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ABSTRACT

There are only five regular convex polyhedra known as platonic solids. Semi-regular convex polyhedron composed
of two or more types of regular polygons meeting in identical vertices. These solids are called the Archimedian
solids. Archimedean solids' s duals are known as the Catalan solids which are only thirteen. It has been shown that
deltoidal icositetrahedron which is Chinese Checker' s unit sphere [1]. In this study, we introduce new metrics which
their spheres are pentakis dodecahedron and deltoidal hexacontahedron
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Deltoidal hexacontahedron ve pentakis dodecahedron icin yeni metrikler
oz

Platonik cisimler olarak tanimlanan sadece bes tane diizglin konveks ¢okyiizlii vardir. Yari-diizgiin konveks
cokyiizliilerin kdse noktalarinda iki veya daha fazla tipten diizgiin ¢okgen birlesir. Bu cisimlere Arsimet cisimleri
adr verilir. Arsimet cisimlerinin dualleri Catalan cisimler olarak bilinirler ve sadece onii¢ tanedir. Son yillardaki
calismalarda Cin Dama metriginin birim kiiresinin deltoidal icositetrahedron oldugu gosterildi [1]. Bu ¢aligmada
birim kiireleri deltoidal hexacontahedron ve pentakis dodecahedron olan metrikleri verecegiz.
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1. INTRODUCTION

A polyhedron is a three dimensional solid which
consists of a collection of polygons, always joined at
their edges. There are many thinkers that worked on
polyhedra among the ancient Greeks. Early
civilizations worked out mathematics as problems and
their solutions. Polyhedrons have been studied by
mathematicians, scientists during many years, because
of their symmetries [2-4].

A polyhedron is called regular if all its faces are equal
and regular polygons. It is called semi-regular if all its
faces are regular polygons and all its vertices are equal.
An irregular polyhedron is defined by polygons that are
composed of elements that are not all equal. A regular
polyhedron is called Platonic solid, a semi-regular
polyhedron is called Archimedean solid and an irregular
polyhedron is called Catalan solid.

Platonic solids have been studied by mathematicians,
geometers during many years. Nowadays some
mathematicians study new metrics of which spheres are
Platonic solids. The Archimedean solids take their name
from Archimedes, who discussed them in a now-lost
work. Pappus refers to it, stating that Archimedes listed
13 polyhedra. The Archimedean solids are distinguished
by having very high symmetry. They are distinct from
the Platonic which are composed of only one type of
polygon meeting in identical vertices, whoseregular
polygonal faces do not meet in identical vertices. The
dual polyhedra of the Archimedean solids are called
Catalan solids. The Catalan solids are named for the
Belgian mathematician, Fugeéne Catalan, who first
described them in 1865. The Catalan solids are all
convex and wrregular polyhedra. The number of Catalan
solids is thirteen.

Minkowski geometry is non-Euclidean geometry in a
finite number of dimensions. Instead of the usual
sphere in Euclidean space, the unit ball is symmetric
closed convex set [7]. Some mathematicians have been
studied and improved metric space geometry. The
Chinese Checker metric plane and space geometry have
been studied and developed by some mathematicians.
0. Gelisgen, R. Kaya, M. Ozcan have defined CC-
metric of which sphere is Deltoidal Icositetrahedron that
is a Catalan solid (See [1]). In the 3-dimensional
analytical space the CC-metric is defined by

dc (A,B)= max{[x1-Xa|,[y1-y2 |5|Zl'22|}+(\/2_1)min
{X1-X2[Hy1-y2|[Xa-X2[HZ1-Z2,[y1-y2 |+ z1-22 } (1)

where A=(X4,y1,Z1), B=(X2,¥2,Z2) are two points in R>.
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This influence us to the question "Are there some
metrics of which unit spheres are the Catalan Solids?".
For this goal, firstly we put up the solid to coordinate
system to be its center the origin and some of solid's
surfaces distance from the origin are 1. And then, we
can have the metric which provide plane equation
related with solid's surface. In this work, we introduce
that new metrics of which spheres are Deltoidal
Hexacontahedron and Pentakis Dodecahedron.

