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Abstract. In this paper, we consider a nonlinear evolution inclusion governed

by the subdifferential of a proper convex lower semicontinuous function in a
separable Hilbert space. The right-hand side contains a set-valued perturba-

tion with nonempty closed convex and not necessary bounded values. The

existence of absolutely continuous solution is stated under different assump-
tions on the perturbation.

1. Introduction

Nonlinear evolution equations with subdifferential operators plays an important
role in the theory of differential inclusions and have been widely investigated by
many authors (see [1], [3], [5], [11], [15], [14], [17], [18], [19], [20], [21]), [22], [25].
Such problems appear often in problems of optimal control theory, mechanics and
differential games, see for instance [9], [10], [12], [23]. In this work, we prove some
existence results for evolution problems governed by subdifferential operator of the
form

(P)

{
−ẋ(t) ∈ ∂ ϕ(t, x(t)) + G(t, x(t)) a.e. t ∈ [0, T ];

x(0) = x0 ∈ dom ϕ(0, ·),
in a separable Hilbert space, where ϕ is a proper convex lower semicontinuous
function, ∂ϕ(·, ·) is the subdifferntial of ϕ and G(·, ·) is a set-valued mapping with
convex closed nonempty values playing the role of a perturbation to the problem.
For the unperturbed problem, that is when G ≡ 0, the existence and uniqueness
of solution have been obtained under various assumptions by many authors, see
for instance ([10], [11], [16], [23]). In [16], the author introduced an assumption
expressed in terms of the conjugate function ϕ∗(t, ·) of the convex function ϕ(t, ·),
namely, there exists a Lipschitz function k : H → R+ and an absolutely continuous
function a : [0, T ]→ R with ȧ ∈ L2

R([0, T ]) such that, for all x ∈ H and s, t ∈ [0, T ],

ϕ∗(t, x) ≤ ϕ∗(s, x) + k(x) | a(t)− a(s) | .
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Some extensions, dealing with set-valued or single-valued perturbations, have been
obtained under in general a compactness assumption on the subdifferential ([13],
[17]) or on the perturbation [19]. The authors in [19] proved the existence of an
absolutely continuous solution with set-valued perturbation satisfying the linear
growth condition

G(t, x) ⊂ β(t)(1+ ‖ x ‖)K for all t ∈ [T0, T ] and x ∈ H,
for some compact subset K and some non-negative function β(·) ∈ L2

R([T0, T ]),
(T0 ≥ 0). In the particular case of the so-called sweeping process, i.e., for ϕ(t, x)
taken as the indicator function of a closed moving set C(t, x), [13] established the
existence of solution with prox-regular sets C(t, x) and G(·, ·) with unnecessary
bounded closed convex values. For other results, we refer to [6], [24] and the
references therein. The main purpose in this paper is to study, in the setting of
infinite dimensional Hilbert space H, the perturbed problem (P), and to show how
the approach from [13] can be adapted to yield the existence of solutions for (P)
with unbounded perturbation, under various assumptions. The paper is organized
as follows. In section 2, we give some preliminaries and we recall some results
which will be used in the paper. In section 3, we establish the existence theorem
for the considered problem (P) for a globally upper hemicontinuous perturbation,
then we extend the result obtained in [0, T ] to the whole interval R+. Finally, we
weaken the result by taking the perturbation G measurable in the time t and upper
semicontinuous in the state x.

2. Preliminaries

Throughout the paper, H is a separable Hilbert space whose inner product is
denoted by 〈·, ·〉 and the associated norm by ‖ · ‖ and [0, T ] is an interval of R. We
will denote by B the closed unit ball of H, Pc(H) the family of all nonempty closed
sets of H and Pcc(H) (resp. Pck(H)) the set of nonempty closed (resp. compact)
convex subsets of H.
Let ϕ : H → R∪{+∞} be an extended real-valued lower semicontinuous function,
which is proper in the sense that its effective domain domϕ defined by dom ϕ :=
{x ∈ H : ϕ(x) < +∞} is nonempty and, as usual, its Fenchel conjugate is defined
by ϕ∗(v) := sup

