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ABSTRACT: In this study, two different types of controllers have been designed and tested for 

altitude and motion control of an autonomous quadrotor to compare the control performance under 

the influence of parametric uncertainty and disturbances. The first controller is a proportional-

integral-derivative (PID) controller which is a conventional linear controller. The closed-loop PID 

algorithms calculate the results of the system by using the error values that consist of the difference 

between the sensor values measured by the closed-loop feedback method and the reference inputs. 

The second method that has been used is artificial neural network (ANN) algorithms, which provide 

both advantages and convenience in defining and controlling linear systems and non-linear systems 

with the closed-loop feedback method used in PID. The most important feature of the ANN 

algorithms is their high performance as a result of training with different input values. Therefore, the 

ANN control system has been trained with the input data used with Gaussian noise and the desired 

target data. A dynamic time series non-linear autoregressive with Exogenous input (NARX) neural 

network has been chosen as an ANN controller because of the time-delayed backpropagation learning 

performance. In this study, PID, and NARX NN control algorithms to control the maneuvers and 

altitude of the quadcopter and the mathematical model have been designed on Matlab Simulink. 

Motion control performances of the PID and NARX controllers are tested on the model. The design 

was tested on a real-time simulation environment with a one-millisecond fixed-step size. This paper 

proposes an alternative approach to control attitude and altitude on a quadcopter with the NARX NN 

algorithm. 

Keywords: Attitude and altitude control, Quadcopter, Proportional-integrator-derivative, Non-linear 

autoregressive with external (Exogenous) input artificial neural networks, Gaussian noise. 
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1. INTRODUCTION  

The Newton-Euler equations and the Euler-Lagrange equations are the most common methods 

for aerial vehicles to build a mathematical model (Yoon et al., 2016; Paiva et al., 2016; Teppo 

Luukkonen, 2011; Wang et al, 2016; Hamidi et al., 2019; Nguyen et al., 2021; Muliadi and 

Kusumoputro, 2018; Praveen and Pillai, 2016; Cedro and Wieczorkowski, 2019; Razmi and 

Afshinfar, 2019). In addition, there is a study in the literature on dynamic system modeling of the 

quadcopter with dynamic time series non-linear autoregressive with Exogenous input (NARX) neural 

network (NN) (ElDakrory and Tawfik, 2016).   

In the attitude and position controls of quadcopters, linear and non-linear system control is 

performed with optimal control, adaptive control, robust control, sliding control, proportional-

integral-derivative (PID) control, artificial intelligence control methods (Zulu and John, 2014). 

Control systems need healthy and reliable position and behavior information generated by sensors to 

give reliable outcomes (Akın et al., 2021). The most widely used control system in quadcopters is the 

PID control system because of its easy implementation and adjustment (Cedro and Wieczorkowski, 

2019; Praveen and Pillai, 2016; Muliadi and Kusumoputro, 2018; Wang et al., 2016; Yoon et al., 

2016; Paiva et al., 2016; Luukkonen, 2011). In addition, there are studies of sliding control (Razmi 

and Afshinfar, 2019), fuzzy logic control (Hamidi et al., 2019), and dynamic PID coefficients update 

with direct inverse control (DIC) for attitude and altitude control (Muliadi and Kusumoputro, 2018) 

in the literature.  

The quadcopter model is a non-linear dynamic system. Therefore, the non-linear system 

analysis feature of ANN algorithms will be advantageous in controlling the attitude and altitude of 

the quadcopter. The adaptive control performance of the NARX neural network, non-linear 

autoregressive moving average (NARMA-L2), and feedforward neural network (FFNN) structures 

from ANN algorithms on non-linear dynamic systems perform similar to each other (Hamidi et al., 

2020). Conversely, NARX ANN has been used to predict future loads to increase performance for 

short-term forecasting of electric loads (Buitrago and Asfour, 2017). The NARX NN algorithm is one 

of the most promising methods to make predictions about the upcoming data to reach the optimal 

solution. Additionally, the NARX NN algorithm predicts the next value by checking the regressed 

previous values of the output signal and previous values of an exogenous input signal. The NARX 