2. DELTOIDAL HEXACONTAHEDRON

A deltoidal hexecontahedron (also sometimes called a
trapezoidal hexecontahedron, a strombic
hexecontahedron, or a tetragonal hexacontahedron) is a
catalan solid which looks a bit like either an
overinflated dodecahedron or icosahedron. It is
sometimes also called the trapezoidal hexecontahedron
or strombic hexecontahedron. Its dual polyhedron is the
rhombicosidodecahedron. The 60 faces are deltoids or
kites (not trapezoidal). The short and long edges of
each kite are in the ratio 1.00/1.54. The Deltoidal
Hexacontahedron has 60 faces, 120 edges and 62 = 12 +
20 + 30 vertices [8].

Figure 2. Net for deltoidal hexacontahedron

We describe the metric that unit sphere is deltoidal
hexacontahedron as following:

Definition 2. 1:Let P1=(x4,y1,z1) and P,=(X5,y2,Z2) be
distinct two points in R® . The distance function
dpi :R*x R3*—[0,0) deltoidal hexacontahedron distance
between P and P, is defined by
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dDH(Pl'Pz)Z
X1 — x2] + 29 — 3)
|y, —¥,| t1z1 — 22|,
(1 —-@)x1 —x2| +
max- 1+ @)lzy — 22|,
—Ix1 —x2l + @lz1 — z3| +
A+ |y, — v,
[y, —v,l+ 2o —3)
|z1 — Z2| + |x1 — Xx2],
A=)y, —y,|+
" max{  A+@-xl [P
—Iyl—y2|+<p|x1—x2|+
1+ @)lz1 — 22l
|z — z3| + 2¢ —3)
[y, = ¥,| +1x1 — x31,
A—=-@lz1—z;| +
max- A+ oy, — v,
—lz1 — z2l + @ly, — y,| +

(1 + @)lx1 — x|
where ¢ = (1 + V/5)/2is the golden ratio.

Deltoidal hexacontahedron distance function may seem
a bit complicated. In fact there is an orientation in dpn.
Let a=|xy —x,|,b =|xy —x,|,c =|z; —z,|. This
orientation is a —b — c —a. According to orientation,
if one can put b, ¢, a instead of a, b, c, respectively, in
first term of distance function, then it is obtained second
term. Similarly, if one can put ¢,a, b instead of q, b, c,
respectively, in first term of distance function, then it is
obtained third term.

Lemma 2. 2: Let P1=(x4,y121) and P,=(X3,y2,2;) be any
distinct two points in R*. Then

dpu(P1, Py) = |x; — x5 |+(2 ¢-3)

ly1 = y2| + |21 — 2,],
A= @)xy —x1 + (1 + @)z — 2z,],
—lxy = x| + @lzy — 22| + (1 + @) |y, — 2l
dpu(P1,Py) = |y1 —y21 + 29 — 3)
|z = z5| + %1 — X351,
A=)y =yl + A+ @)lx; — x3],
—y1 = y2l + @lxy — x| + (1 + @)z, — 2]
dpy (P, P) = |21 — 2| + (29 — 3)
ly1 — ¥zl + |x1 — x51,
max{ (1 — @)z — z,| + L+ )y, — yal,
—lzy = z3| + @lyr = ¥l + T+ @)|x; — x,

max

max
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where ¢ = (1 + \/ﬁ) /2is the golden ratio.

Proof: Proof is trivial by definition of maximum
function.

Theorem 2. 3: The distance function dpy is a metric of
which unit sphere is a deltoidal hexacontahedron in R3.

Proof: Let dpun: R*x R*>R and P;=(X1,y¥1,Z1),
Py=(X2,y2,22) and P3=(x3,y3,z3) distinct three points in
R3. To prove that dpy is a metric in R3, the following
axioms can be supplied for all P4, P, and P;ER3.

