0.63 97.50±0.64 97.50±0.64 97.5±0.64 7.78665±0.93521 

Semeion 

Fuzzy kNN 97.20±0.71 97.41±1.53 86.73±3.40 91.13±2.51 97.20±0.71 0.70981±0.0554 
FSSC 43.96±2.41 57.50±0.34 68.82±1.39 40.47±1.84 43.96±2.41 0.01385±0.00439 
FussCyier 76.21±2.37 64.03±1.21 84.33±2.06 64.52±2.18 76.21±2.37 0.01133±0.00253 
HDFSSC 89.52±1.62 73.59±2.38 88.25±2.86 78.09±2.56 89.52±1.62 0.0127±0.0028 
FPFS-EC 96.58±0.98 92.07±3.18 88.29±3.58 89.97±2.97 96.58±0.98 1.93266±0.16265 
IFPIFS-HC(20,20) 98.06±0.62 97.23±1.74 91.77±2.88 94.22±1.95 98.06±0.62 8.55762±0.5436 

Sonar 

Fuzzy kNN 82.57±5.02 83.38±5.11 82.14±5.14 82.23±5.21 82.57±5.02 0.00322±0.00112 
FSSC 75.00±6.65 75.81±7.08 74.55±6.66 74.49±6.78 75.00±6.65 0.00082±0.00068 
FussCyier 72.12±6.95 73.81±6.83 72.78±6.81 71.87±7.10 72.12±6.95 0.00048±0.00029 
HDFSSC 70.14±7.66 70.60±7.78 70.19±7.69 69.90±7.74 70.14±7.66 0.00059±0.00043 
FPFS-EC 86.77±4.78 87.61±4.66 86.41±4.92 86.53±4.92 86.77±4.78 0.0323±0.01112 
IFPIFS-HC(5,0.5) 85.27±4.85 85.87±4.86 85.01±4.97 85.07±4.97 85.27±4.85 0.1067±0.03353 

Teaching 
Assistant 

Evaluation 

Fuzzy kNN 72.48±5.76 60.87±9.31 58.75±8.64 58.15±9.06 58.71±8.64 0.00071±0.00019 
FSSC 63.21±4.98 48.97±11.74 45.45±7.55 43.13±7.63 44.81±7.47 0.00048±0.00015 
FussCyier 63.13±5.09 48.12±11.5 45.31±7.72 42.93±7.50 44.70±7.64 0.00024±8e-05 
HDFSSC 69.63±5.18 56.02±8.46 54.71±7.81 53.83±7.81 54.45±7.78 0.00032±0.00012 
FPFS-EC 76.58±5.07 66.06±7.88 64.80±7.59 64.32±7.71 64.87±7.60 0.00883±0.00179 
IFPIFS-HC(5,0.5) 76.95±5.56 66.62±8.74 65.36±8.30 64.91±8.57 65.43±8.34 0.03474±0.00639 

Vehicle 

Fuzzy kNN 75.65±1.46 54.12±3.98 51.58±2.89 48.69±3.05 51.31±2.92 0.01841±0.01016 
FSSC 69.67±1.75 39.68±4.79 40.06±3.49 36.58±4.10 39.33±3.49 0.00284±0.00102 
FussCyier 69.79±1.74 40.05±4.96 40.37±3.48 36.63±4.15 39.59±3.48 0.001±0.00044 
HDFSSC 70.54±1.64 42.32±4.12 41.73±3.28 39.52±3.56 41.08±3.28 0.00192±0.00126 
FPFS-EC 83.95±1.34 67.54±2.83 68.22±2.67 67.71±2.71 67.89±2.68 0.27599±0.11182 
IFPIFS-HC(10,5) 83.97±1.23 67.53±2.66 68.28±2.45 67.76±2.52 67.94±2.47 1.12365±0.25498 

Vertebral 
Column 3C 

Fuzzy kNN 80.28±2.99 75.50±7.96 60.92±5.47 62.95±6.03 70.42±4.48 0.00191±0.00033 
FSSC 81.15±3.76 68.73±6.21 69.23±6.16 68.36±6.20 71.72±5.65 0.00078±0.00016 
FussCyier 79.91±4.08 67.51±6.26 68.76±6.45 67.27±6.51 69.87±6.12 0.00032±8e-05 
HDFSSC 80.57±3.69 69.47±5.78 69.86±5.92 69.01±5.86 70.85±5.54 0.00052±0.00015 
FPFS-EC 81.89±3.44 69.16±6.33 68.11±6.01 67.94±6.07 72.83±5.15 0.03267±0.00312 
IFPIFS-HC(10,5) 84.59±3.10 72.27±6.11 71.26±5.77 71.25±5.91 76.88±4.65 0.13379±0.00909 