NN algorithm can be used on many applications such as predictor, non-linear filtering, non-linear 

dynamic system modeling (Anonymous, 2021). ANN performance increases with random and 

different training data. The Gaussian noise time series are used to produce different training inputs 

for the NARX NN. In the literature, there are studies on the performance of neural network regression 

algorithms with Gaussian noise on ANN (Hagiwara et al., 2001) and non-linear dynamic system 

modeling with Gaussian process NARX (Tadej et al., 2021). Also, the Levenberg-Marquardt 

algorithm is used to train feedforward networks with increased performance results (Hagan and 

Menhaj, 1994). The planned attitude and altitude maneuvers have been diversified with smooth 

sinusoidal inputs and step inputs to observe the overshoot and steady-state responses of the system 

(Luukkonen, 2011; Yoon et al., 2016; Wang et al., 2016; Hamidi et al., 2019; Nguyen et al., 2021; 

Hamidi et al., 2020; Razmi and Afshinfar, 2019). Therefore, sinusoidal wave, sawtooth wave, and 

square wave have been used in this study. 

This paper focused on the creation of the simulation environment and control algorithms were 

designed with the help of Simmechanics and mathematical models. PID control algorithms were 

found by the experimental Ziegler-Nichols method. NARX NN control was chosen because of its 

multi-step prediction feature in closed-loop and open-loop systems. Therefore, NARX NN to give 
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high performance, neural network training was realized by giving sinusoidal, sawtooth, square inputs, 

and Gaussian noise sequence input data. The trained NARX NN and PID controls of model roll, pitch, 

yaw, and altitude are tested on a real-time Matlab Simulink environment to compare their 

performances. 

  

2. MODELLING 

The mathematical model of roll, pitch, yaw, and 𝑥, 𝑦, 𝑧 displacements of the quadcopter has 

been generated with the Newton-Euler and Euler-Lagrange equations. In the aerospace industry, 

inertial frame and body frame have been used to define the motions of the vehicle. Accordingly, these 

frames have been used to define the attitude and altitude of the quadcopter. The position vector is 

defined with ξ = [𝑥 𝑦 𝑧]𝑇, roll, pitch, yaw equations defined with η = [ϕ θ ψ]𝑇 on the inertial frame. 

The linear velocity is defined with ϒ = [𝑢 𝑣 𝑤]𝑇 , the angular velocity defined with  Ω = [𝑝 𝑞 𝑟]𝑇  

on the body frame. The velocity of the quadcopter is shown in Equation 1, with the relation of 

rotational matrix Equation 4. Correspondingly the angular velocity of the quadcopter is shown in 

Equation 2, with the relation of angular velocity transformation matrix Equation 3. Therefore, inertial 

and body frames are shown in Figure 1. (Nguyen et al., 2021; Luukkonen, 2011; Hamidi et al., 2019; 

Wang et al., 2016; Razmi and Afshinfar, 2019; Paiva et al., 2016; Cedro and Wieczorkowski, 2019; 

Muliadi and Kusumoputro, 2018). 

 

 
Figure 1. The inertial and body frames of the quadcopter 

 

ξ̇ = 𝑅ϒ (1) 

η ̇ = 𝐽Ω (2) 

𝐽 = [
1 0 −𝑠𝑖𝑛θ
0 𝑐𝑜𝑠ϕ 𝑠𝑖𝑛ϕ𝑐𝑜𝑠θ
0 −𝑠𝑖𝑛ϕ 𝑐𝑜𝑠ϕ𝑐𝑜𝑠θ

] (3) 

𝑅 = [

𝑐𝑜𝑠θ𝑐𝑜𝑠ψ 𝑐𝑜𝑠ψ𝑠𝑖𝑛θ𝑠𝑖𝑛ϕ − 𝑠𝑖𝑛ψ𝑐𝑜𝑠ϕ 𝑐𝑜𝑠ψ𝑠𝑖𝑛θ𝑐𝑜𝑠ϕ + 𝑠𝑖𝑛ψ𝑠𝑖𝑛ϕ 
𝑐𝑜𝑠θ𝑠𝑖𝑛ψ 𝑠𝑖𝑛ψ𝑠𝑖𝑛θ𝑠𝑖𝑛ϕ + 𝑐𝑜𝑠ψ𝑐𝑜𝑠ϕ 𝑠𝑖𝑛ψ𝑠𝑖𝑛θ𝑐𝑜𝑠ϕ − 𝑐𝑜𝑠ψ𝑠𝑖𝑛ϕ 

