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Abstract

In this article, we examine some geometric properties such as convexity, strictly convexity, uniformly convexity of bicomplex sequence
spaces lp (BC) with Euclidean norm by proving some significant inequalities. We also furnish some nontrivial examples that support our
findings for geometric properties not provided in some of these bicomplex sequence spaces.
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1. Introduction and Preliminaries

Segre [1], in his complex geometry studies, defined the concept of bicomplex numbers in 1892. In 1991, Price [2] published a book on
bicomplex numbers, multicomplex spaces and their function theory. In recent years, many studies have been done on bicomplex analysis
and it has become a subject of research in physics and mathematics by attracting considerable interest of researchers thanks to its huge
applications in different fields of mathematical sciences. The most important of these studies are [3, 4, 5].
Sager and Sağır [6], by defining bicomplex sequence spaces with Euclidean norm in the set of bicomplex numbers, studied completeness of
them. For some works on the geometric properties of other sequence spaces we refer the reader to [7, 8, 9, 10].
Our aim in this study is to add new properties to bicomplex sequence spaces. We present the study in two parts. In the first one, we start with
a number of known results needed in this paper. In the second one, we give some of geometric properties of bicomplex sequence spaces
lp (BC) with Euclidean norm by proving some necessary inequalities.
Let i and j be independent imaginary units such that i2 = j2 =−1, i j = ji and C(i) be the set of complex numbers with the imaginary unit i.
The set of bicomplex numbers BC is defined by

BC= {s = s1 + js2 : s1,s2 ∈ C(i)} .

The set BC forms a Banach space and a ring with respect to the addition, scalar multiplication, multiplication and Euclidean norm for all
s = s1 + js2, t = t1 + jt2 ∈ BC and for all λ ∈ R defined as

s+ t = (s1 + js2)+(t1 + jt2) = (s1 + t1)+ j (s2 + t2) ,

λ .s = λ .(s1 + js2) = λ s1 + jλ s2,

s× t = st = (s1 + js2)(t1 + jt2) = (s1t1− s2t2)+ j (s1t2 + s2t1) ,

‖.‖BC : BC→ R,s→‖s‖BC =

√
|s1|2 + |s2|2.

A sequence in BC (a bicomplex sequence) is a function defined by z : N→ BC, n→ sn. This sequence converges to a point s∗ ∈ BC if and
only if to each ε > 0 there corresponds an n0 (ε) ∈ N such that ‖sn− s∗‖BC < ε for all n≥ n0 (ε) .
Let (ζk)k∈N be a bicomplex sequence. Then, the infinite sum

∞

∑
k=1

ζk =
∞

∑
k=1

(ζ1k + jζ2k) = ζ1 +ζ2 + ...+ζn + ...
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Konuralp Journal of Mathematics 45

is called an infinite series in BC. Define the sequence s : N→ BC,n→ sn by setting sn =
n
∑

k=1
ζk for all n ∈N. The infinite series converges if

and only if lim
n→∞

sn exists; if the limit does not exist, the series diverges. If lim
n→∞

sn = ζ ∗ then, ζ ∗ is called the sum of series, and we write
∞

∑
k=1

ζk = ζ ∗ [2].

Lemma 1.1. [6][Bicomplex Hölder’s Inequality] Let p and q be real numbers with 1 < p < ∞ such that 1
p +

1
q = 1 and sk, tk ∈ BC for

k ∈ {1,2, ...,n} . Then

n

∑
k=1
‖sktk‖BC ≤

√
2

(
n

∑
k=1
‖sk‖

p
BC

) 1
p
(

n

∑
k=1
‖tk‖

q
BC

) 1
q

.

Lemma 1.2. [6][Bicomplex Minkowski’s Inequality] Let p be a real number with 1 < p < ∞ and sk, tk ∈ BC for k ∈ {1,2, ...,n} . Then

(
n

∑
k=1
‖sk + tk‖

p
BC

) 1
p

≤

( n

∑
k=1
‖sk‖

p
BC

) 1
p

+

(
n

∑
k=1
‖tk‖

p
BC

) 1
p
 .

Definition 1.3. [6]

l∞ (BC) : =

{
s = (sk) ∈ w(BC) : sup

k∈N
‖sk‖BC < ∞

}
,

lp (BC) : =

{
s = (sk) ∈ w(BC) :

∞

∑
k=1
‖sk‖

p
BC < ∞

}
for 0 < p < ∞,

where w(BC) denotes all bicomplex sequences.

Theorem 1.4. [6] l∞ (BC) is a Banach space with the norm ‖.‖l∞(BC) defined by

‖s‖l∞(BC) = sup
k∈N
‖sk‖BC

for all s = (sk) ∈ l∞ (BC).