Ml) d(Pl,Pz)EO ve d(Pl,Pz):O@P]_:Pz
M2)  d(P4,P2)=d(P2,Pq)
M3)  d(P1,P3)<d(P1,P2)+d(P2,P3).

M1) Since absolute values is always nonnegative
maximum of sums of absolute value is always
nonnegative. Thus dpu(P1,P2)>0. If dpu(P1,P,)=0 then
according to deltoidal hexacontahedron distance
function three cases are possible.

Case I: If

dpu(P1,P2)=x; — x| + (2¢p — 3)
ly1 = ¥zl + 121 — 2,l,
max (1 — @)|x; — x| + (1 + @)|z, — 2,],
—lx1 = x| + @lzy — 2| + (L + @) |y — y2l

the dpu(P1,P2)=0 & [X1-X2[=0,y1 - y2[=0, |21 - 2:}F0 &
X17X2, Y172, 21722 P1=P;.

The other cases can be easily shown by similar way in
case 1. Thus we get dpu(P41,P2)=0 iff P1=P,.
M2) By the definition of absolute value

[xi-xif=xj-xil,
lyiyil=lyi-yil »

|2i-z;|=|zj-zil

for all xi, yi, Z,Xj, yj, z€R%and 1,j=1,2,3. Therefore one
can get dpu(P1,P2) =dpu(P2,P1).

M3) Let P1=(X1,y1,21) , P2=(X2,y2,22) and P3=(X3,y3,23)
be any distinct three points in R®. Then
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dpp(Py, P3)
[x; — x3] + (29 — 3)
[y1 = ysl + |z1 — z31,
o [(1 — @l x5+ (1 + @)z — 2],
=l — a3l + @lz; — z3| + ’
1+ @y, —ysl
ly1 — y3l + ¢ — 3)
|21 — z3| + %1 — x3],
= max max{(1—§0)|}’1_Y3|+(1+<P)|x1_x3, ’
—ly1 —ysl + @lx; —x3| +
1+ @)lz; — z5]
|23 — z3| + (29 — 3)
max —lz; — z3| + oly, —y3l +
1+ @)lx; — x5]

lys —y3l + |2y — %31,
A =@)lz; — z3| + A + @)y — ysl,

|1 — % + %, — x3| + (20 — 3)
Vi—Yo+ Y, —ysl + 21—z, + 2, — 73],
(A =@)x; — 2, +x, —x3] +
max A+ @)lzy — 2z, + 2z, — 73],
=l —xp+x —x3| +plzy — 2z, + 2, — 25
+(A+ @)y, —y2 +y2 — ¥sl
i =¥ +y, =¥l + 2o —3)
|2y — 2, + 7, — z5| + |x1 — % + %, — %31,
A=)y —y2+y2 —ysl +
max A+ @)lx; — x5 +x, — 5],
==Yty — sl @lxg —x +x; —x3
+(1+ @)z, — 2, + 7, — 73]
lzy =z, + 2, — 23] + (29 — 3)
yi—y2+y2 —ysl +1x. — %+ x, — x5,
A=)z, — 2z, + 2, — 73| +
max A+ Q)yr—ya+y2—ysl,
—lzy =z, + 7, — z3| + @lyr — ¥, + y2 — sl
+(1+ @)lx; — %, + %, — %3]

=max

[y = 22| + |x2 — %3] + (29 — 3)
y1 = y2l + |y —y3l + |21 — 22| + |25 — 23],
1 = @)(xy — 22| + xa = x3) +
max A+ @)(Izy — 25| + |22 — z3),
—(lxy = 22| + |2z = x3]) + @121 — 22| + |22 — z30)
+(1+ @)Uy = y2l + ly2 — 3D
[y1 = y2l + |y2 —y5l + 29 = 3)
|2y = z3| + |22 — z3| + |xg — x2| + |x2 — x3l,
A=)y —y2l +ly2—ysD +
max 1+ @)y = 22| + |x2 — x3),
=y = y2l + 1y2 = y3D) + @1 — 22| + Ix2 — x3)
+(1 + @)(|21 — 75| + |25 — 23])
|21 = z5| + |z, — 23| + (2 — 3)
ly1 =yl + 1y2 = w3l + lxg — x2| + |35 — %31,
(A= )lz1 — 22| + |22 — z3]) +
max A+ @)y = y2l + 1y2 — 3D,
—(z1 =zl + 122 — 23D + @(y1 — y2l + ly2 —¥3D
+(1 + @)(Ixy — x| + |x2 — x3])

< max

=1

One can easily find that I < dpu(P41,P2) + dpu(P2,P3)
from Lemma 2. 1.