−𝑠𝑖𝑛θ 𝑐𝑜𝑠θ𝑠𝑖𝑛ϕ 𝑐𝑜𝑠θ𝑐𝑜𝑠ϕ 
] (4) 

 

 

The lifting force and moments are defined in Equation 5 and Equation 6 where the 𝑘𝑓 is the 

force constant, and 𝑘𝑚 is the moment constant. In these equations, the effect of wing area has been 

selected as a constant. The total thrust and torque equations have been derived with the help of 
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Equation 5 and Equation 6 to achieve the roll, pitch, yaw, and altitude motions.  As can be seen, the 

altitude maneuver is shown in Equation 7, the roll maneuver is shown in Equation 8, the pitch 

maneuver is shown in Equation 9, and the yaw maneuver is shown in Equation 10. (Nguyen et al., 

2021; Luukkonen, 2011; Hamidi et al., 2019; Wang et al., 2016; Razmi and Afshinfar, 2019; Paiva 

et al., 2016; Cedro and Wieczorkowski, 2019; Muliadi and Kusumoputro, 2018). 

 

𝑓𝑖 = 𝑘𝑓ω𝑖
2 (5) 

τ𝑖 = 𝑘𝑚ω𝑖
2 (6) 

𝑇 = 𝑘𝑓[ω1
2 +  ω2

2 + ω3
2 + ω4

2] (7) 

τϕ = 𝑙𝑘𝑓[(ω2
2 + ω3

2) − (ω1
2 + ω4

2)] (8) 

τθ = 𝑙𝑘𝑓[(ω1
2 + ω2

2) − (ω3
2 + ω4

2)] (9) 

τψ = 𝑘𝑚[(ω1
2 + ω3

2) − (ω2
2 + ω4

2)] (10) 

 

The rotational motion equations have been derived with the help of the Newton-Euler method. 

Two assumptions are made to simplify the equations. The first one is the symmetric quadrotor design 

and the second one is the center of the body frame intersecting with the center of gravity. Since these 

assumptions have been made diagonal inertia matrix of the quadcopter is shown in Equation 12.  The 

rotational accelerations have been obtained with the help of Equation 11 and expressed in Equation 

13 where roll acceleration is shown in Equation 14, pitch acceleration is shown in Equation 14, and 

yaw acceleration is shown in Equation 16. (Nguyen et al., 2021; Luukkonen, 2011; Hamidi et al., 

2019; Wang et al., 2016; Razmi and Afshinfar, 2019; Paiva et al., 2016; Cedro and Wieczorkowski, 

2019; Muliadi and Kusumoputro, 2018). 

 

[

τϕ

τθ

τψ

] = 𝐼�̈� +× 𝐼�̇� (11) 

𝐼 = [

𝐼𝑥𝑥 0 0
0 𝐼𝑦𝑦 0

0 0 𝐼𝑧𝑧

] (12) 

[

τϕ

τθ

τψ

] = [

𝐼𝑥𝑥ϕ̈

𝐼𝑦𝑦θ̈

𝐼𝑍𝑍ψ̈

] + [

θ̇𝐼𝑧𝑧ψ̇ − ψ̇𝐼𝑦𝑦θ̇

ψ̇𝐼𝑥𝑥ϕ̇ − ϕ̇𝐼𝑧𝑧ψ̇

ϕ̇𝐼𝑦𝑦θ̇ − θ̇𝐼𝑥𝑥ϕ̇

] (13) 

ϕ̈ =
τϕ

𝐼𝑥𝑥
+

𝐼𝑦𝑦

𝐼𝑥𝑥
θ̇ψ̇ −

𝐼𝑧𝑧

𝐼𝑥𝑥
θ̇ψ̇ (14) 