x∈H
[〈v, x〉 − ϕ(x)]. The subdifferential ∂ϕ(x) of ϕ at x ∈ dom ϕ is

∂ϕ(x) = {v ∈ H : 〈v, y − x〉 ≤ ϕ(y)− ϕ(x) for all y ∈ dom ϕ}
and its effective domain is dom ∂ϕ = {x ∈ H : ∂ϕ(x) 6= ∅}. It is well known that if
ϕ is a proper lower semicontinuous convex function, then its subdifferential operator
∂ϕ is a maximal monotone operator and then satisfies the closure property. The
function ϕ is said to be inf-ball compact if for every r > 0, the set {x ∈ H : ϕ(x) ≤
r} is ball-compact, i.e., its intersection with any closed ball in H is compact.
For any subset C of H, coC stands for the closed convex hull of C and σ(·, C)
represents the support function of C, that is, for all ξ ∈ H, σ(ξ, C) = sup

x∈C
〈ξ, x〉. We

denote by Proj(·, C) the metric projection mapping onto the closed set C, defined
by Proj(x,C) := {v ∈ C : d(x,C) = ‖v − x‖}. A set-valued mapping G : E →
Pc(H) from a Hausdorff topological space E into subsets of H is said to be upper
semicontinuous if, for any open subset V ⊂ H, the set {x ∈ E : G(x) ⊂ V } is open
in E. G is said to be scalarly upper semicontinuous or upper hemicontinuous if, for
any y ∈ H, the real-valued function x 7→ σ(y,G(x)) is upper semicontinuous. For
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more details concerning the properties of maximal monotone operators in Hilbert
space, we refer to [2] and [4]. Basic facts of convex analysis and set-valued mappings
can be found in [8]. Let us recall the following result due to [19].

Proposition 2.1. Let ϕ : [T0, T ]× H → R+ ∪ {+∞} be such that:

(H1) for each t ∈ [T0, T ], ϕ(t, ·) is proper convex lower semicontinuous;
(H2) there exist a ρ-Lipschitzean function k : H → R+ and an absolutely con-

tinuous function a : [T0, T ] → R, with a non-negative derivative ȧ ∈
L2
R([T0, T ]), such that

ϕ∗(t, x) ≤ ϕ∗(s, x) + k(x) | a(t)− a(s) |

for every (t, s, x) ∈ [T0, T ] × [T0, T ]× H.

If h ∈ L2
H([T0, T ]) and x0 ∈ dom ϕ(T0, ·), then the problem

(Ph)

{
−ẋ(t) ∈ ∂ ϕ(t, x(t)) + h(t) a.e. t ∈ [T0, T ],

x(T0) = x0 ∈ dom ϕ(T0, ·)

admits a unique absolutely continuous solution x(·) that satisfies∫ T

T0

‖ ẋ(t) ‖2 dt ≤ 2c0

∫ T

T0

ȧ2(t)dt+ σ

∫ T

T0

‖h(t)‖2dt+ c1

with c0 = 1
2

(
k2(0) + 3(ρ+ 1)2

)
, σ = k2(0) + 3(ρ+ 1)2 + 4, and

c1 = 2
(
T − T0 + ϕ(T0, x(T0))− ϕ(T, x(T ))

)
and for T0 ≤ t1 ≤ t2 ≤ T

|ϕ(t2, x(t2))− ϕ(t1, x(t1))| ≤∫ t2

t1

(
k(0) + (ρ+ 1) ‖ ẋ(t) + h(t) ‖

)(
ȧ(t) + |h|(t)

)
dt+

∫ t2

t1

‖ ẋ(t) + h(t) ‖2 dt.

We close this section with a set-valued version of Scorza-Dragoni theorem due
to [7], Corollary 2.2.

Corollary 2.2. Let I = [T0, T ] and λ the Lebesgue measure on I, with σ-algebra
L(I). Let X be a Polish space and Y be a compact convex metrizable subset of a
Hausdorff locally convex space. Let G : I × X → Pck(Y ) be a multifunction that
satisfies the following hypotheses:

(i) ∀t ∈ I, GraphGt is closed in X × Y ;
(ii) ∀x ∈ X, the multifunction t 7→ G(t, x) admits a measurable selection.

Then, there exists a measurable multifunction G0 : I ×X → Pck(Y ) ∪ {∅}, which
has the following properties:

(1) there is a λ-null set N such that G0(t, x) ⊂ G(t, x), ∀t 6∈ N, ∀x ∈ X;
(2) if u : I → X and v : I → Y are L(I)-measurable functions with v(t) ∈

G(t, u(t)) a.e., then v(t) ∈ G0(t, u(t)) a.e.;
(3) for every ε > 0, there is a compact subset Jε ⊂ I such that λ(I \ Jε) <

ε, the graph of the restriction G0/Jε × X is closed and ∅ 6= G0(t, x) ⊂
G(t, x), ∀(t, x) ∈ Jε ×X.
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3. The Main Results

Now we are able to proved our first result for the problem (P) with unbounded
perturbation. In the development, we will use some ideas from [13] and [19].

