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1. Introduction
The initial work on fuzzy sets was established by Zadeh [1]. Then, several authors have advanced the theory of fuzzy set. Park
[2] defined intuitionistic fuzzy metric space and also intuitionistic fuzzy normed space was examined by Lael and Nourouzi [3].
Some beneficial results on this topic can be found in [4]-[7].

The neutrosophic set (NS) was worked by F. Smarandache [8] who defined the degree of indeterminacy (i) as indepedent
component. In [9], neutrosophic logic was firstly examined. It is a logic where each proposition is identified to have a degree of
truth (T), falsity (F), and indeterminacy (I). A Neutrosophic set (NS) is specified as a set where each component of the universe
has a degree of T, F and I. Kirişçi and Şimşek [10] discussed neutrosophic metric space (NMS) with continuous t-norms and
continuous t-conorms. The theory of NNS and statistical convergence in NNS were first developed by Kirişci and Şimşek
[11]. Neutrosophic set and neutrosophic logic has utilized by applied sciences and theoretical science for instance summability
theory, decision making, robotics. Some remarkable results on this topic can be reviewed in [12]-[15].

The concept of statistical convergence was investigated under the name almost convergence by Zygmund [16]. It was
formally introduced by Fast [17]. Later the idea was associated with summability theory by Fridy [18], and many others (see
[19]-[22]). The studies of triple sequences have seen rapid growth. The initial work on the statistical convergence of triple
sequences was establised by Şahiner et al. [23] and the other researches continued by [24, 25]. The idea of difference sequences
was given by Kızmaz [26] where ∆x = (∆xk) = xk− xk+1. Başarır [27] investigated the ∆ -statistical convergence of sequences.
Also, the generalized difference sequence spaces were worked by various authors [28]-[30].

Since sequence convergence plays a very significant role in the fundamental theory of mathematics, there are many
convergence notions in summability theory, in approximation theory, in classical measure theory, in probability theory, and the
relationships between them are discussed. The interested reader may consult Hazarika et al. [31], the monographs [32] and [33]
for the background on the sequence spaces and related topics. Inspired by this, in this study, a further investigation into the
mathematical features of triple sequences will be thought. Section 2 recalls some definitions in summability theory and NNS.
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In Section 3, we study triple ∆-statistical convergent sequences in a NNS. Also, we examine the notions of ∆-statistical limit
point and ∆-statistical cluster point and prove their important features.

2. Definitions and preliminaries
Now, we remember essential definitions required in this study.

Triangular norms (t-norms) (TN) were considered by Menger [34]. Triangular conorms (t-conorms) (TC) recognized as
dual operations of TNs. TNs and TCs are significant for fuzzy operations.

Definition 2.1. ([34]) Let ∗ : [0,1]× [0,1]→ [0,1] be an operation. If ∗ provides subsequent cases, it is named continuous TN.
Take a,b,c,d ∈ [0,1],

(a) a∗1 = a,
(b) If a≤ c and b≤ d, then a∗b≤ c∗d,
(c) ∗ is continuous,
(d) ∗ associative and commutative.

Definition 2.2. ([34]) Let ♦ : [0,1]× [0,1]→ [0,1] be an operation. If ♦ provides subsequent cases, it is named to be continuous
TC.

(a) a♦0 = a,
(b) If a≤ c and b≤ d, then a♦b≤ c♦d,
(c) ♦ is continuous,
(d) ♦ associative and commutative.

Definition 2.3. ([11]) Let F be a vector space, N = {〈ϖ ,G (ϖ) ,B (ϖ) ,Y (ϖ)〉 : ϖ ∈ F} be a normed space (NS) such that
N :F×R+→ [0,1]. While subsequent situations hold, V = (F,N ,∗ ,♦) is called to be NNS. For each ϖ ,κ ∈ F and λ ,µ > 0
and for all σ 6= 0,

(a) 0≤ G (ϖ ,λ )≤ 1, 0≤B (ϖ ,λ )≤ 1, 0≤ Y (ϖ ,λ )≤ 1 ∀λ ∈ R+,
(b) G (ϖ ,λ )+B (ϖ ,λ )+Y (ϖ ,λ )≤ 3 (for λ ∈ R+),
(c) G (ϖ ,λ ) = 1 (for λ > 0) iff ϖ = 0,

(d)G (σϖ ,λ ) = G
(

ϖ , λ

|σ |

)
,

(e) G (ϖ ,µ)∗G (κ,λ )≤ G (ϖ +κ,µ +λ ),
( f ) G (ϖ , .) is non-decreasing continuous function,
(g) limλ→∞ G (ϖ ,λ ) = 1,
(h) B (ϖ ,λ ) = 0 (for λ > 0) iff ϖ = 0,
(i) B (σϖ ,λ ) = B