θ̈ =
τθ

𝐼𝑦𝑦
+

𝐼𝑧𝑧

𝐼𝑦𝑦
ψ̇ϕ̇ −

𝐼𝑥𝑥

𝐼𝑦𝑦
ψ̇ϕ̇ (15) 

ψ̈ =
τψ

𝐼𝑧𝑧
+

𝐼𝑥𝑥

𝐼𝑧𝑧
ϕ̇θ̇ −

𝐼𝑦𝑦

𝐼𝑧𝑧
ϕ̇θ̇ (16) 

 

The translational motion equations are derived with the help of the Newton-Euler method and 

Newton’s Second Law. Therefore 𝐹 = 𝑚. 𝑎 transformation of the quadcopter is shown in Equation 

17. The 𝑥, 𝑦, 𝑧 dimensional accelerations are shown in Equation 18, Equation 19, and Equation 20.  

(Nguyen et al., 2021; Luukkonen, 2011; Hamidi et al., 2019; Wang et al., 2016; Razmi and Afshinfar, 

2019; Paiva et al., 2016; Cedro and Wieczorkowski, 2019; Muliadi and Kusumoputro, 2018). 
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𝑚ξ̈ = [
0
0

𝑚𝑔
] + 𝑅 [

0
0

−𝑇
] (17) 

�̈� =
−𝑇

𝑚
(𝑠𝑖𝑛ϕ𝑠𝑖𝑛ψ + 𝑐𝑜𝑠ϕ𝑐𝑜𝑠ψ𝑠𝑖𝑛θ) (18) 

�̈� =
−𝑇

𝑚
(𝑐𝑜𝑠ϕ𝑠𝑖𝑛ψ𝑠𝑖𝑛θ − 𝑐𝑜𝑠ψ𝑠𝑖𝑛ϕ) (19) 

�̈� = 𝑔 −
𝑇

𝑚
(𝑐𝑜𝑠ϕ𝑐𝑜𝑠θ) (20) 

 

The attitude and altitude of the quadcopter have been controlled with the help of the PID 

algorithm, and NARX NN algorithm. The subtraction of sensor value from reference input has been 

used to generate the error value (𝐸𝑠) for the attitude and altitude maneuvers. These error values of the 

attitude and altitude have been used with the generic PID algorithm Equation 21, and the generic 

trained NARX NN algorithm Equation 22. The abbreviations used in Equation 21 and Equation 22 

are 𝑃 is the proportional coefficient, 𝐼 is the integral coefficient, 𝐷 is the derivative coefficient, 𝑁 is 

the filter coefficient, 𝑦(𝑡) is the predict time series of NARX NN, 𝑥(𝑡) is the input time series of the 

NARX NN, 𝑑 is the past values of the 𝑦(𝑡). NARX NN algorithm has been trained with Levenberg-

Marquardt algorithm that shown in Equation 23. It follows that the training algorithm uses the Hessian 

matrix with Newton’s method where  𝐽𝑇  is the transpose of the Jacobian matrix, 𝐽 is the Jaboian 

matrix, 𝐼 is the identity matrix, µ is the editable variable, 𝑒 is all errors, and 𝑥 is the weight and bias 

variables. Levenberg-Marquardt algorithm decreases µ after each successful step and increased only 

with tentative step in order to increase performance at each iteration of the algorithm. NARX NN 

architecture is shown in Figure 2. (Buitrago and Asfour, 2017; Hagan and Menhaj, 1994; Anonymous, 

2021). 