Theorem 1.5. [6] The space lp (BC) is a Banach space for 1≤ p < ∞ with the norm ‖.‖lp(BC) defined by

‖s‖lp(BC) =

(
∞

∑
k=1
‖sk‖

p
BC

) 1
p

for all s = (sk) ∈ lp (BC) , and the space lp (BC) is a p−Banach space for 0 < p < 1 with the p−norm ‖|.|‖lp(BC) defined by

‖s‖lp(BC) =
∞

∑
k=1
‖sk‖

p
BC

for all s = (sk) ∈ lp (BC). Here, we refer to [11] and [12] for the definitions of p−norm and p−Banach space.

Definition 1.6. [7] Let C be a subset of a linear space X. Then C is said to be convex if (1−λ )x+λy ∈C for all x,y ∈C and all scalar
λ ∈ [0,1].

Definition 1.7. [7] A Banach space X is said to be strictly convex if x,y∈ SX with x 6= y implies that ‖(1−λ )x+λy‖X < 1 for all λ ∈ (0,1).

Definition 1.8. [7] A Banach space X is said to be uniformly convex if for any ε with 0 < ε ≤ 2, the inequalities ‖x‖ ≤ 1,‖y‖ ≤ 1 and

‖x− y‖ ≥ ε imply that there exists a δ = δ (ε)> 0 such that
∥∥∥ x+y

2

∥∥∥≤ 1−δ .

Lemma 1.9. [13] Let p ∈ (0,1) . Then, for a≥ 0 and b≥ 0 we have (a+b)p ≤ ap +bp.

Theorem 1.10. [7] Let X be a Banach space. Then, the following statements are equivalent:
(a) X is strictly convex.
(b) For every 1 < p < ∞, ‖λx+(1−λ )y‖p < λ ‖x‖p +(1−λ )‖y‖p for all x,y ∈ X , x 6= y and λ ∈ (0,1).

Theorem 1.11. [7] Every uniformly convex Banach space is strictly convex.
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2. Some Geometric Properties of the Banach space lp (BC)

Lemma 2.1. Let s, t ∈ BC. Then, we have

‖s+ t‖2
BC+‖s− t‖2

BC = 2
(
‖s‖2

BC+‖t‖2
BC

)
.

Proof. The proof is direct application of definition of ‖.‖BC .

Lemma 2.2. Let p be a real number with 0 < p≤ 1 and s, t ∈ BC. Then, we have

‖s+ t‖p
BC ≤ ‖s‖

p
BC+‖t‖p

BC .

Proof. Let p be a real number with 0 < p≤ 1 and s, t ∈ BC. Then, we have by Lemma 1.9

‖s+ t‖p
BC ≤ (‖s‖BC+‖t‖BC)

p ≤ ‖s‖p
BC+‖t‖p

BC .

Theorem 2.3. The sets BC and w(BC) are convex.

Proof. The proof is clear from definition of convexity.

Lemma 2.4. The set BC is uniformly convex and strictly convex.

Proof. Let s, t ∈ BC,ε ∈ (0,2], ‖s‖BC ≤ 1,‖t‖BC ≤ 1 and ε ≤ ‖s− t‖BC . Then, by using Lemma 2.1 we have

‖s+ t‖2
BC = 2

(
‖s‖2

BC+‖t‖2
BC

)
−‖s− t‖2

BC

≤ 4− ε
2

and so, ∥∥∥∥ s+ t
2

∥∥∥∥
BC

=

[
1
22 ‖s+ t‖2

BC

] 1
2

≤
[

1
22

(
4− ε

2
)] 1

2

≤
[

1−
(

ε

2

)2
] 1

2

.

If we take δ (ε) = 1−
[
1−
(

ε

2
)2
] 1

2
, then we say that BC is uniformly convex. By Theorem 1.11, BC is also strictly convex.

Lemma 2.5. Let p be a real number with 1 < p < ∞, s, t ∈ BC, s 6= t and λ ∈ (0,1) . Then, we have

‖λ s+(1−λ ) t‖p
BC < λ ‖s‖p

BC+(1−λ )‖t‖p
BC .

Proof. The proof is consequence of Lemma 2.4 and Theorem 1.10.

Lemma 2.6. Let p be a real number with 2≤ p < ∞ and s, t ∈ BC. Then, we have

‖s+ t‖p
BC+‖s− t‖p

BC ≤ 2p−1 (‖s‖p
BC+‖t‖p

BC
)
.