(
ϖ , λ

|σ |

)
,

( j) B (ϖ ,µ)♦B (κ,λ )≥B (ϖ +κ,µ +λ ),
(k) B (ϖ , .) is non-decreasing continuous function,
(l) limλ→∞ B (ϖ ,λ ) = 0,
(m) Y (ϖ ,λ ) = 0 (for λ > 0) iff ϖ = 0,
(n) Y (σϖ ,λ ) = Y

(
ϖ , λ

|σ |

)
,

(o) Y (ϖ ,µ)♦Y (κ,λ )≥ Y (ϖ +κ,µ +λ ) ,
(p) Y (ϖ , .) is non-decreasing continuous function,
(r) limλ→∞ Y (ϖ ,λ ) = 0,
(s) If λ ≤ 0, then G (ϖ ,λ ) = 0,B (ϖ ,λ ) = 1 and Y (ϖ ,λ ) = 1.
Then N = (G ,B,Y ) is called Neutrosophic norm (NN).
We recall the notions of convergence, statistical convergence, lacunary statistical convergence for single sequences in a

NNS.

Definition 2.4. ([11]) Take V as an NNS. Let ε ∈ (0,1) and λ > 0. Then, a sequence (xk) is converges to L ∈ F iff there is
N ∈ N such that G (xk−L,λ )> 1− ε , B (xk−L,λ )< ε , Y (xk−L,λ )< ε . That is,

lim
k→∞

G (xk−L,λ ) = 1, lim
k→∞

B (xk−L,λ ) = 0 and lim
k→∞

Y (xk−L,λ ) = 0

as λ > 0. The convergent in NNS is signified by N −limxk = L.
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Definition 2.5. ([11]) A sequence (xk) is named to be statistically convergent to L ∈ F with regards to NN (SC-NN), provided
that, for each λ > 0 and ε > 0

lim
n→∞

1
n
|{k ≤ n : G (xk−L,λ )≤ 1− ε or B (xk−L,λ )≥ ε , Y (xk−L,λ )≥ ε}|= 0.

It is demonstrated by SN -limxk = L.

Now we give the following notion.

Definition 2.6. ([23]) A subset K of N3 is said to have natural density δ3(K) if

δ3(K) = P− lim
n,l,k→∞

|Knlk|
nlk

exists, where the vertical bars denote the number of (n, l,k) in K such that p≤ n, q≤ l, r ≤ k. Then, a real triple sequence
x = (xpqr) is said to be statistically convergent to L in Pringsheim’s sense if for every ε > 0,

δ3
({

(n, l,k) ∈ N3 : p≤ n,q≤ l,r ≤ k,
∣∣xpqr−L

∣∣≥ ε
})

= 0.

3. Main results
Definition 3.1. A triple sequence w = (wnlk) in V is named to be ∆-convergent to ζ ∈ F with regards to (w.r.t in short) NN
(G ,B,Y ) on condition that for every λ > 0 and ε ∈ (0,1), there is a positive integer k0 such that

G (∆wnlk−ζ ,λ )> 1− ε and B (∆wnlk−ζ ,λ )< ε, Y (∆wnlk−ζ ,λ )< ε

for every n ≥ k0, l ≥ k0,k ≥ k0 where n, l,k ∈ N and ∆wnlk = wnlk−wn,l+1,k−wn,l,k+1 +wn,l+1,k+1−wn+1,l,k +wn+1,l+1,k +
wn+1,l,k+1−wn+1,l+1,k+1. We indicate (G ,B,Y )− lim∆w = ζ or ∆w→ ζ ((G ,B,Y )) as n, l,k→ ∞.

Definition 3.2. A triple sequence w = (wnlk) is named to be ∆-Cauchy in V w.r.t NN (G ,B,Y ) if for each ε ∈ (0,1) and λ > 0,
there are positive integers t0, t1, t2 such that G (∆wnlk−∆wpqr,λ )> 1−ε and B (∆wnlk−∆wpqr,λ )< ε,Y (∆wnlk−∆wpqr,λ )<
ε , whenever n, p≥ t0, l,q≥ t1, k,r ≥ t2.

Definition 3.3. A triple sequence w = (wnlk) is named to be ∆-statistical convergent to ζ in V w.r.t NN (G ,B,Y ) if for each
ε ∈ (0,1) and λ > 0,

δ3
({

(n, l,k) ∈ N3 : G (∆wnlk−ζ ,λ )≤ 1− ε or B (∆wnlk−ζ ,λ )≥ ε, Y (∆wnlk−ζ ,λ )≥ ε
})

= 0.

In this case, we denote st3
N(∆)− limwnlk = ζ .