 

 
Figure 2. The NARX NN architecture. (Buitrago and Asfour, 2017) 

 

𝑃𝐼𝐷𝑠 = 𝐸𝑠𝑃 + 𝐸𝑠𝐼
1

𝑠
+ 𝐸𝑠𝐷

𝑁

1 + 𝑁
1
𝑠

 
(21) 

𝑦(𝑡) = 𝑓(𝑥(𝑡 − 1), … , 𝑥(𝑡 − 𝑑), 𝑦(𝑡 − 1), … , 𝑦(𝑡 − 𝑑)) (22) 

𝛥𝑥 = 𝑥𝑘+1 − 𝑥𝑘 = [𝐽𝑇𝐽 + µ𝐼]−1𝐽𝑇𝑒 (23) 
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3. METHODOLOGY 

In this study, a closed-loop feedback system has been used in the control methodology. The 

subtraction of sensor value from reference input has been used to generate the error value 𝐸𝑠 for the 

attitude and altitude maneuvers. These error values of the attitude and altitude have been used with 

the generic PID algorithm is shown in Equation 21, and the generic NARX NN algorithm is shown 

in Equation 22. The reference inputs and sensor outputs are meters for altitude, and degree for roll, 

pitch, and yaw. The outputs of the PIDs are summarized with the help of Equation 7, Equation 8, 

Equation 9, and Equation 10 to generate desired rotor commands. However, the trained NARX NN 

algorithm is replaced with the control blocks. The control system for the attitude and altitude of the 

quadcopter is shown in Figure 3. 

 

 
Figure 3. The control command generation for each rotor scheme for attitude and altitude of the quadcopter 

 

4. SIMULATION 

The simulation of the quadcopter has been modeled on the Matlab Simulink with the help of 

the Simscape blocks. The quadcopter model has been designed with four main subsystems that are 

shown in Figure 4. The reference inputs have been generated with the signal builder in the Reference 

Inputs block for the altitude in meters, and the attitude maneuvers in degree. The error values for the 

altitude and attitude have been calculated with the subtraction reference input from sensor outputs. 

Moreover, the four-rotor commands have been generated with PID or NARX NN control algorithms 

that have been supplied with the calculated error values in the Controller block. The dynamic and 

mathematical model of the voltage source, H-Bridge, rotors, propellers, and the body-frame of the 

3D quadcopter model have been designed under the QuadCopter block. The properties of mass and 

construction of quadcopter have been calculated with the help of Solidworks. The distance between 

the quadcopter and the motors “𝑙” has been used to define the angular velocities and resultant forces 

acting on the rotors shown in Figure 1. The quadcopter design has been designed counterpoised 

dimensional axis. Since the relation of quadcopter and altitude, and maneuvers are shown in Equation 

14,15,16,18,19,20. The total quadcopter mass “𝑚”, and mass moment of inertia about 𝑥, 𝑦, 𝑧 axis 

“𝐼𝑥𝑥, 𝐼𝑦𝑦, 𝐼𝑧𝑧” has been used on Quadcopter block with SimMechanics blocks to create a 

mathematical model of the quadcopter.  The quaternions, the world-frame, sensor values of the 
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attitude and altitude have been calculated under the Sensor Calculations block. The gravitational 

acceleration 𝑔 has been used on the World frame in the Sensor Calculations subsystem to make a 

relation between environment and quadcopter. Solidworks have been used to design the 3D model of 

the quadcopter and calculate the weight and inertias. The design parameters are shown in Table 1. 

 

Table 1. The design parameters 

Name Symbol Value Name Symbol Value 

Total Mass 𝑚 2.822 kg 
Mass moment of inertia 

about 𝑥-axis 
𝐼𝑥𝑥 1.93 kgm2 

Gravity 𝑔 9.81 ms-2 
Mass moment of inertia 

about 𝑦-axis 
𝐼𝑦𝑦 1.96 kgm2 

Distance between the 

quadcopter center and the 

motors 

𝑙 0.282 m 
Mass moment of inertia 

about 𝑧-axis 
𝐼𝑧𝑧 0.27 kgm2 

 

 
Figure 4. The control command generation for each rotor scheme for attitude and altitude of the quadcopter 

 

The attitude and altitude commands have been calculated inside the controller block. The 

altitude command has been limited with 0.8 of the maximum total rotor speed. Correspondingly, roll, 

pitch, and yaw maneuvers are limited with 0.1 of the maximum total rotor speed. The PID controller 

has been used to set overshoot between %5-9 range and to set steady-state response between 6 

seconds. Therefore, the PID controller coefficients have been found with the Ziegler- Nichols method. 