Theorem 3.1. Assume that ϕ : [0, T ] × H → R+ ∪ {+∞} satisfies (H1), (H2)
and

(H3) ϕ is inf-ball compact for every t ∈ [0, T ].

Let G : [0, T ]× H → Pcc(H) be such that

(H4) G is upper hemicontinuous with respect to both variables;
(H5) for any (t, x) ∈ [0, T ] × H, the mapping Proj(0, G(t, x)) is measurable on

[0, T ] and there exist some real α > 0 such that for all (t, x) ∈ [0, T ]×H,
‖Proj(0, G(t, x))‖ = d(0, G(t, x)) ≤ α.

Then, for any x0 ∈ domϕ(0, ·) the problem (P) has at least one absolutely continu-

ous solution, satisfying
∫ T
0
‖ẋ(t)‖2dt ≤ c, where c = 2c0

∫ T
0
ȧ2(t)dt+σα2T + 2

(
T +

ϕ(0, x0)
)

and c0 = 1
2

(
k2(0) + 3(ρ+ 1)2

)
.

Proof. For each (t, x) ∈ [0, T ]×H, denote by g(t, x) the element of minimal norm
of the closed convex set G(t, x) of H, that is, g(t, x) = Proj(0, G(t, x)). First, we
shall construct a sequence of absolutely continuous mappings (xn(·))n. Define, for

every n ≥ 1, the classical partition of [0, T ]: for each 0 ≤ k ≤ n, tnk = k
T

n
. Put

x(tn0 ) = x0, and choose yn0 the element of minimal norm of G(tn0 , x0), by (H5) one
has

‖ yn0 ‖≤ α, (3.1)

and consider the following differential inclusion on the interval [tn0 , t
n
1 ]:{

−ẋ(t) ∈ ∂ ϕ(t, x(t)) + yn0 for a.e. t ∈ [tn0 , t
n
1 ],

x(tn0 ) = x0 ∈ dom ϕ(tn0 , ·),
by (3.1) observe that the map t 7→ yn0 is in L2

H([tn0 , t
n
1 ]), then, by Proposition 2.1

the last problem has a unique absolutely continuous solution that we denote by
xn0 : [tn0 , t

n
1 ]→ H.

Likewise, for each k ∈ {0, ..., n− 1} we can construct a finite sequence of absolutely
continuous mappings xnk (·) : [tnk , t

n
k+1]→ H such that{

−ẋnk (t) ∈ ∂ ϕ(t, xnk (t)) + ynk a.e. t ∈ [tnk , t
n
k+1],

xnk (tnk ) = xnk−1(tnk ) ∈ domϕ(tnk , ·).
(3.2)

where ynk = Proj(0, G(tnk , x
n
k−1(tnk ))). Recall that, in view of Proposition 2.1, the

following inequality holds true in each subinterval [tnk , t
n
k+1] for any k ∈ {0, ..., n−1}∫ tnk+1

tkn

‖ ẋnk (t) ‖2 dt ≤ 2c0

∫ tnk+1

tkn

ȧ2(t)dt+ σ

∫ tnk+1

tkn

‖ ynk ‖2 dt+ ck

≤ 2c0

∫ tnk+1

tkn

ȧ2(t)dt+ σ

∫ tnk+1

tkn

α2dt+ ck, (3.3)

with c0 = 1
2 (k2(0) + 3(ρ+ 1)2), σ = k2(0) + 3(ρ+ 1)2 + 4 and

ck = 2[(tnk+1 − tnk ) + ϕ(tnk , x
n
k (tnk ))− ϕ(tnk+1, x

n
k+1(tnk+1))].

Now, define xn and gn from [0, T ] to H by

xn(t) = xnk (t) if t ∈ [tnk , t
n
k+1[; xn(T ) = xnn−1(T ),
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gn(t) = ynk if t ∈ [tnk , t
n
k+1[; gn(T ) = ynn−1

for any k ∈ {0, ..., n− 1}. Clearly, xn(·) is absolutely continuous on [0, T ]. Consider
the mapping δn : [0, T ]→ [0, T ] such that for any k ∈ {0, ..., n− 1}

δn(t) = tnk if t ∈ [tnk , t
n
k+1[; δn(T ) = T

then, observe that for each t ∈ [0, T ], |δn(t) − t| ≤ |tnk+1 − tnk | =
T

n
, so δn(t) → t.

