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Abstract 

 

In this study, we deal with the spherical 

product surface whose Gauss map G  satisfies the 

equality )(=1 CGfGL   where 
1L  is the Cheng-

Yau operator in Galilean 3-space 
3G . We obtain the 

necessary and sufficient conditions for spherical 

product surface to have 1L -pointwise 1-type Gauss 

map in 
3G .  

 

Keywords: Spherical product surface, Cheng-Yau 
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1. Introduction 

 

Finite type immersions are first given by 

Chen (Chen 1983), (Chen 1984), (Chen 1996). Let 

M  be a submanifold in m -dimensional Euclidean 

space 
mIE . Isometric immersion Mx : 

mIE  is 

called as a finite type if it can be written as a finite 

sum of eigenvectors of the Laplacian   of M  for a 

constant map 0x , and non-constant maps 

kxxx ,...,, 21
, i.e., 

.=
1=

0 i

k

i

xxx   

Here, ,= iixx   
i IR  , ki 1 . The  
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submanifold is said to be k -type if the numbers 
i s 

are different (Chen 1984).           

        Then, by Chen and Piccinni, these immersions 

are generalized to the Gauss map G  of M  as  

               )(= CGaG   

for a constant vector C  and a real number a  in 

(Chen and Piccini 1987). A submanifold that satisfies 

the last equality has 1 type Gauss map. After that, 

in the last equality, a non-constant differentiable 

function f  is taken instead of a . Namely, the last 

equality turns into  

).(= CGfG                        (1) 

            A submanifold that satisfies the equation (1) is 

said to have pointwise 1 type Gauss map. Also, if 

the vector C  is zero, the pointwise 1 type Gauss 

map is called as the first kind. Otherwise, it is called 

as the second kind (Chen et al. 2005). Surfaces 

satisfying the equation (1) are the subject of many 

studies such as (Arslan et al. 2011), (Arslan et al. 

2014), (Arslan and Milousheva 2016), (Choi and Kim 

2001), (Kişi and Öztürk 2018), (Kişi and Öztürk 

2019a), (Kişi and Öztürk 2019b). 

In (Alias and Gürbüz 2006), (Kashani 2009), 

the notion of finite type submanifolds is generalised 

by replacing the Laplacian operator with operators 

kL  1)1,2,...,=( nk  that represent the linear 

operators of the first variation of the 1)( k -th mean 

curvature of a submanifold. Here, =0L  and 1L  

is the Cheng-Yau operator. Recently, some papers 

published about the surfaces having 1L -pointwise 1-

type Gauss map in some spaces, such as (Güler and 

Turgay 2019), (Kim et al 2016), (Kim and Turgay 

2013), (Kim and Turgay 2017), (Mohammadpouri 

2018), (Qian and Kim 2015), (Yoon et al. 2015). 

Embeddings of product spaces defined by 

Kuiper with a new type in the 
m n dIE  

 as follows: 

mailto:ilim.ayvaz@kocaeli.edu.tr
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Let 
1: n ng S IE   and : m df M IE   be 

embeddings from n -sphere into 
1nIE 

 and from an 

m -dimensional manifold M  into 
m dIE 

, 

respectively. Then, the new type embedding is 

 

= : ,n m n dX f g M S IE               (2) 

 

1 2 1( , ) = ( ( ), ( ),..., ( ), ( ) ( ))m d m dX u v f u f u f u f u g v  

 

 (Kuiper 1970). 

In (Arslan et al. 2008), (Bulca et al. 2012), 

authors entitled this type embedding as rotational 

embedding. They deal with a special case of the 

rotational embedding which is called as spherical 

product surfaces in Euclidean spaces. They obtained 

this surface by writing 1== nm , and 1,2=d  in 

(2), respectively. Moreover, in Galilean 3-space, 

spherical product surface is studied in (Aydın and 

Öğrenmiş 2016). 

 

2. Preliminaries 

 

Here, some preliminaries about Galilean 

geometry are given. For more detailed information, 

the studies (Röschel 1986), (Yaglom 1979) can be 

examined. 

The scalar product and the cross product of 

the two vectors  321 ,,= aaaa  and 

 321 ,,= bbbb  in 
3G  are defined as  

1 1 1 1

2 2 3 3 1 1

, 0 0
, =

= 0 = 0,

a b if a or b
a b

a b a b if a and b

 



   (3) 

and 

2 3

1 2 3

1 2 3

0 e e

= ,a b a a a

b b b

                        (4) 

respectively. Here, 
2e =(0,1,0) and 

3e =(0,0,1) are 

orthonormal unit vectors. The length of the vector 

),,(= 321 aaaa  is given as follows:  











0=,

0,
=

1

2

3

2

2

11

aifaa

aifa
a             (5) 

(Pavkovic and Kameranovic 1987). 