As described, the general PID control scheme is shown in Figure 5. 

 

 
Figure 5. The schematic model of the PID control algorithm 
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The NARX NN algorithm has been used instead of the PID block and the saturation block. The 

schematic model of the NARX NN control is shown in Figure 6. The NARX neural network structure 

has trained with the sinusoidal wave, square wave, and Gaussian noise reference inputs and altitude 

commands as a target. A total of 300000 data has been used to train the network with the Levenberg-

Marquardt algorithm. The altitude reference inputs that have been used to train the neural network 

are shown in Figure 7.  The neural network with 25 neurons was trained for the altitude movement 

command. Likewise, the yaw maneuver has trained with the sinusoidal wave, square wave, sawtooth 

wave, and Gaussian noise reference inputs. The yaw reference inputs used to train NARX neural 

network is shown in Figure 8. The NARX neural network with 43 neurons has trained for the yaw 

maneuver command. Similarly, the roll and pitch maneuvers have been trained with the sinusoidal 

wave, square wave, sawtooth wave, and Gaussian noise reference inputs. The roll and pitch maneuver 

reference inputs used to train NARX neural network are shown in Figure 9. The NARX neural 

network with 64 neurons has been trained for the roll and pitch maneuver commands. 

 

 
Figure 6. The schematic model of the NARX neural network 

 

The altitude reference input has been set in three different signal types with Gaussian noise. 

The sine wave has been used between 0-100 seconds which is generated with 0.1 Hz frequency, 2.5 

meters offset, and 1-meter amplitude. The square wave has been used between 100-200 seconds 

which is generated with the same frequency, offset, and amplitude. The random step input has been 

used between 200-300 seconds which is generated with 0.5 meters to 3 meters amplitude variation 

for 5 seconds. The random Gaussian noise sequence has been used between 0-300 seconds which is 

generated with 1 Hz frequency, 0.5 mean amplitude. The resultant inputs are shown in Figure 7. 

 



Karakaya, Ş. E., Gören, A. JournalMM (2022), 3(1) 1-19 

 

9 

 

 
Figure 7. Altitude reference inputs used to train NARX neural network 

 

The yaw reference input has been set in three different signal types with Gaussian noise. The 

sine wave has been used between 0-100 seconds which is generated with 0.5 Hz frequency with 20-

degree amplitude. The square wave has been used between 100-200 seconds which is generated with 

0.5 Hz frequency, 20-degree offset, and 20-degree amplitude. The sawtooth wave has been used 

between 200-300 seconds which is generated with the same frequency, offset, and amplitude of the 

square wave. The random Gaussian noise sequence has been used between 0-300 seconds which is 

generated with 1 Hz frequency, 0.5 mean amplitude. The resultant inputs for the yaw maneuver are 

shown in Figure 8. 

 

 
Figure 8. Yaw reference inputs used to train NARX neural network 
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The roll and pitch reference inputs have been set in three different signal types with Gaussian 

noise. The sine wave between 0-100 seconds, the square wave between 100-200 seconds, and the 

sawtooth wave between 200-300 seconds have been generated with 0.5 Hz frequency and 5-degree 

amplitude. The random Gaussian noise sequence has been used between 0-300 seconds which is 

generated with 1 Hz frequency, 0.5 mean amplitude. The resultant inputs for the roll and pitch 

maneuvers are shown in Figure 9. 

 

 
Figure 9. Pitch and roll reference inputs used to train NARX neural network 

 

5. RESULTS AND DISCUSSION 

The verification process of the model has been assisted with a 3-D simulation to improve the 

visualization of roll, pitch, yaw, and altitude maneuvers. The visual simulation has been run with the 

Simulink Mechanics Explorer application. The Simulink 3-D simulation environment is shown in 

Figure 10.  