Thus, for each n ≥ 1, we have the following:

(i) gn(t) ∈ G(δn(t), xn(δn(t))), ∀ t ∈ [0, T ], ∀x ∈ H;
(ii) ∀ t ∈ [0, T ] : ‖gn(t)‖ ≤ α;

(iii) −ẋn(t) ∈ ∂ ϕ(t, xn(t)) + gn(δn(t)) a.e. t ∈ [0, T ], xn(0) = x0.

Further, from (3.3) we have:

n−1∑
k=0

∫ tnk+1

tkn

‖ẋn(t)‖2dt ≤ 2c0

n−1∑
k=0

∫ tnk+1

tkn

ȧ2(t)dt+ σα2
n−1∑
k=0

∫ tnk+1

tkn

dt+

n−1∑
k=0

ck,

equivalently∫ T

0

‖ẋn(t)‖2dt ≤ 2c0

∫ T

0

ȧ2(t)dt+ σα2

∫ T

0

dt+ cn ≤ 2c0

∫ T

0

ȧ2(t)dt+ σα2T + cn,

with cn = 2(T + ϕ(0, x0) − ϕ(T, xn(T ))), because ϕ is non-negative, putting c′ =
2(T + ϕ(0, x0)), we may write∫ T

0

‖ẋn(t)‖2dt ≤ 2c0

∫ T

0

ȧ2(t)dt+ σα2T + c′,

then
∫ T
0
‖ẋn(t)‖2dt ≤ c, where c = 2c0

∫ T
0
ȧ2(t)dt+ σα2T + c′, so

sup
n∈N

∫ T

0

‖ẋn(t)‖2dt ≤ c (3.4)

and thus L = supn∈N ‖ẋn(t)‖L2
H([0,T ]) < +∞.

Now, let us prove the uniform convergence of some subsequence of xn(·) to some
absolutely continuous mapping x(·). Using the Cauchy-Schwarz inequality and (3.4)
for all s ∈ [0, T ] we obtain

‖ xn(s)− xn(0) ‖2=‖ xn(s)− x0 ‖2≤ s
∫ s

0

‖ ẋn(t) ‖2 dt ≤ Tc

and hence

‖ xn(s) ‖2≤ 2 ‖ x0 ‖2 +2 ‖ xn(s)− x0 ‖2≤ 2 ‖ x0 ‖2 +2Tc.

Consequently, for each n, we get ‖ xn(·) ‖2∞≤ 2 ‖ x0 ‖2 +2Tc. Then

‖ xn(·) ‖∞≤M, (3.5)

where M = (2 ‖ x0 ‖2 +2Tc)
1
2 . Therefore

‖ xn(t)− xn(s) ‖=‖
∫ t

s

ẋn(τ)dτ ‖≤ (t− s) 1
2

( ∫ t

s

‖ ẋn(τ) ‖2 dτ
) 1

2 ≤ (t− s) 1
2L,

so along with (3.5), the set {(xn(·))n} is bounded and equicontinuous in CH([0, T ]),
recall that, in view of Proposition 2.1, for any fixed t ∈ [0, T ] and any n, one has

|ϕ(t, xn(t))− ϕ(0, x(0))| ≤ sup
n∈N

∫ t

0

(k(0) + (ρ+ 1) ‖ ẋn(t) + α ‖)(ȧ(t) + α)dt
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+ sup
n∈N

∫ t

0

‖ ẋn(t) + α ‖2 dt < +∞,

since ϕ is inf-ball compact by assumption, the set {xn(t); n ∈ N} is relatively
compact in H, so by Ascoli’s theorem, we can extract a subsequence of (xn(·))n
that converges uniformly on [0, T ] to some map x(·) ∈ CH([0, T ]). From (3.4),
(ẋn)n is bounded in L2

H([0, T ]), we may then extract a subsequence from the lat-
ter subsequence converging weakly in L2

H([0, T ]) to some map v(·). The equality

xn(t) = xn(0) +
∫ t
0
ẋn(s)ds for all t ∈ [0, T ] then yields x(t) = x(0) +

∫ t
0
v(s)ds

for all t ∈ [0, T ] and hence the map x(·) is absolutely continuous on [0, T ] with
ẋ(·) = v(·) a.e.
Finally, we show now that x(·) is a solution of (P) on [0, T ]. Define the step map-
ping zn(t) = gn(δn(t)) for all t ∈ [0, T ], one has for almost all t ∈ [0, T ], −ẋn(t) ∈
∂ ϕ(t, xn(t)) + zn(t) with

zn(t) ∈ G(δn(t), xn(δn(t))). (3.6)