So dpu(P+1,P3)<dpu(P1,P2)*+dpu(P2,P3). That is, dpu

distance function satisfies the triangle inequality.
Consequently, the set

356

New metrics for deltoidal hexacontahedron and pentakis
dodecahedron

(x,,2):dpy(X,0) =
lx| + (2¢ — 3)
Iyl +1z], (1 — @)lx| + (1 + (P)IZI,}
—lx| + lz| + (1 + @)yl
Iyl + ¢ —3)

max {

Son = max gl L (L @l (4 i)
=lyl+ olxl + (1 + @)z
Izl + (2¢ = 3)
Iyl + lxl, (1 = @)zl + (1 + <p)|y|,}
max —lzl + @lyl + (1 + )]
=1
is the set of all points X=(x,y,z)ER® deltoidal

hexacontahedron distance is 1 from 0=(0,0,0). Thus the
graph of Spy is as in the figure

]

Figure 3. Deltoidal hexacontahedron

Corollary 2. 4: The equation of the deltoidal
hexacontahedron with center C=(X¢,Yo0,Zo) and radius r
is

lx — x| + 2 = 3)
ly = vol + |z — 2,1,
1 =@)lx — x| +
1+ @)lz — 2|,
—lx = xo| + @lz — 2|
+(1+ o)ly — yol
ly =¥l + (29 —3)
|Z_Zo| + |x_x0|;
A=)y —yol +

-~

max <

max{max< 1+ @)|x;, — x5l >:
—=ly = ¥ol + @lx — x|
+(1 + @)z — z|
|z —zo| + (20 — 3)
( 1y —vol + 1x — x,l,
(1 —@)lzy —z3| +
maxy A+@)ly—yl

=z =zl + @ly — yol
+A+@)lx —xo|

Lemma 2. 5: Let 1 be the line through the points P; =
(x1, y1, z1) and P> = (x2 y2 z2) in theanalytical 3-
dimensional space and dg denotes the Euclidean metric.
If 1 has direction vector(p, ¢, r), then dpu(P;,P2) =
U(PiP2)dg(P1,P2), where u(P;P;) is equal to
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Ip| + ¢ —3)
max{lql +Ir,A-@)lpl+ 1+ <p)|r|,}
=lpl + @lrl + (1 + @)lql
lq] + 2¢ —3)
max < {Irl +Ipl, 1 —@)lql + (1 + <p)lpl,}
max
=lql + @lpl + (1 + @)|r|
Ir] + (2¢ —3)
Ipl +1ql,(A = @)Ir| + (1 + <p)lql,}
—|rl + @lq| + (1 + @)|pl J

/p2 +q2 +T2

Proof: Equation of | gives us X; - X2 =Ap, Vi - Y2 =2Aq, Zi
-zy=Ar, AeR. Thus,

~~

kmax {

dDH(PLPz) =
( Ip| + (29 — 3)
lgl + Irl, (1 = @)lp| + (1 + @) 7|,
max
—lpl + olr| + (1 + ¢) 4l
lg] + (29 —3)
Amax | I7| + ol (1 = @)lal + (A + @) |pl) ¢
max
—lal + olpl + (1 + @) ||
7| + (29 - 3)
Ipl + lql, (@ = @)|r| + (1 + 0)]ql,
max
\ —|rl + olql + (1 + @) p| J

and dg(Py, P,) = A/p? + g% + r2which implies the

required result.