Definition 3.4. A triple sequence w = (wnlk) is named to be ∆-statistically Cauchy in V w.r.t NN (G ,B,Y ) if for each ε ∈ (0,1)
and λ > 0, there are positive integers U, V and Y such that

δ3

({
(n, l,k) ∈ N3 : G (∆wnlk−∆wpqr,λ )≤ 1− ε or

B (∆wnlk−∆wpqr,λ )≥ ε, Y (∆wnlk−∆wpqr,λ )≥ ε

})
= 0

for all n, p≥U, l,q≥V , k,r ≥ Y .

Lemma 3.5. For each ε ∈ (0,1) and λ > 0, the subsequent cases are equivalent.

(a) st3
N(∆)− limwnlk = ζ .

(b)

δ3

({
(n, l,k) ∈ N3 : G (∆wnlk−ξ ,λ )≤ 1− ε or

B (∆wnlk−ξ ,λ )≥ ε, Y (∆wnlk−ξ ,λ )≥ ε

})
= 0,

(c)

δ3

({
(n, l,k) ∈ N3 : G (∆wnlk−ξ ,λ )> 1− ε and
B (∆wnlk−ξ ,λ )< ε, Y (∆wnlk−ξ ,λ )< ε

})
= 1,

(d)

st3
N(∆)− limG (∆wnlk−ξ ,λ ) = 1 and

st3
N(∆)− limB (∆wnlk−ξ ,λ ) = 0,

st3
N(∆)− limY (∆wnlk−ξ ,λ ) = 0.
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Proof. (a)⇒ (b) Presume that st3
N(∆)− limwnlk = ζ . Then, we get for each ε ∈ (0,1) and λ > 0,

δ3

({
(n, l,k) ∈ N3 : G (∆wnlk−ζ ,λ )≤ 1− ε or

B (∆wnlk−ζ ,λ )≥ ε, Y (∆wnlk−ζ ,λ )≥ ε

})
= 0.

(b)⇒ (c) Take ε ∈ (0,1) and λ > 0. Then, we acquire

δ3

({
(n, l,k) ∈ N3 : G (∆wnlk−ξ ,λ )> 1− ε and
B (∆wnlk−ξ ,λ )< ε, Y (∆wnlk−ξ ,λ )< ε

})
= 1−δ3

({
(n, l,k) ∈ N3 : G (∆wnlk−ξ ,λ )≤ 1− ε or

B (∆wnlk−ξ ,λ )≥ ε, Y (∆wnlk−ξ ,λ )≥ ε

})
= 1.

(c)⇒ (d) Take ε ∈ (0,1) and λ > 0. Then, we obtain{
(n, l,k) ∈ N3 : |G (∆wnlk−ξ ,λ )−1| ≥ ε

}
=
{
(n, l,k) ∈ N3 : G (∆wnlk−ξ ,λ )≤ 1− ε

}
∪
{
(n, l,k) ∈ N3 : G (∆wnlk−ξ ,λ )≥ 1+ ε

}
.

Therefore, we have

δ3
({

(n, l,k) ∈ N3 : |G (∆wnlk−ξ ,λ )−1| ≥ ε
})

= δ3
({

(n, l,k) ∈ N3 : G (∆wnlk−ξ ,λ )≤ 1− ε
})

+δ3
({

(n, l,k) ∈ N3 : G (∆wnlk−ξ ,λ )≥ 1+ ε
})

.

Since,

δ3
({

(n, l,k) ∈ N3 : G (∆wnlk−ξ ,λ )≤ 1− ε
})

= 0 and
δ3
({

(n, l,k) ∈ N3 : G (∆wnlk−ξ ,λ )≥ 1+ ε
})

= 0

we get

δ3
({

(n, l,k) ∈ N3 : |G (∆wnlk−ξ ,λ )−1| ≥ ε
})

= 0.

So st3
N(∆)− limG (∆wnlk−ξ ,λ ) = 1. Similarly, we obtain st3

N(∆)− limB (∆wnlk−ξ ,λ ) = 0, st3
N(∆)− limY (∆wnlk−ξ ,λ ) =

0.

Theorem 3.6. If w = (wnlk) is ∆-statistically convergent to ζ in V w.r.t NN (G ,B,Y ), then st3
N(∆)− limwnlk is determined

unique.