Since ‖ gn(δn(t)) ‖≤ α for all n ∈ N and t ∈ [0, T ], we may suppose that the
sequence (zn(·))n converges weakly in L1

H([0, T ]) to a mapping z(·) ∈ L1
H([0, T ])

with ‖ z(t) ‖≤ α a.e. t ∈ [0, T ]. By Mazur’s Theorem, there exists

ξn ∈ co{zq, q ≥ n} (3.7)

such that (ξn(·))n converges strongly in L1
H([0, T ]) to z(·). Extracting a subsequence

if necessary, we may suppose that (ξn(·))n converges a.e. to z(·), then there is a
Lebesgue negligible set S ⊂ [0, T ] such that for every t ∈ [0, T ] \ S, on one hand
ξn(t) → z(t) strongly in H, and on the other hand the inclusion (3.6) holds true
for every integer n ≥ 1 as well as the inclusion

z(t) ∈
⋂
n

co{zq(t), q ≥ n}.

From the inclusion (3.6), for any n ∈ N, t ∈ [0, T ] \ S and any y ∈ H:

〈y, zn(t)〉 ≤ σ(y,G(δn(t), xn(δn(t)))), (3.8)

further, for each n ∈ N and any t ∈ [0, T ] \ S, from (3.7) we have

〈y, ξk(t)〉 ≤ sup
q≥n
〈y, zq(t)〉 ∀ k ≥ n, (3.9)

taking the limit in (3.9) as k → +∞ and by (3.8) one obtains

〈y, z(t)〉 ≤ sup
q≥n
〈y, zq(t)〉 ≤ sup

q≥n
σ(y,G(δq(t), xq(δq(t)))),

which ensures that 〈y, z(t)〉 ≤ lim supn→+∞ σ(y,G(δn(t), xn(δn(t))). Since σ(y,G(·, ·))
is upper semicontinuous on [0, T ] × H, then for every t ∈ [0, T ] \ S and ev-
ery y ∈ H, 〈y, z(t)〉 ≤ σ(y,G(t, x(t)), then z(t) ∈ G(t, x(t)) a.e. Further, since
(ẋn(·)+zn(·))n converges weakly in L1

H([0, T ]) to ẋ(·)+z(·) and (xn(·))n converges
strongly in L1

H([0, T ]) to x(·) and since the operator ∂ϕ(t, ·) satisfies the closure
property as the subdifferential of a proper lower semicontinuous function one ob-
tains ẋ(t) + z(t) ∈ −∂ϕ(t, x(t)) a.e., with z(t) ∈ G(t, x(t)) a.e.
Taking the limit in inequality (3.4) and using the preceding convergence, we get∫ T
0
‖ẋ(t)‖2dt ≤ c. �
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Note that, obviously, Theorem 3.1 yields for any finite interval of the form
[Tk, Tk+1] for all k ∈ N. So, the next Corollary proves on the whole interval
R+ := [0,+∞[ the existence of solution to the above evolution problem.

Corollary 3.2. Let ϕ : R+ × H → R+ ∪ {+∞} and G : R+ ×H → Pcc(H) be
such that the following assumptions hold:

(H ′1) the function x 7→ ϕ(t, x) is proper convex lower semicontinuous, for each
t ∈ R+.

(H ′2) there exist a ρ-Lipschitzean function k : H → R+ and an absolutely con-
tinuous function a : R+ → R, with a non-negative derivative ȧ ∈ L2

R(R+),
such that

ϕ∗(t, x) ≤ ϕ∗(s, x) + k(x) | a(t)− a(s) |

for every (t, s, x) ∈ R+ × R+ × H,
(H ′3) ϕ is inf-ball compact for every t ∈ R+,
(H ′4) G is upper hemicontinuous with respect to both variables,
(H ′5) there exists a non-negative function α(·) ∈ L∞loc(R+) such that d(0, G(t, x)) ≤

α(t) for all t ∈ R+ and x ∈ H.

Then, for any x0 ∈ dom ϕ(0, ·), there exists a mapping x : R+ → H which is locally
absolutely continuous on R+ and satisfies

(P1)

{
−ẋ(t) ∈ ∂ ϕ(t, x(t)) + G(t, x(t)) a.e. t ∈ R+,

x(0) = x0 ∈ dom ϕ(0, ·).