 

 
Figure 10. Matlab Mechanics Explorer simulation environment for the designed quadcopter. 
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The PID coefficients of the attitude and altitude maneuvers have been tuned with the Ziegler-

Nichols method. The altitude, roll, and pitch PID coefficients have been set with classic Ziegler-

Nichols coefficients shown in Equation 23 for the linearized quadcopter. The continuous oscillation 

has been found by assigning proportional gain to the system. The ultimate gain (𝐾𝑢) has been set 80 

for altitude and 3.8 for roll and pitch maneuvers. The oscillation period (𝑇𝑢) has been found 1.83 for 

altitude and 0.92 for roll and pitch maneuvers. On the other hand, the yaw maneuver has been set 

with proportional gain. The results of the PID coefficients are shown in Table 2. 

 

[𝐾𝑝, 𝐾𝑖, 𝐾𝑑] = [0.6𝐾𝑢, 1.2
𝐾𝑢

𝑇𝑢
, 0.075𝐾𝑢𝑇𝑢] (23) 

 

Table 2. The PID coefficients for roll, pitch, yaw, altitude maneuvers 

Maneuvers Proportional (P) Integral (I) Derivative (D) Filter Coefficient (N) 

Altitude 48 52.459 10.98 100 

Roll 2.28 4.9565 0.2622 100 

Pitch 2.28 4.9565 0.2622 100 

Yaw 6 0 0 250 

 

The NARX NN algorithms have been trained with the Levenberg-Marquardt method in the 

Matlab Neural Network toolbox. The training inputs have been randomized with the help of random 

Gaussian numbers. The Gaussian number has been generated with 0.5 deviations on a 1 Hz frequency.  

The training state of attitude and altitude maneuvers with epoch numbers, Gradient, Mu, and 

Validation checks are shown in Figure 11 for altitude maneuver, Figure 12 for yaw maneuver, Figure 

13 for pitch and roll maneuvers. As a result of training with the Levenberg-Marquardt method, the 

regression placement process results are shown in Figure 14 for altitude maneuver, Figure 15 for yaw 

maneuver, Figure 16 for pitch and roll maneuvers. 

 

 
Figure 11. The training state data from ANN altitude training 
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Figure 12. The training state data from ANN yaw training 

 

 
Figure 13. The training state data from ANN pitch and roll training 
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Figure 14. Regression results from ANN altitude training 

 

 
Figure 15. Regression results from ANN yaw training 
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Figure 16. Regression results from ANN pitch and roll training 

 

The PID and NARX NN algorithms have been designed and tested in five steps on the proposed 

quadcopter model shown in Figure 4. First, the mathematical model, environmental variables, and 

sensors have been designed. Second, the PID coefficients for each maneuver have been found with 

the Ziegler-Nichols method. Third, reference inputs that are shown in Figures 7,8,9, and desired 

outputs of the system have been generated with the help of the results of the PID algorithm for each 

maneuver. Fourth, the NARX NN algorithms for each maneuver have been trained by the Levenber-

Marquardt algorithm. Fifth, the Mean Square Error (MSE) and Root Mean Square Error (RMSE) 

have been calculated with both control algorithms for each maneuver.  The results of PID control and 

NARX NN algorithms are compared under the sinusoidal wave, square wave, and sawtooth wave 

inputs without the Gaussian noise. The corresponding comparison of PID, NARX NN, and reference 

inputs are shown in Figure 17 for altitude maneuver, Figure 18 for yaw maneuver, Figure 19 for roll 

and pitch maneuvers. The performance comparison between the PID and NARX NN has been 

calculated with MSE and RMSE.  The performance results are shown in Table 3. 

 

Table 3. The performance results of attitude and altitude maneuvers 

Error Type Altitude (meter) Roll (degree) Pitch (degree) Yaw (degree) 

Mean Square Error (MSE) of NARX NN 0.137947 0.00277577 0.0264322 0.00512254 

Root Mean Square Error (RMSE) of 

NARX NN 
0.98523 0.996921 0.976153 0.999408 

Mean Square Error (MSE) of PID 

Results 
0.138773 0.01183 0.02668 0.01498 

Root Mean Square Error (RMSE) PID 

Results 
1.0273 0.99741 0.99954 0.99165 
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Figure 17. The comparison of the reference inputs, PID output, and ANN output for altitude 

 

 
Figure 18. The comparison of the reference inputs, PID output, and ANN output for yaw 
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Figure 19. The comparison of the reference inputs, PID output, and ANN output for roll and pitch 