The above lemma says that dpu- distance along any line
is some positive constant multiple of Euclidean distance
along same line. Thus, one can immediately state the
following corollaries:

Corollary 2. 6: If Py, P, and X are any three collinear
points in R?, then

de(P1,X) = dp(P2,X) if and only if dpu(P1,X) = dpu(P2,X)

Corollary 2. 7: If Py, P, and X are any three distinct
collinear points in the real 3-dimensionalspace, then

dDH(X, P]) / dDH(X, Pz) = dE(X, P]) / dE(X, P2) .

That is, the ratios of the Euclidean and dpu distances
along a line are the same.

3. PENTAKIS DODECAHEDRON
A pentakis dodecahedron is a Catalan solid. Its dual is
the truncated icosahedron, an Archimedean solid. It can

be seen as a dodecahedron with a pentagonal pyramid
covering each face; that is, it is the Kleetope of the

SAU Fen Bil Der 19. Cilt, 3. Say1, s. 353-360, 2015

Z. Colak, O. Gelisgen

dodecahedron. A pentakis dodecahedron has 60 faces,
90 edges and 62 = 12 + 20 + 32 vertices([9]).

Figure 5. Net for pentakis dodecahedron

We describe the metric that unit sphere is Pentakis
Dodecahedron metric as following:

Definition 3. 1:Let P1=(x41,y1Z1) and P,=(X,,y2,22) be
distinct two points in R® . The distance function
dep: R3x  R3*—[0,0)Pentakis = Dodecahedron
metricdistance between Py and P» is defined by

dpp(P1, P,) =

[x1 — x5 +§
ly1 = ¥2l, 2lys = y2l + |21 — 25| +
w(|z; — z3| = |x1 — x50,
ly1 = yal + 2|2y — 2| +
20(z; — 23| — |x; — x30)
lys = yal +%
|zy = 251,212y — z5| + |xg — x5
+w(x; = x2| = ly1 — y2D), 3)
|21 — zo| + 2]y — x| +
20(x; — x2| = ly1 — ¥20)
|z, — z5] +§

[x1 = x5, 211 — x| + |y1 — y2
+w(lyr = y2| = |21 — z2|),
lx1 = 22| + 2]y — yol +
20(lys —y2| = |21 — 220D

where w = (\/3— 1)/2.

max
max

Pentakis dodecahedron distance function may seem a bit
complicated. In fact there is an orientation in dpp just as
in Deltoidal hexacontahedron metric. Let a=
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[x; —x5],b = |x; — x|, ¢ = |z; — z,|. This orientation
is a—b —c—a. According to orientation, if one can
put b, ¢, a instead of a, b, c, respectively, in first term of
distance function, then it is obtained second term.
Similarly, if one can put c,a, b instead of a, b, c,
respectively, in first term of distance function, then it is
obtained third term.

Lemma 3. 2: Let P1=(x4,y121) and P,=(X3,y2,2;) be any
distinct two points in R3. Then

)
dpp(P1, Py) = |x; — x| +§

ly1 = yal,
maxi 2|ly; — vaol + 120 — 25| + w(zy — 25| — |x1 — x30),
ly1 = yal + 2|21 — 25| + 20(|21 — z] = Ix1 — x2])
w
dpp(P1, Py) = |y1 — y2l +§
|2y — 2y,
max 2|z — zo| + 1% — x| + w(lxy — 22| = |y — 21D,
[z1 — zo| + 2]x; — x| + 20(x; — 23] = |y1 — ¥2D)

w
dpp(Py, Py) = |z, — 7, +§
ly1 = ¥21, 2ly1 — ¥2| + |21 — 2,

t+w(|z;y — 25| — [x1 — Xx5|),
] F00z =2l = = 3D
ly1 = ¥2| + 2|z — 25| +
20(|zy — z5| = %1 — x3|)

where w = (\/g - 1)/2.
Proof: Proof is trivial by definition of maximum
function.

Theorem 3. 3: The distance function dpp is a metric of
which unit sphere is a deltoidal hexacontahedron in R3.
Proof: Let dep: Rx R3—>R and P;=(x4,¥1,Z1) ,
P,=(x2,y2,22) and P3=(x3,ys,z3) distinct three points in
R3. To prove that dpp is a metric in R3, the following
axioms can be supplied for all P4, P, and P3€R.