Proof. We follow the idea of the proof of Theorem 4 in [13]. We consider the
partition of R+ by the points Tn = n for all n ∈ N. It will suffice to apply
Theorem 3.1 in an appropriate way on each interval [Tn, Tn+1]. By Theorem 3.1,
there exists a absolutely continuous solution x0 : [T0, T1] → H of the differential
inclusion

−ẋ0(t) ∈ ∂ ϕ(t, x0(t)) + G(t, x0(t)), t ∈ [T0, T1]; x0(T0) = x0 ∈ domϕ(T0, ·).

Likewise, for each i ∈ {0, · · ·, n−1} we construct an absolutely continuous mapping
xi : [Ti, Ti+1]→ H such that{

−ẋi(t) ∈ ∂ ϕ(t, xi(t)) + G(t, xi(t)) a.e. t ∈ [Ti, Ti+1],
xi(Ti) = xi−1(Ti) ∈ domϕ(Ti, ·).

(3.10)

Taking x : R+ → H defined by x(t) := xn(t) for all t ∈ [Tn, Tn+1[ and n ∈ N, it is
readily seen that x is locally absolutely continuous solution of (P1) on R+. �

In the next theorem, we weaken the hypothesis on G by taking G having a
measurable selection with respect to the first variable and upper hemicontinuous
on H.

Theorem 3.3. Under the assumptions of Theorem 3.1 on ϕ, let G : [0, T ]×H →
Pcc(H) be such that:

(a) for all t ∈ [0, T ], G(t, ·) is upper hemicontinuous on H,
(b) for any x ∈ H, G(·, x) has a λ-measurable selection,
(c) for some compact convex subset K ⊂ B and some real number γ > 0, for

all (t, x) ∈ [0, T ]×H, one has G(t, x) ⊂ γ(1+ ‖ x ‖)K.
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Then, for any x0 ∈ domϕ(0, ·) the Cauchy problem (P) admits at least one ab-
solutely continuous solution, more precisely, there exist an absolutely continuous
mapping x(·) : [0, T ] → H and an integrable mapping g : [0, T ] → H such that
x(0) = x0, x(t) ∈ domϕ(t, x(t)), for all t ∈ [0, T ], and for almost every t ∈ [0, T ],
g(t) ∈ G(t, x(t)) and −ẋ(t)− g(t) ∈ ∂ϕ(t, x(t)).

Proof. Choose some positive numbers α,R such that α = γ(1 + R) and R =√
2(‖x0‖2 + Tc)

1
2 , where c is as in Theorem 3.1, and fix a continuous function

ψ : R+ → [0, 1] such that

ψ(τ) =

{
1 if τ ≤ R,

0 if τ ≥ R+ 1.
(3.11)

Let us consider the compact convex metric space Y := γ(1 +R)K, which is a Borel

subset of H, and let us define a set-valued mapping Ĝ : [0, T ]×H → Pck(Y ) by

Ĝ(t, x) := ψ(‖x‖)G(t, x),

obviously, Ĝ(·, x) has a measurable selection for all x ∈ H and for each t ∈ [0, T ],

the graph of Ĝ(t, ·) is closed in H × Y , therefore, in view of Corollary 2.2, there
exists a measurable set-valued mapping G0 : [0, T ]×H → Pck(Y ) ∪ {∅} such that:

(i) there is a λ-negligible set N ⊂ [0, T ], such that

G0(t, x) ⊂ Ĝ(t, x) for all t 6∈ N and for all x ∈ H; (3.12)

(ii) for every n ≥ 1, there is a compact subset Jn ⊂ [0, T ] such that λ([0, T ] \
Jn) < 1

n , the graph of the restriction G0/Jn×H is closed and ∅ 6= G0(t, x) ⊂
Ĝ(t, x), ∀(t, x) ∈ Jn ×H;

further, (ii) implies that there exists an increasing sequence (Jn)n≥1 of compact
subsets of [0, T ] such that, for each n ≥ 1, G0/Jn × H is upper semicontinuous
with convex compact values. So, by the set-valued version of Dugundji’s extension
theorem, for each n ≥ 1, there exists some upper semicontinuous extension Gn of
G0/Jn ×H to [0, T ]×H satisfying