Wholesale 
Customers 

Fuzzy kNN 64.81±2.81 33.01±6.99 32.08±5.42 36.07±6.41 47.21±4.21 0.0035±0.00059 
FSSC 55.40±4.27 33.80±4.05 33.46±6.27 27.98±4.86 33.10±6.41 0.00108±0.00028 
FussCyier 52.06±4.19 34.32±4.35 33.01±5.61 25.12±4.84 28.09±6.28 0.00044±0.00013 
HDFSSC 54.02±3.82 34.52±3.88 33.22±5.48 27.09±4.54 31.02±5.72 0.00073±0.00025 
FPFS-EC 70.45±2.87 32.84±4.82 33.05±4.42 38.18±8.67 55.67±4.30 0.06443±0.00536 
IFPIFS-HC(10,20) 71.56±2.79 36.73±5.69 36.83±5.50 39.17±6.08 57.34±4.18 0.26388±0.01403 

Wine 

Fuzzy kNN 82.34±4.17 74.09±7.18 72.13±6.26 72.39±6.27 73.50±6.26 0.00108±0.00035 
FSSC 96.38±2.43 94.98±3.15 95.47±3.02 94.78±3.52 94.57±3.64 0.00058±0.0002 
FussCyier 96.53±2.10 95.07±2.95 95.54±2.69 95.00±3.06 94.79±3.15 0.00027±8e-05 
HDFSSC 95.46±2.53 93.64±3.58 93.94±3.37 93.46±3.67 93.18±3.80 0.00041±0.00022 
FPFS-EC 97.51±1.96 96.43±2.72 96.89±2.46 96.41±2.90 96.27±2.94 0.01451±0.00288 
IFPIFS-HC(10,5) 98.50±1.71 97.97±2.21 98.13±2.12 97.92±2.38 97.75±2.57 0.05463±0.0095 

Wireless 
Indoor 

Localization 

Fuzzy kNN 99.12±2.37 98.26±2.53 98.23±2.74 98.24±2.59 98.23±2.37 0.05973±0.00203 
FSSC 97.49±2.05 95.41±2.25 94.97±2.29 94.97±2.20 94.97±2.05 0.00562±0.00191 
FussCyier 97.61±2.04 95.62±1.93 95.22±2.55 95.22±2.29 95.22±2.04 0.00155±0.00088 
HDFSSC 96.73±2.09 93.90±2.20 93.46±2.49 93.46±2.30 93.46±2.09 0.00326±0.00166 
FPFS-EC 94.76±1.66 89.63±1.77 89.53±1.93 89.53±1.80 89.53±1.66 1.37093±0.02538 
IFPIFS-HC(0.5,0.5) 99.05±1.55 98.12±1.67 98.10±1.77 98.10±1.67 98.10±1.55 5.82577±0.08281 

Zoo 

Fuzzy kNN 97.73±1.42 91.52±6.35 84.46±10.03 92.97±5.65 92.23±4.90 0.00131±0.00744 
FSSC 98.04±1.31 91.30±6.71 86.84±8.42 93.09±5.14 93.33±4.39 0.00095±0.00095 
FussCyier 97.78±1.37 90.66±6.74 86.52±8.39 92.51±5.28 92.43±4.63 0.00036±0.00028 
HDFSSC 98.38±1.19 92.96±5.96 88.20±8.96 93.89±4.85 94.52±3.96 0.00055±0.00051 
FPFS-EC 98.69±1.26 93.99±7.49 89.03±10.4 96.01±4.94 95.54±4.30 0.00818±0.00377 
IFPIFS-HC(0.5,0.5) 99.25±1.04 97.03±4.71 94.74±7.39 97.51±3.77 97.49±3.44 0.02383±0.01068 