 

6. CONCLUSION  

This paper has been introduced the mathematical model of the quadcopter, and PID, NARX 

NN controller designs for the attitude and altitude maneuvers. Due to the non-linear analysis benefits 

of the NARX neural network algorithm, the trained data give similar results like the PID with a small 

amount of difference on RMSE and MSE errors. The NARX NN algorithm has performed better than 

the PID algorithm on controlling the attitude and altitude of the quadcopter. To clarify the results, the 

RMSE and MSE methods have been used. It follows that the altitude maneuver control by the NARX 

NN algorithm has given 0.98523 RMSE and 0.137947 MSE error where the PID algorithm 1.0273 

RMSE and 0.138773 MSE error. Moreover, the roll maneuver control by the NARX NN algorithm 

has given 0.996921 RMSE and 0.00277577 error where the PID algorithm 0.99741 RMSE and 

0.01183 MSE error. Likewise, the pitch maneuver control by the NARX NN algorithm has given 

0.976153 RMSE and 0.0264322 MSE error where the PID algorithm 0.99954 RMSE and 0.02668 

MSE error. However, the error values have given almost the same results on yaw maneuver control 

by NARX NN, and PID algorithm. The yaw maneuver control by the NARX NN algorithm has given 

0.999404 RMSE and 0.00512254 error where the PID algorithm 0.99165 RMSE and 0.01498 MSE 

error. The most important criterion here is the multiplicity of training data used and training with 

different possibilities of inputs. In this way, the desired response can be obtained from the system 

under unexpected conditions. In real flights, when an accident or an undesired movement occurs, the 

response requested by the system can re-train the trained system with the data recorded during the 

flight to prevent future accidents. 
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9. NOMENCLATURE 

• ANN = Artificial Neural Network 

• DIC = Direct Inverse Control 

• FFNN = Feedforward Neural Network 

• MSE = Mean Square Error 

• NN = Neural Network 

• NARMA-L2 = Non-linear Autoregressive Moving Average 

• NARX = Non-linear Autoregressive with Exogenous Input 

• PID = Proportional, Integral, Derivative 

• RMSE = Root Mean Square Error 

• UAV = Unmanned Aerial Vehicle 

• 𝑥 = 𝑥 Position 

• 𝑦 = y Position 

• 𝑧 = 𝑧 Position 

• Φ = Roll Angle  

• Θ = Pitch Angle 

• Ψ = Yaw Angle 

• 𝑢 = Linear Velocity on 𝑥-Axis 

• 𝑣 = Linear Velocity on 𝑦-Axis 

• 𝑤 = Linear Velocity on 𝑧-Axis 

• 𝑝 = Angular Velocity around 𝑥-Axis 

• 𝑞 = Angular Velocity around 𝑦-Axis 

• 𝑟 = Angular Velocity around 𝑧-Axis 

• 𝑘𝑓 = Force Constant 

• 𝑘𝑚 = Moment Constant 

• 𝐼𝑥𝑥 = Mass Moment of Inertia About 𝑥-axis 

• 𝐼𝑦𝑦 = Mass Moment of Inertia About 𝑦-axis 

• 𝐼𝑧𝑧 = Mass Moment of Inertia About 𝑧-axis 

• 𝑓𝑖 = Lifting Force 

• τ𝑖 = Lifting Moment 

• 𝑇 = Altitude Maneuver Force 

• τϕ = Roll Maneuver Force 

• τθ = Pitch Maneuver Force 

• τψ = Yaw Maneuver Force 

• 𝑙 = Distance Between the Quadcopter Center and the Motors 
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• ω𝑛 = Angular Velocity of nth Rotor 

• 𝑚 = Total Mass of Quadcopter 

• 𝑔 = Gravitational Force 

• 𝐸𝑠 = Error Value 

• 𝑁 = Filter Coefficient 

• 𝐾𝑢 = Ultimate Gain 

• 𝑇𝑢 = Oscillation Period 

• 𝐹 = Force 

• 𝑎 = Acceleration 
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