An admissible unit speed curve 

3: I IR G    is given with the parametrization  

       )).(),(,(=)( uzuyuu  

For an isometric immersion M
~

M:X   from a 

hypersurface M  from an 1)( n -dimensional 

Riemannian manifold M
~

, and for the Levi-Civita 

connections 
~

 of M
~

 and   of M , the Gauss 

formula is given by 

        ,Y),X(SY=Y
~

XX   

where )(, MYX   and S  is the shape operator 

of M . It is known that the eigenvalues 
nkkk ,...,, 21

 

of S  are called as the principal curvatures of M . 

For a smooth function f  on M, linear operators sLk
 

are defined as  

          ))((=)( fPdivfL kk   

where   is the gradient, div  is the divergence 

operator and  

            
i

ik

i
k

i

k SsP  1)(=
0=

 

is the Newton k-th transformation, kk H
k

n
s 








=  is 

the k-th mean curvature (Cheng and Yau 1977). Thus, 

for 0=k , nIP =0  (
nI  is the identity matrix), and 

for 1=k , SIStrP n )(=1
. 

Now, let M  be a surface, 21,ee  be the 

principal directions correspond to the curvatures 

21,kk  of M . From (2), for a smooth function f , 

the Cheng-Yau operator fL1  can be given as 

))((= 11 fPdivfL   

   1 2 1 2 1 2 2 1 1 2 1 2 2 1
2 1

= [ ] [ ] .e ee k e f e k e f k e e e f k e e e f    

Hence, the Cheng-Yau operator 1L  can be given by 

1 1 2 1 2 1 2 2 1 1 1 2 2
2 1

2 1

= [ ] [ ] e e
e e

L e k e e k e k e e k e e 

   
             

   

(Kim and Turgay 2013). 

Let the surface M  parametrized with 

)),(),,(),,((=),( 21212121 uuzuuyuuxuuX

in 
3G . To represent the partial derivatives, we use 



44 |  İ. Kişi and G. Öztürk EAJS, Vol. VII Issue II 

2.,1,=,=,
2









ji

uu

x
xand

u

x
x

ji

ij

i

i

If 0, ix  for some 1,2=i , then the surface is 

admissible (i.e. having not any Euclidean tangent 

planes). The first fundamental form I  of the surface 

M  is defined as 

),2()(= 2

2
22

21
12

2

1
11

2

2
2

1
1 uuuuuu dhddhdhdgdgI  

where 
ii xg ,= , jijiij zzyyh ,,,,=  ; 1,2=, ji  

and  





 

.:1,

,:0,
=

21

21

isotropicisddif

isotropicnonisddif

uu

uu


Let a function W  is given by  

   
2 2

1 2 2 1 2 1 1 2= , , , , , , , ,W x z x z x y x y       (6) 

Then, the unit normal vector field is given as 

).,,,,,,,,,(0,
1

= 12211221 yxyxzxzx
W

G   (7) 

Similarly, the second fundamental form II  of the 

surface M  is defined as  

,2= 2

2
22

21
12

2

1
11 uuuu dLddLdLII   

where  

1 , 1 1 1

1

1
= (0, , , , ) (0, , , , ), , 0ij ij ij i jL g y z g y z N g

g
 

 

or 

2 , 2 2 2

2

1
= (0, , , , ) (0, , , , ), , 0.ij ij ij i jL g y z g y z N g

g
 

 

The Gaussian and the mean curvatures of M  are 

defined as  
2 2 2

11 22 12 2 11 1 2 12 1 22

2 2

2
=  and = .

2

L L L g L g g L g L
K H

W W

  

(8) 

A surface is called as flat (resp. minimal) if its 

Gaussian (resp. mean) curvatures vanish (Aydın et al. 

2019), (Röschel 1986). 

 

Lemma 2.1 (Kim and Turgay 2013) Let M  

be an oriented surface in 
3IE  and K  and H  be the 

Gaussian and the mean curvatures of M , 

respectively. Then the Gauss map G  of M  satisfies  

.2=1 HKGKGL                        (9) 

 

               Definition 2.2 (Kim and Turgay 2013) Let 

M  be an oriented surface in 
3IE . Then, M  is said 

to have 1L -harmonic Gauss map if its Gauss map 

satisfies 0=1GL  .  

 

Definition 2.3 (Kim and Turgay 2013) Let 

M  be an oriented surface in 
3IE . Then, M  is said 

to have 1L -pointwise 1-type Gauss map if its Gauss 

map satisfies  

 CGfGL =1                     (10) 

for a smooth function f  and a constant vector C . 