Ml) d(Pl,P2)20 ve d(Pl,Pz):O@P].:PZ
M2)  d(P,P2)=d(P2,P1)
M3)  d(P1,P3)<d(P1,P2)+d(P2,Ps).

M1) Since absolute values is always nonnegative
maximum of sums of absolute value is always
nonnegative. Thus dpp(P4,P2)>0. If dpp(P1,P2)=0 then
three cases are possible.

Casel : If
1)
dpp (P, P;) = |x; — x| +§

ly1 = 2|,
max | 2|y; — y2| + |21 — 7| + w(|z; — 75| — |, — x,D),
[y1 =2l + 2|21 — 7,| + 20(|2; — 75| = %1 — x,])
then,
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dpp(P1,P2)=06x1-X2|=0,|y1-y2|=0, |21-22|70=%x17X2,
Y17Y2, 2172, SP1=P;.

The other cases can be easily shown by similar way in
case 1. Thus we get dpp(P4,P2)=0 iff P1=P,.

M2) By the definition of absolute value

[xi=Xj|=[xj-xil,
lyi=yil=lyi-yil »
|zi-2;|=|zj-zil

for all xi, yi, zi,Xj, ¥j, zZi€R3and 1,j=1,2,3. Therefore one
can get dpp(P1,P2) =dpp(P2,P1).

M3) Let PIZ(XI’YIyzl) s PZZ(XZ’YZyzZ) and P3:(X3,Y3,Z3)
be any distinct three points in R®. Then by using well
known property |a + b| < |a| + |b| for all a,b € R,we
have

dpp(Py, P3) =
W
X, — X3+
b= x5+ 5
[y1 = y3l, 2lys — sl + |2, — 23]
+ —zz| — = )
ma w(lzy — z5] = |x; — x31)
[y1 — ¥3l + 2|z — z3]
+2w(|z; — 23] — 1% — x30)
1)
— +_
[y1 = sl 3
|2y — 73], 212y — 73| + |x1 — %3]
max

+w(lxy —x3] = ly1 — ¥3D),

max ,
|2y — z,| + 2|x1 — %,
+H20(x; — 22| = ly1 — ¥21)
W
zy — zZ3| + =
oy =+
[y = %31, 2|2y — 23] + |y1 — sl
+w - —lz; — z3]),
max (Iy1 —ysl = |z, 3D

[y — %3] + 2|yy — ¥l
2wy, — y3l = |21 — z31)

®
|x1—x2|+|x2—x3|+§

[y1 = v2l + 1y2 = y3l,
2(y1 = vzl + ly2 —y3D + |21 — 22|
max { +w(|zy — 23| + 122 — 23| — %y — x| — |x2 — x30),
[y1 = y2l + 1y2 = y5l + 2(|2y — 75| + |22 — z35]) +
20(|zy = z5| + 122 — 23] = |21 — %3] — |22 — x30)

%)
[y1 = v2l + ly2 = 3l +§
|21 — z5| + |25 — z3l,
2(lz1 = 25| + |2z — z3]) + |1 — x| + % — x3| +
max w(lxg = x| = |y1 = y2l = ly2 — ¥3),
|21 = z5| + |22 — 23| + 2(ly — x| + |2 —x3]) +
20(lxy = 22| = ly1 =2l = ly2 = ¥30)

1)
|21 — Z5| + |25 — z3] +§

1 = x| + %2 — x3,
2(ley = x| + | = x3D) + lyr — y2l + ly2 — w5l +
max{ w(yy — ¥zl + ¥z = y3l = |21 — 22| — |22 — z3)),
[y = 22| + |22 — x5 + 2(y1 = 2| + Iy —y51) +
20(lyr = y2l + 1y2 — y3l — |21 — 25| — |22 — z3])

< max

=1
One can easily find that I < dpp(P1,P2) + dpp(P2,P3)
from Lemma 3. 2.
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So dpp(P1,P3)<dpp(P41,P2)+dpp(P2,P3). That is, dpu
distance function satisfies the triangle inequality.