Gn(t, x) ⊂ γ(1+ ‖ x ‖)K, for all (t, x) ∈ [0, T ]×H

and Gn(t, x) = G0(t, x) on Jn ×H. Further, d(0, Gn(t, x)) ≤ α, ∀(t, x) ∈ Jn ×H.
Due to Theorem 3.1 , for each n ≥ 1, there exists an absolutely continuous map
xn(·) : [0, T ]→ H and an integrable map gn : [0, T ]→ H such that xn(0) = x0 and
for almost all t ∈ [0, T ], −ẋn(t) ∈ ∂ϕ(t, xn(t)) + gn(t), and

gn(t) ∈ Gn(t, xn(t)), (3.13)

with

‖ gn(t) ‖≤ α (3.14)

and

sup
n∈N

∫ T

0

‖ ẋn(t) ‖2 dt ≤ c, (3.15)

and thus L = sup
n∈N

‖ ẋn ‖L2
H([0,T ]< +∞. As in the proof of Theorem 3.1, using the

Cauchy-Schwarz inequality and by (3.15) we obtain, for each n,

‖ xn(·) ‖∞≤ α. (3.16)
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Therefore, for all s, t ∈ [0, T ] one has

‖ xn(t)− xn(s) ‖≤ (t− s) 1
2 (

∫ T

0

‖ ẋn(τ)‖2dτ)
1
2 ≤ (t− s) 1

2L,

so along with (3.16), the set {xn(·), n ∈ N} is bounded and equicontinuous in
CH([0, T ]). Recall that, in view of Proposition 2.1, for any fixed t ∈ [0, T ] and any
n, one has

|ϕ(t, xn(t))− ϕ(0, x(0))| < +∞.
So, since ϕ is inf-ball compact, the set {xn(t), n ∈ N} is relatively compact in
H. By Ascoli’s Theorem, we can extract a subsequence of (xn(·))n that converges
uniformly on [0, T ] to some continuous map x(·) ∈ CH([0, T ]), that is

xn(·)→ x(·) strongly in L2
H([0, T ]). (3.17)

By (3.15), the sequence (ẋn)n is bounded in L2
H([0, T ]), we may then extract a

subsequence converging weakly in L2
H([0, T ]) to some map v(·). The equality

xn(t) = xn(0) +

∫ t

0

ẋn(s)ds, for all t ∈ [0, T ],

then yields

x(t) = x(0) +

∫ t

0

v(s)ds for all t ∈ [0, T ]

and hence the map x(·) is absolutely continuous on [0, T ] with ẋ(·) = v(·) for almost
all t ∈ [0, T ] and

ẋn(·)→ ẋ(·) weakly in L2
H([0, T ]). (3.18)

Due to (3.14), we may also suppose that, for some map g(·) ∈ L2
H([0, T ]), one has

gn(·)→ g(·) weakly in L2
H([0, T ]). (3.19)

Taking (3.17), (3.18) and (3.19) into account, as in the proof of Theorem 3.1 we
have, via the closure property of the subdifferential operator ∂ϕ(t, ·) for almost all
t ∈ [0, T ] the required inclusion, that is,

ẋ(t) + g(t) ∈ −∂ϕ(t, x(t)) a.e. t ∈ [0, T ]. (3.20)

It remains to prove that g(t) ∈ G(t, x(t)) for almost every t ∈ [0, T ].
Due to (3.19), by Mazur theorem, there exists a sequence (ξn(·))n in L1

H([0, T ])
such that

ξn(·) ∈ co{gq(·), q ≥ n} for all n ≥ 1, (3.21)

which converges strongly in L1
H([0, T ]) to g(·). Thus, extracting a subsequence if

necessary we may suppose that ξn(t) → g(t) for almost every t ∈ [0, T ]. So, this
along with (3.21), implies that, for some negligible subset N1 ⊂ [0, T ],

g(t) ∈
⋂
n

co{gq(t), q ≥ n} for all t ∈ [0, T ] \N1. (3.22)

Taking (3.13) into account, we may also suppose that, for all n ≥ 1 and for all
t ∈ [0, T ] \N1,

gn(t) ∈ Gn(t, xn(t)). (3.23)
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Consider the λ-negligible subset N2 = ([0, T ] \ ∪nJn) ∪ N ∪ N1, we are going to
prove that g(t) ∈ G(t, x(t)) for all t ∈ [0, T ] \ N2. Fix any τ ∈ [0, T ] \ N2, from
(3.22) and (3.23), it follows that, for any y ∈ H,

〈y, g(τ)〉 ≤ lim sup
n

σ(y,Gn(τ, xn(τ))). (3.24)