Mean Results 

Fuzzy kNN 84.90±2.51 71.96±5.19 67.95±5.13 71.91±4.85 75.28±3.74 0.07005±0.01275 

FSSC 78.12±2.64 68.01±4.59 68.05±4.57 66.53±4.26 67.68±3.95 0.00411±0.00215 
FussCyier 80.76±3.16 68.63±4.81 69.07±4.56 68.36±4.82 70.65±4.51 0.00203±0.00072 
HDFSSC 81.93±3.17 69.43±4.65 69.95±4.68 70.25±4.78 72.36±4.47 0.00303±0.00208 
FPFS-EC 89.59±2.23 80.27±4.57 78.40±4.54 81.20±4.36 83.60±3.31 0.43193±0.09199 
IFPIFS-HC 90.59±2.12 82.88±4.39 80.75±4.43 82.89±4.02 85.48±3.15 1.79414±0.26701 

Acc, Pre, Rec, MacF, MicF, and their standard deviations (SD) are presented in percentage. Running time and its SD are presented in seconds. The best 

results are shown in bold. In addition, IFPIFS-HC(𝜆1, 𝜆2) denotes that IFPIFS-HC utilises the intuitionistic fuzzification values  𝜆1 and 𝜆2. 
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4.4.  Statistical Evaluation 

In this subsection, we conduct the Friedman test [35] and Nemenyi post-hoc test [36] in a procedure 

suggested by Demšar [41] to analyse overall performance results obtained in view of Acc, Pre, Rec, MacF, 

MicF, and running time. The Friedman test produces a performance-based ranking of the classifiers for 

each data set. Thereby, the rank of 1 refers to the best performing classifier, the rank of 2 to the second 

best, etc. If the performances of the classifiers are equal, then it assigns the average of their possible 

ranks to their ranks. Next, the Friedman test first compares the average ranks of the classifiers and 

secondly calculates the Friedman statistic 𝜒𝐹
2, distributed according to the 𝜒𝐹

2 distribution with 𝑘 − 1 

degree of freedom where 𝑘 is the number of classifiers. If a statistically significant difference is detected 

in the performance, a post-hoc test should be used to detect which difference belong to which classifier. 

The Nemenyi test is one of the post-hoc tests commonly used to compare all the classifiers with each 

other. In this test, if the distance of the average ranks of the two classifiers occurs more than the critical 

distance, then the test shows that their performance is considerably different. 

In this subsection, firstly, since the number of classifiers compared is 6 and the number of datasets is 

21, each classifier average ranking is calculated for 𝑘 = 6 and 𝑁 = 21 using the Friedman test. Friedman 

test statistics of Acc, Pre, Rec, MacF, MicF, and running time values, 𝜒2
𝐹 = 57.63, 𝜒2

𝐹 = 45.74, 𝜒2
𝐹 = 39.38, 

𝜒2
𝐹 = 56.39, 𝜒2

𝐹 = 57.63, and 𝜒2
𝐹 = 103.37, respectively. For 𝑘 = 6 and 𝑁 = 21, the Friedman test critical 

value is 11.07 at the 𝛼 = 0.05 significance level (for more details, see [42]). Since the Friedman test 

statistics of Acc (57.63), Pre (45.74), Rec (39.38), MacF (56.39), MicF (57.63), and running time 

(103.37) are greater than the critical value 11.07, there is a significant difference between the 

performances of the compared classifiers. Therefore, the null hypothesis “There are no performance 

differences between the classifiers” is rejected, and thus the Nemenyi post-hoc test can be applied. For 

𝑘 =  6, 𝑁 =  21, and 𝛼 =  0.05, since the value for the infinite degrees of freedom in the table 

Studentized Range 𝑞 is 4.030, the critical distance is 
4.030

√2
× √

6×7

6×21
≈ 1.645 according to the Nemenyi 

post-hoc test. The critical diagrams produced by the Nemenyi post-hoc test for the five performance 

metrics and running time are presented in Figure 2. 

  
(a) Acc (b) Pre 

  
(c) Rec (d) MacF 

  
(e) MicF (f) Running Time 

Figure  2. The critical diagrams for the five performance criteria and running time: The results from 

the Nemenyi post-hoc test at 0.05 significance level and average ranking from the Friedman test. 
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Figure 2 shows that the performance differences between the average rankings of IFPIFS-HC and the 

others, except for FPFS-EC, are greater than the critical distance (1.645). Moreover, Figure 2 manifests 

that IFPIFS-HC performs better than FPFS-EC concerning all performance metrics, even though the 

difference between the average rankings of IFPIFS-HC and FPFS-EC is less than the critical distance 

(1.645). Therefore, IFPIFS-HC outperforms the others statistically for all five performance metrics. 