Moreover, if the vector C  is zero, the pointwise 1L -

type Gauss map is called as the first kind. Otherwise, 

it is called as the second kind.  

 

3. Spherical Product Surface with 1L  Pointwise 1-

Type Gauss Map in 
3G  

 

For the smooth functions p  and q , let 

 )(,=)( upuu  and  )(,=)( vqvu  be the 

unit speed plane curves in Galilean 2 -space 
2G . 

Then the spherical product patch is given as 

2 3= : ,

( , ) = ( , ( ) , ( ) ( )).

X G G

X u v u p u v p u q v

  
       (11) 

The surface M  given with (11) is called as spherical 

product surface in 
3G . 

From the parametrization of the surface, 

0.=,=1,=,= 2211 ugug          (12) 

An orthonormal frame  Gee ,, 21  of M  is given by  

 1 = = 1, ( ) , ( ) ( ) , = 1' 'u

u

u

X
e p u v p u q v X

X
  (13) 

 

 
 

 2
2

2 )(1=,

)(1

)(0,1,
== vqpX

vq

vq

X

X
e '

v
'

'

v

v 



and 

 
 

,

1

,10,
=

2'

'

q

q
G




                      (14) 
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where  21= 'qpW  . The coefficients of the 

second fundamental form are obtained as 

   
11 12 22

2 2
= , = 0, = ,

1 1

'' ''

' '

p A pq
L L L

q q 

   (15) 

where )()(=)(= vqvvqvAA '  . From, (12) and 

(15), curvature functions of M  are obtained as 

     2
3

2
22

12

=,

1

=
'

''

'

''''

qp

q
H

qp

Aqp
K



  (16) 

(Aydın and Öğrenmiş 2016). 

 

Theorem 3.4 (Aydın and Öğrenmiş 2016) 

Let M  be a spherical product surface given with the 

parametrization (11) in 
3G . Then, M  is minimal if 

and only if the curve   is a line and the surface is an 

open part of an isotropic plane.  

 

Theorem 3.5 Aydın and Öğrenmiş 2016) 

Let M  be a spherical product surface given with the 

parametrization (11) in 
3G . Then, M  is flat if and 

only if it is either an isotropic plane or the generating 

curve   is a line.  

             By (13) and (16), we write the gradient of the 

Gaussian curvature  

  

    

  

2 2

1 22 3
2 2

2

1 ( ) 4
= ,

1 1

'' ' ''' '' ' '' '' '
''

' '

p q q A q A p q q A
q AB

K e e

p q p q

  
 

 

(17) 

where )()()()(=)(= upupupupuBB ''''''  . 

Thus, from (9), (16) and (17), we obtain the 

Cheng-Yau operator of the Gauss map as

   1222
1

1

= e

qp

ABq
GL

'

''




                                     (18) 

 

   
   232

22

1

4))((1
e

qp

AqqpAqAqqp

'

''''''''''''''






 

  
.

1 2

7
22

2

G

qp

Aqp

'

''''




  (20) 

We assume that the spherical product surface M  has 

1L -pointwise 1-type Gauss map of the first kind, i.e. 

fGGL =1  for a smooth function f . Then, from 

(13), (14) and (18),   

  

    

      

   

2
2

3
2 22

4
2

2

2

1 1, ,

1
1 ( ) 4 0,1,

1

0, ,1 .

'' ' ' '

'' ' ''' '' ' '' '' ' '

'

'' '' '

q q AB p v p q

pp q q A q A pp q q A q

p q

p q A q





  
    
   


  


 
 ,10,

1

=
2

'

'

q

q

f




                                       (19) 

From (19), 0=ABq ''
. Here, 0'q , 

0''q , 0A , and 0'p , 0''p , otherwise 

f  would be zero. Then, 
2= pcp ''

 and so 

cucu ececup  21=)( . By the second and the third 

components of (21), we have  

         
3 7

2 2 2 22 221 ( ) 4 = 1'' ' ''' '' ' '' '' ' '' ' '' ' 'pp q q A q A pp q q A p q q A fp q q    

(20) 

and   

         
3 7

2 2 2 22 22 21 ( ) 4 ( ) = 1 .'' ' ' ''' '' ' '' '' ' '' '' 'pp q q q A q A pp q q A p q A fp q     

(21) 

Multiplying (20) with 
'q , and then adding the 

obtained equation by (21), we get 

     ,1= 2

7
222 ''''' qfpAqp   

where 
2= pcp ''

. Hence, we have 

 

  
.