Proof. If we take t = ‖s+t‖BC
‖s−t‖BC

in the proof of Lemma 3.67 in [8], we get

(
‖s+ t‖p

BC+‖s− t‖p
BC
) 1

p ≤
(
‖s+ t‖2

BC+‖s− t‖2
BC

) 1
2

for all s, t ∈ BC and 2≤ p < ∞. By Lemma 2.1,(
‖s+ t‖2

BC+‖s− t‖2
BC

) 1
2
=
(

2
(
‖s‖2

BC+‖t‖2
BC

)) 1
2
=
√

2
(
‖s‖2

BC+‖t‖2
BC

) 1
2
.

Then, by real Hölder’s inequality for 2
p +

p−2
p = 1, we have

‖s‖2
BC+‖t‖2

BC ≤
(
‖s‖p

BC+‖t‖p
BC
) 2

p (1+1)
p−2

p

= 2
p−2

p
(
‖s‖p

BC+‖t‖p
BC
) 2

p

and so,

√
2
(
‖s‖2

BC+‖t‖2
BC

) 1
2 ≤ 2

1
2 +

p−2
2p
(
‖s‖p

BC+‖t‖p
BC
) 1

p

= 2
p−1

p
(
‖s‖p

BC+‖t‖p
BC
) 1

p .

This implies that
(
‖s+ t‖p

BC+‖s− t‖p
BC
) 1

p ≤ 2
p−1

p
(
‖s‖p

BC+‖t‖p
BC
) 1

p . Therefore, ‖s+ t‖p
BC+‖s− t‖p

BC ≤ 2p−1 (‖s‖p
BC+‖t‖p

BC
)

for all
s, t ∈ BC and 2≤ p < ∞. The proof is completed.

Theorem 2.7. The sets lp (BC) for 0 < p < ∞ and l∞ (BC) are convex.
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Proof. Let s, t ∈ lp (BC) and λ ∈ R satisfying 0≤ λ ≤ 1. Then, the series
∞

∑
n=1
‖sn‖p

BC and
∞

∑
n=1
‖tn‖p

BC converges.

If 1 < p < ∞, we have by Lemma 1.2

∞

∑
n=1
‖λ sn +(1−λ ) tn‖p

BC ≤

( ∞

∑
n=1
‖λ sn‖p

BC

) 1
p

+

(
∞

∑
n=1
‖(1−λ ) tn‖p

BC

) 1
p
p

=

λ

(
∞

∑
n=1
‖sn‖p

BC

) 1
p

+(1−λ )

(
∞

∑
n=1
‖tn‖p

BC

) 1
p
p

which implies that λ s+(1−λ ) t ∈ lp (BC) .
If 0 < p≤ 1, we have by Lemma 2.2

∞

∑
n=1
‖λ sn +(1−λ ) tn‖p

BC ≤
∞

∑
n=1

(
‖λ sn‖p

BC+‖(1−λ ) tn‖p
BC
)

= λ
p

∞

∑
n=1
‖sn‖p

BC+(1−λ )p
∞

∑
n=1
‖tn‖p

BC

which implies that λ s+(1−λ ) t ∈ lp (BC) .
Let s, t ∈ l∞ (BC) and λ ∈ R satisfying 0≤ λ ≤ 1. Then, sup{‖sn‖BC : n ∈ N } and sup{‖tn‖BC : n ∈ N } are finite. Then, we have

sup{‖λ sn +(1−λ ) tn‖BC : n ∈ N } ≤ sup{λ ‖sn‖BC+(1−λ )‖tn‖BC : n ∈ N }
= λ sup{‖sn‖BC : n ∈ N }+(1−λ )sup{‖tn‖BC : n ∈ N }

which implies that λ s+(1−λ ) t ∈ l∞ (BC) . Consequently, lp (BC) for 0 < p < ∞ and l∞ (BC) are convex.

Theorem 2.8. The sequence spaces lp (BC) for 1 < p < ∞ are strictly convex.

Proof. Let s, t ∈ Slp(BC), s 6= t and λ ∈ (0,1) . Then, we get by Lemma 2.5

‖λ s+(1−λ ) t‖p
lp(BC) =

∞

∑
n=1
‖λ sn +(1−λ ) tn‖p

BC

<
∞

∑
n=1

[
λ ‖sn‖p

BC+(1−λ )‖tn‖p
BC
]

= λ

∞

∑
n=1
‖sn‖p

BC+(1−λ )
∞

∑
n=1
‖tn‖p

BC

= λ ‖s‖p
lp(BC)+(1−λ )‖t‖p

lp(BC) = 1

which implies that lp (BC) for 1 < p < ∞ is strictly convex.

Example 2.9. The sequence space l∞ (BC) is not strictly convex.

Let

(sn) = (1, j,0,0, ...) ,

(tn) = (−1, j,0,0, ...) .