5. Evaluation of Computational Complexity 

This section compares the classifiers’ computational complexity by utilizing big O notation besides their 

running time results obtained in 10 runs for the 21 UCI datasets. As can be observed from Table 2, 

IFPIFS-HC in general seems to operate slightly slower than other classifiers. The reason is that in the 

pre-processing step, as with FPFS-EC, IFPIFS-HC employs all of the training samples separately, while 

FSSC, FussCyier, and HDFSSC employ a class-based mean of the training samples. Additionally, IFPIFS-

HC’s running time occurs under 1 s for 13 of the 21 datasets. Owing to its non-high running time, the 

proposed classifier can be used in real-time applications. From the pseudocode of IFPIFS-HC, the 

computational complexity is 𝑂(𝑚𝑛) for each test sample. Here, 𝑚 and 𝑛 are the numbers of the training 

samples and attributes, respectively. The computational complexities of the compared classifiers are 

provided in Table 3. 

Table  3. Computational complexities of the classifiers 

Classifier Computational Complexity 

Fuzzy kNN 𝑂(𝑛2 log 𝑘) 

FSSC 𝑂(𝑚𝑙) 

FussCyier 𝑂(𝑚𝑙) 

HDFSSC 𝑂(𝑚𝑙) 

FPFS-EC 𝑂(𝑚𝑛) 

IFPIFS-HC 𝑂(𝑚𝑛) 
𝑘 is number of the nearest neighbours, 𝑚 is the sample number of the training data, 𝑛 is the parameter number of the training data, and 𝑙 is the class 

number of the data. 

6. Conclusion 

In this study, the concept of pseudo-similarity over ifpifs-matrices was first defined and Hamming 

pseudo-similarity over ifpifs-matrices was suggested. Afterwards, a classifier based on the proposed 

Hamming pseudo-similarity of ifpifs-matrices (IFPIFS-HC) was proposed. Moreover, we compared 

IFPIFS-HC with the well-known and state-of-the-art classifiers Fuzzy kNN [30], FSSC [31], FussCyier 

[32], HDFSSC [33], and FPFS-EC [34] and statistically analysed the comparison results. The simulation 

results and statistical evaluation showed that IFPIFS-HC performed better than the others for all the 

performance metrics. 

In recent years, various classifiers have been proposed, such as FSSC, FussCyier, and HDFSSC, which use 

distance and similarity measures of fuzzy soft sets [3, 5] and work by class-based averaging of training 

data, FPFSCC [20] using Chebyshev pseudo-similarity of fpfs-matrices, FPFSNHC [19] employing 

Hamming pseudo-similarity of fpfs-matrices, and FPFS-EC utilising Euclidean pseudo-similarity of fpfs-

matrices. FPFSCC and FPFSNHC also work by averaging training data such as FSSC, FussCyier, and 

HDFSSC. The success of the FPFSCC and FPFSNHC has been limited, as averaging the training data leads 

to loss of information. To overcome this problem, utilising Euclidean pseudo-similarity of the fpfs-

matrices and separately processing the entire training data in the training and classification phases, 

FPFS-EC algorithm, which outperforms Fuzzy kNN, Support Vector Machines (SVM) [43], FSSC, 

FussCyier, and HDFSSC for the considered data sets, was developed. These three classifiers showed that 
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fpfs-matrices, which can actually consider the effect of parameters on classification, are more effective 

than soft sets and fuzzy sets in classification problems.  

Lately, ifpifs-matrices [27] have been introduced to cope with a large number of data and further 

uncertainties than fuzzy uncertainty. This concept could model further uncertainties than fpfs-matrices 

can. The success of fpfs-matrices in machine learning showed that ifpifs-matrices, a more general 

concept, will also be successful in machine learning. To this end, this study focused on the application of 

ifpifs-matrices to machine learning. Besides, this study manifested that ifpifs-matrices could effectively 

model classification problems with considerable uncertainty. 

This is a primary study that will lead to new research on how to construct ifpifs-matrices for real 

problems such as classification problems in machine learning. Therefore, future studies should focus on 

the application of ifpifs-matrices to real problems. Although the proposed classifier produced successful 

performance results, its algorithm is open to improvement. In addition, interval-valued intuitionistic 

fuzzy parameterized interval-valued intuitionistic fuzzy soft set [44], picture fuzzy sets [45, 46], and 

their hybrid versions are worth studying. Finally, the proposed classifier can be customized to produce 

performances close to 100%, especially for problems such as medical diagnosis. 
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