Consequently, the set
(x,y,Z):dPD(X, 0) =
x| + 2
3
[yl, 2|yl + |z| + w(z] — IxI),}
max
{ [yl +2|z| + 2w(lz| — |x|)

Iyl + =
yiTs3

{IZI,ZIZI + x| + w(lx] - |}'|).}
lz| + 21x| + 2w(lx| — lyD

Spp =

|| + =
s
3

[x], 2|x| + |y| + w(ly| — IZI),}
max
{ lx| + 2|yl + 2w(ly| = |z])

=1
is the set of all points X=(x,y,z)ER*® that pentakis
dodecahedron distance is 1 from 0=(0,0,0). Thus the
graph of Spp is as in the figure 6:

Figure 6. Pentakis dodecahedron

Corollary 3. 4: The equation of the pentakis
dodecahedron with center C=(x¢,y0,Zo) and radius r is

SAU Fen Bil Der 19. Cilt, 3. Say1, s. 353-360, 2015
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Ix — x| + =
X — X —_—
o3

[y = vol,2ly = yol + 1z — 2]
+w(|z — zo| = |x — %0,
ly = yol + 2]z — 2|
+2w(|z — zo| — |x — x0l)

1)
ly =yl +3
|z — zol, 2|z — zo| + |x — x|
+w(lx — x|l = ly — yol),
|z — zo| + 2]x — x|
+F2w(lx — x| = 1y — yol)

13)
|z — z| t3
[x = x0l, 2] — x| + |y — ¥ol

+w(ly = yol — 1z — z0),
[x = xo| + 2]y — yol
+2w(ly = yol — 1z — 2

max

max

Lemma 3. 5: Let | be the line through the points P; =
(X1, Vi, Z1) and P, = (xz, V2, Zz) in the

analytical 3-dimensional space and dg denotes the
Euclidean metric. If 1 has direction vector

®, g, r), then dpp(P1,P3) = u(PiP3)de(P;, P2, where
u(PiP;) is equal to

( ol + )
lql, 2Iql + 1q| + w(Ir| — Ipl),}
max )
{ lgl + 27| + 2w(|7| = IpD
lgl +%
max —
max{lrl,erI +Ipl + w(lpl Iql),}’
7l + 2Ipl + 2w (Ip| — Iq1)
Irl+3

{IPI,ZIPI +1Irl+ w(lql - Irl),}
lpl + 2lgq] + 2w(ql = | )/

[p2 +q2 +T2

Proof: Equation of | gives us x; - X2 =Ap, y1 - y2=1Aq, Z1
-z;=Ar, AeR. Thus,

~~

dPD(PI'P2)=
Ipl + %
PiT3
{Iql,Zlql+Iq|+w(ITI—IpI).}
lq] + 2|r| + 20w(|r| = |p) )’
1)
|Q|+§
Amax

{IrI,ZIrI + Ipl + w(Ip| - Iql),}
Ir] + 2Ip| + 2w(Ipl = Iq]) J’
w
| +§
Ipl, 2lpl + Ir] + w(lq] - Irl),}
max
{ Ipl + 2lql + 2w(lql| = |7
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and dg(Py, P,) = A{/p? + q% + r?which implies the
required result.

The above lemma says that dpp-distance along any line
is some positive constant multiple of Euclidean distance
along same line. Thus, one can immediately state the
following corollaries:

Corollary 3. 6: If Py, P, and X are any three collinear
points in R3, then

dE(P1,X) = dE(Pz,X) if and Ol’lly if dPD(Pl,X) =dpp (Pz,X)

Corollary 3. 7: If Py, P, and X are any three distinct
collinear points in the real 3-dimensional space, then

dep(X, P1) / dpp(X, P2) = de(X, P1) / de(X, P2) .

That is, the ratios of the Euclidean and dpp distances
along a line are the same.
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