1

=

2

7
22

2

'

''''

qp

Aqp
f




                       (22) 

Then, multiplying (21) with 
'q , and then adding the 

obtained equation by (20), we get 

       
3

2 2 22
1 ( ) 4 ( ) = 0' ''' ' '' '' ' 'q q q v q q v q q q v q         (23) 

Then, we give the following theorems: 

 

Theorem 3.6 Let M  be a spherical product 

surface given with the parametrization (11) in 
3G . 

M  has 1L -pointwise 1-type Gauss map of the first 

kind if and only if 
cucu ececup  21=)(  and )(vq  

satisfies the differential equation (23).  
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              Theorem 3.7 Let M  be a spherical product 

surface given with the parametrization (11) in 
3G . 

M  has 1L -pointwise 1-type Gauss map of the first 

kind if and only if 

  22

2

1

=
'

''

q

Aqc
K



 which is a 

function of v  and 

 2
3

2)(1

=
'

''

qp

Kq
f




.  

              Now, we consider that the spherical product 

surface M  has 1L -pointwise 1-type Gauss map of 

the second kind, i.e.  CGfGL =1  for a smooth 

function f  and a nonzero constant vector C . 

Differentiating (13) and (14) with respect to 1e  and 

2e , we obtain the derivatives 

 

   
,G

)q(1

Ap
e

)q(1

)vqq(p
=e

~

2

1
2'

''

2

2

1
2'

'''

1
1

e








  

0,=e
~

2
1

e  

0,=G
~

1
e                                                            (24) 

,e
p

p
=e

~
2

'

1
2

e  

 
,G

)q(1p

q
=e

~

2

3
2'

''

2
2

e



  

 
.e

)q(1p

q
=G

~
2

2

3
2'

''

2
e




  

From the equation (10) and (18), we can write the 

vector C  as 

   1222 1

= e

qfp

ABq
C

'

''




 

   
   232

22

1

4))((1
e

qfp

AqqpAqAqqp

'

''''''''''''''






 

  
.1

1 2

7
22

2

G

qfp

Aqp

'

''''






















                                   (25) 

Since C  is a nonzero constant vector, 0=C
~

1
e  

and 0=C
~

2
e . From (24) and (25), we get 

  
122'2

''

1
1

e e

q1fp

ABq
e=C

~
=0


















  

    
2

2

5
22

32
1

)(1

)(

1

e

qfp

ABvqqqp

qfp

D
e

'

'''''

' 




































  (28) 

 

    
,

)(1

1

1 2

5
22

2

2

7
22

2

1 G

qfp

BAqp

qfp

Aqp
e

'

''''

'

''''










































  

(26) 

 

and  

  
122'2

''

2
2

e e

q1fp

ABq
e=C

~
=0


















  

    

 

    

2

2 23 3 7 2
2 2

32 2 22 2

1

1 11 ( ) 1 ( )

'' '''' '' '

' '' '

p q AD q q p AB
e e

fp q fp qp q fp q

    
     

       
            

 
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(27) 

where     
2 2

= ( , ) = 1 ( ) 4 .'' ' ''' '' ' '' '' 'D D u v p q q A q A p q q A    .  

 

Since 
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we get 
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  
.,=

1
222

constcc

qfp

ABq

'

''




 

Thus, we have 

  
.

1

=
222 '

''

qcp

ABq
f




                    (28) 

 

Theorem 3.8  Let M  be a spherical product surface 

given with the parametrization (11) in 
3G . M  has 

1L -pointwise 1-type Gauss map of the second kind if 

and only if f  is a constant function given with (28).  

 

References 

 

ALIAS LJ, GÜRBÜZ N (2006). An extension of 

Takahashi theorem for the linearized operators 

of the higher order mean curvatures. Geom. 

Dedicata, 121, 113–127. 

ARSLAN K, BAYRAM BK, BULCA B, KIM YH, 

MURATHAN C, ÖZTÜRK G (2011). 

Rotational embeddings in 
4IE  with pointwise 

1-type Gauss map. Turk. J. Math. 35, 493–

499. 

ARSLAN K, BULCA B, BAYRAM BK, ÖZTÜRK 

G, UGAIL H (2009). On spherical product 

surfaces in 
3IE . International Conference on 

CyberWorlds. 1,  132–137. 

ARSLAN K, BULCA B, MILOUSHEVA V (2014). 

Meridian surfaces in 
4IE  with pointwise 1-

type Gauss map. Bull. Korean Math. Soc. 51, 

911–922. 

AYDIN ME, KÜLAHÇI M, ÖĞRENMIŞ AO (2019). 

Constant curvature translation surfaces in 

Galilean 3-space. International Electronic 

Journal of Geometry. 12, 9–19. 