On the other hand, by definition of N2, there exists an integer p(τ) such that τ ∈
Jp(τ)\N and (Jn)n being increasing, one has τ ∈ Jn for all n ≥ p(τ). Consequently,
for all n ≥ p(τ),

Gn(τ, xn(τ)) = G0(τ, xn(τ)) ⊂ Ĝ(τ, xn(τ)). (3.25)

The inclusion coming from (3.12). Note that, by (3.16) one has, for all n ≥ 1 and
for almost all t ∈ [0, T ],

‖ xn(t) ‖≤ R,
and hence by (3.11), for all n ≥ 1,

Ĝ(τ, xn(τ)) = G(τ, xn(τ)). (3.26)

Therefore, due to (3.24), (3.25) and (3.26) and the fact that G(τ, ·) is scalarly upper
semicontinuous, we have

〈y, g(τ)〉 ≤ σ(y,G(τ, x(τ))),

this being true for any y ∈ H, and G(τ, x(τ)) being closed and convex, it results
that g(t) ∈ G(t, x(t)). Since the latter is satisfied for any τ ∈ [0, T ] \ N2, one
has g(t) ∈ G(t, x(t)) a.e. t ∈ [0, T ]. This, along with (3.20), proves that x(·) is a
solution of (P). �

4. Application

Let ϕ be the indicator function of a nonempty closed convex moving set C(t),
that is, ϕ(t, x) = IC(t)(x) = 0 if x ∈ C(t) and +∞ otherwise. It is well-known that
∂IC(t)(x) = NC(t)(x) the normal cone to C(t) at x. Then problem (P) becomes{

−ẋ(t) ∈ NC(t)(x(t) + G(t, x(t)) a.e. t ∈ [0, T ],
x(0) = x0 ∈ C(0).

Problems of this form are known as ”sweeping process” and arise in elastoplasticity,
contact dynamics, friction dynamics, and granular material (see Moreau [15]). The
sweeping process model is also of great interest in nonsmooth mechanics, convex
optimization, mathematical economics and more recently in the modeling and sim-
ulation of switched electrical circuits as well as the modeling of crowd motion. As
an example, let consider dynamics that correspond to an electrical circuit contain-
ing nonsmooth devices like diodes. A diode is a device that constitutes a rectifier
which permits the easy flow of charges in one direction and restrains the flow in
the opposite direction. The ideal model diode is a simple switch.The problem is
the following: 

ẋ1 = x2
ẋ2 = − 1

LCx1 −
R
Lx2 + 1

L + 1
Lu

y = −x2 and yL ∈ ∂Φ(y);

where R > 0 is a resistor, L > 0 an inductor, C > 0 a capacitor, u is the voltage
supply, x1(t) is the time integral of the current across the capacitance, x2(t) =
i(t) is the current across the circuit, yL is the voltage of the diode and Φ is the
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electrical superpotential of the diode. Setting ϕ = Φ◦C, we get ∂ϕ(x) = B∂Φ(Btx).
Therefore, the dynamic of the system is of the form −ẋ(t) ∈ Ax(t)+∂ϕ(x(t)), where

A =

(
0 0
−1
LC

−R
L

)
and B =

(
0
−1

)
If we suppose that the diode is ideal, then its superpotential and subdifferential are

respectively given by Φ(x) = IR+
(x) and ∂Φ(x) = NR+

(x) =

 ∅ if x < 0
]−∞, 0] if x = 0

0 if x > 0.

5. Conclusion

We have established existence results for nonlinear evolution inclusions which
are driven by time dependent subdifferential operators, by using a specific and
adapted discretization, with technical nuances, in both convex analysis and non-
smooth analysis. We generalize the results when the perturbation, that is, the
external forces applied on the system, is with convex but not necessary bounded
values. In a forthcoming work, we deal with a nonconvex perturbation by the
relaxation (convexification) approach.

6. Acknowledgments

Research supported by the General direction of scientific research and technolog-
ical development (DGRSDT) under project PRFU No. C00L03UN180120180001.

References

[1] D. Affane and M. F. Yarou, Perturbed first-order state dependent Moreaus sweeping process.
Int. J. Nonlinear Anal. Appl. 12, Special Issue, (2021) 605-615.

[2] J. P. Aubin and A. Cellina, Differential Inclusions, Set-Valued maps and viability theory.

Springer, Berlin, Heidelberg (1984).
[3] S. Boudada and M. F. Yarou, Sweeping process with right uniformly lower semicontinu-

ousmappings. Positivity, 24 (2020) 207-228.
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