Then, we have ‖s‖l∞(BC) = ‖t‖l∞(BC) = 1 and

‖λ s+(1−λ ) t‖l∞(BC) = sup{‖λ sn +(1−λ ) tn‖BC : n ∈ N }
= sup{‖(2λ −1, j,0,0, ...)‖BC : n ∈ N}
= sup{|2λ −1| ,1}= 1

for all λ ∈ (0,1). That is to say that l∞ (BC) is not strictly convex.

Example 2.10. The sequence space l1 (BC) is not strictly convex.

Let

(sn) = (i,0,0, ...) ,

(tn) = (0,−i,0,0, ...) .

Then, we have ‖s‖l1(BC) = ‖t‖l1(BC) = 1 and

‖λ s+(1−λ ) t‖l1(BC) =
∞

∑
n=1
‖λ sn +(1−λ ) tn‖BC

= ‖λ i‖BC+‖(1−λ )(−i)‖BC
= λ +(1−λ ) = 1

for all λ ∈ (0,1) . That is to say that l1 (BC) is not strictly convex.
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Theorem 2.11. The sequence spaces lp (BC) for 2≤ p < ∞ are uniformly convex.

Proof. Let s, t ∈ lp (BC) ,ε ∈ (0,2], ‖s‖lp(BC) ≤ 1,‖t‖lp(BC) ≤ 1 and ε ≤ ‖s− t‖lp(BC) . Then, we have by Lemma 2.6

‖s+ t‖p
lp(BC)+‖s− t‖p

lp(BC) =
∞

∑
n=1
‖sn + tn‖p

BC+
∞

∑
n=1
‖sn− tn‖p

BC

=
∞

∑
n=1

(
‖sn + tn‖p

BC+‖sn− tn‖p
BC
)

≤
∞

∑
n=1

2p−1 (‖sn‖p
BC+‖tn‖p

BC
)

= 2p−1

[
∞

∑
n=1
‖sn‖p

BC+
∞

∑
n=1
‖tn‖p

BC

]
= 2p−1

[
‖s‖p

lp(BC)+‖t‖
p
lp(BC)

]
≤ 2p.

Thus, we can write

‖s+ t‖p
lp(BC) ≤ 2p−‖s− t‖p

lp(BC) ≤ 2p− ε
p,

and so, ∥∥∥∥ s+ t
2

∥∥∥∥
lp(BC)

=

[
1

2p ‖s+ t‖p
lp(BC)

] 1
p

≤
[
1−
(

ε

2

)p] 1
p
.

If we take δ (ε) = 1−
[
1−
(

ε

2
)p] 1

p , we say that lp (BC) for 2≤ p < ∞ is uniformly convex.

Example 2.12. The sequence space l∞ (BC) is not uniformly convex.

Let

(sn) = (i, j, i,0,0, ...) ,

(tn) = (i, j,−i, ,0,0, ...) .

Then, we have ‖s‖l∞(BC) = ‖t‖l∞(BC) = 1,

‖s− t‖l∞(BC) = sup{‖sn− tn‖BC : n ∈ N }
= sup{‖(0,0,2i,0, ...)‖BC : n ∈ N }
= sup{0,2}= 2

and ε ≤ ‖s− t‖l∞(BC) = 2. On the other hand, since∥∥∥∥ s+ t
2

∥∥∥∥
l∞(BC)

= sup
{∥∥∥∥ sn + tn

2

∥∥∥∥
BC

: n ∈ N
}

= sup{(i, j,0,0, ...)}= 1,

there doesn’t exist δ (ε)> 0 such that
∥∥ s+t

2

∥∥
D,lk∞(BC)

≤ 1−δ . That is to say that l∞ (BC) is not uniformly convex.

Example 2.13. The sequence space l1 (BC) is not uniformly convex.

Let

(sn) = (i,0,0, ...) ,

(tn) = (0,− j,0,0, ...) .

Then, ‖s‖l1(BC) = ‖t‖l1(BC) = 1 and

‖s− t‖l1(BC) =
∞

∑
n=1
‖sn− tn‖BC = ‖i‖BC+‖ j‖BC = 2

and ε ≤ ‖s− t‖l1(BC) = 2. On the other hand, since∥∥∥∥ s+ t
2

∥∥∥∥
l1(BC)

=
∞

∑
n=1

∥∥∥∥ sn + tn
2

∥∥∥∥
BC

=

∥∥∥∥ i
2

∥∥∥∥
BC

+

∥∥∥∥− j
2

∥∥∥∥
BC

= 1,

there doesn’t exist δ (ε)> 0 such that
∥∥ s+t

2

∥∥
l1(BC) ≤ 1−δ . That is to say that l1 (BC) is not uniformly convex.
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