ARSLAN K, MILOUSHEVA V (2016). Meridian 

surfaces of elliptic or hyperbolic type with 

pointwise 1-type Gauss map in Minkowski 4-

space. Taiwanese Journal of Mathematics. 20, 

311–332. 

AYDIN ME, ÖĞRENMIŞ AO (2016). Spherical 

product surfaces in the Galilean space. 

Konuralp Journal of Mathematics. 4, 290–298. 

BULCA B, ARSLAN K, BAYRAM BK, ÖZTÜRK 

G (2012). Spherical product surfaces in 
4IE . 

An. St. Univ. Ovidius Constanta. 20,  41–54. 

CHEN BY (1983). On submanifolds of finite type. 

Soochow J. Math. 9,  65–81. 

CHEN BY (1984). Total Mean Curvature and 

Submanifolds of Finite Type, Series in Pure 

Mathematics. 1. World Scientific Publishing 

Co. Singapore. 

CHEN BY (1996). A report on submanifolds of finite 

type. Soochow J. Math. 22,  117–337. 

CHEN BY, PICCINNI P (1987). Submanifolds with 

finite type Gauss map. Bull. Austral. Math. 

Soc. 35, 161–186. 

CHEN BY, CHOI M, KIM YH (2005). Surfaces of 

revolution with pointwise 1-type Gauss map. 

J. Korean Math. 42, 447–455. 

CHENG SY, YAU ST (1977). Hypersurfaces with 

constant scalar curvature. Math. Ann. 225, 

195–204. 

CHOI M, KIM YH (2001). Characterization of the 

helicoid as ruled surfaces with pointwise 1-

type Gauss map. Bull. Korean Math. Soc. 38, 

753–761. 

GÜLER E, TURGAY NC (2019). Cheng-Yau 

operator and Gauss map of rotational 

hypersurfaces in 4-space. Mediterr. J. Math. 

16, 1–16. 

KASHANI SMB (2009). On some 1L -finite type 

(hyper)surfaces in 
1nIR 

. Bull. Korean Math. 

Soc. 46, 35–43. 

KIM DS, KIM JR, KIM YH (2016). Cheng-Yau 

operator and Gauss map of surfaces of 

revolution. Bull. Malays. Math. Sci. Soc. 39, 

1319–1327. 

KIM YH, TURGAY NC (2013). Surfaces in 
3IE  

with 1L -pointwise 1-type Gauss map. Bulletin 

of the Korean Mathematical Society. 50, 935–

949. 

KIM YH, TURGAY NC (2017). On the ruled 

surfaces with 1L -pointwise 1-type Gauss map. 

Kyungpook Math. J. 57,  133–144. 

KIŞI I , ÖZTÜRK G (2018). A new type of tubular 

surface having pointwise 1-type Gauss map in 

Euclidean 4-space 
4IE . J. Korean Math. Soc. 

55, 923–938. 

KIŞI I , ÖZTÜRK G (2019a). Spherical product 

surface having pointwise 1-type Gauss map in 

Galilean 3-space 
3G . International Journal of 

Geometric Methods in Modern Physics. 16, 1–

10. 

KIŞI I , ÖZTÜRK G (2019b). Tubular surface having 

pointwise 1-type Gauss map in Euclidean 4-

space. International Electronic Journal of 

Geometry. 12, 202–209. 



48 |  İ. Kişi and G. Öztürk EAJS, Vol. VII Issue II 

KUIPER NH (1970). Minimal total absolute 

curvature for immersions. Invent. Math. 10, 

209–238. 

MOHAMMADPOURI A (2018). Hypersurfaces with 

rL -pointwise 1-type Gauss map. Journal of 

Mathematical Physics, Analysis, Geometry. 

14, 67–77. 

PAVKOVIC BJ, KAMENAROVIC I (1987). The 

equiform differential geometry of curves in the 

Galilean space 
3G . Glasnik Matematicki. 22, 

449–457. 

ROSCHEL O. Die Geometrie Des Galileischen 

Raumes. Forschungszentrum Graz Research 

Centre, Austria, 1986. 

QIAN J, KIM YH (2015). Classifications of canal 

surfaces with 1L -pointwise 1-type Gauss map. 

Milan J. Math. 83, 145–155. 

YAGLOM IM (1979). A Simple Non-Euclidean 

Geometry and Its Physical Basis. Springer-

Verlag Inc., New York. 

YOON DW, KIM YH, JUNG JS (2015). Rotation 

surfaces with 1L -pointwise 1-type Gauss map 

in pseudo-Galilean space. Annales Polonici 

Mathematici. 113,  255–267.  