Proof. Let st3
N(∆)− limwnlk = ζ1 and st3

N(∆)− limwnlk = ζ2, where ζ1 6= ζ2. For a given ε ∈ (0,1) select ν ∈ (0,1) such that
(1−ν)∗ (1−ν)> 1− ε and ν♦ν < ε . For any λ > 0, we identify the subsequent sets:

FG ,1 (ν ,λ ) =
{
(n, l,k) ∈ N3 : G (∆wnlk−ξ1,λ )≤ 1−ν

}
FG ,2 (ν ,λ ) =

{
(n, l,k) ∈ N3 : G (∆wnlk−ξ2,λ )≤ 1−ν

}
FB,1 (ν ,λ ) =

{
(n, l,k) ∈ N3 : B (∆wnlk−ξ1,λ )≥ ν

}
FB,2 (ν ,λ ) =

{
(n, l,k) ∈ N3 : B (∆wnlk−ξ2,λ )≥ ν

}
FY ,1 (ν ,λ ) =

{
(n, l,k) ∈ N3 : Y (∆wnlk−ξ1,λ )≥ ν

}
FY ,2 (ν ,λ ) =

{
(n, l,k) ∈ N3 : Y (∆wnlk−ξ2,λ )≥ ν

}
Since st3

N(∆)− limwnlk = ζ1, we say

δ3
(
FG ,1 (ν ,λ )

)
= δ3

(
FB,1 (ν ,λ )

)
= δ3

(
FY ,1 (ν ,λ )

)
= 0

for all λ > 0. In addition, utilizing st3
N(∆)− limwnlk = ζ2, we acquire

δ3
(
FG ,2 (ν ,λ )

)
= δ3

(
FB,2 (ν ,λ )

)
= δ3

(
FY ,2 (ν ,λ )

)
= 0

for all λ > 0.
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Now, take

FG ,B,Y (ν ,λ ) :=
(
FG ,1 (ν ,λ )∪FG ,2 (ν ,λ )

)
∩
(
FB,1 (ν ,λ )∪FB,2 (ν ,λ )

)
∩
(
FY ,1 (ν ,λ )∪FY ,2 (ν ,λ )

)
.

Then, contemplate that δ3
(
FG ,B,Y (ν ,λ )

)
= 0 that implies δ3

(
N3�FG ,B,Y (ν ,λ )

)
= 1. If (n, l,k) ∈ N3�FG ,B,Y (ν ,λ ),

then we get three possible situations. The former is the situation of (n, l,k) ∈ N3�
(
FG ,1 (ν ,λ )∪FG ,2 (ν ,λ )

)
, the second is

(n, l,k) ∈N3�
(
FB,1 (ν ,λ )∪FB,2 (ν ,λ )

)
and the third is (n, l,k) ∈N3�

(
FY ,1 (ν ,λ )∪FY ,2 (ν ,λ )

)
. First think that (n, l,k) ∈

N3�
(
FG ,1 (ν ,λ )∪FG ,2 (ν ,λ )

)
. Then, we acquire

G (ξ1−ξ2,λ )≥ G

(
∆wnlk−ξ1,

λ

2

)
∗G
(

∆wnlk−ξ2,
λ

2

)
> (1−ν)∗ (1−ν) .

Since (1−ν)∗ (1−ν)> 1− ε , we have G (ξ1−ξ1,λ )> 1− ε . Since ε ∈ (0,1) was arbitrary, we get G (ξ1−ξ2,λ ) = 1 for
all λ > 0 which means that ξ1 = ξ2. At the same time, if (n, l,k) ∈ N3�

(
FB,1 (ν ,λ )∪FB,2 (ν ,λ )

)
, we can see

B (ξ1−ξ2,λ )< B

(
∆wnlk−ξ1,

λ

2

)
♦B

(
∆wnlk−ξ2,

λ

2

)
< ν♦ν .

Since ν♦ν < ε , we get B (ξ1−ξ2,λ )< ε . Since ε ∈ (0,1) was arbitrary, we acquire B (ξ1−ξ2,λ ) = 0 for all λ > 0 which
means that ξ1 = ξ2. If we observe the third case, we see that ξ1 = ξ2. Hence, in all conditions, we obtain st3

N(∆)− limwnlk is
determined unique.

Theorem 3.7. Let w = (wnlk) be a sequence in V . If ∆w→ ζ ((G ,B,Y )), then st3
N(∆)− limw = ζ .

Proof. By supposition, for every λ > 0 and ε ∈ (0,1), there is a k0 ∈ N such that

G (∆wnlk−ζ ,λ )> 1− ε and B (∆wnlk−ζ ,λ )< ε, Y (∆wnlk−ζ ,λ )< ε

for every n≥ k0, l ≥ k0,k ≥ k0. This assurances that the set{
(n, l,k) ∈ N3 : G (∆wnlk−ζ ,λ )≤ 1− ε or B (∆wnlk−ζ ,λ )≥ ε, Y (∆wnlk−ζ ,λ )≥ ε

}
has at most finitely many terms. Every finite subset of the N has density zero, so we acquire

δ3
({

(n, l,k) ∈ N3 : G (∆wnlk−ζ ,λ )≤ 1− ε or B (∆wnlk−ζ ,λ )≥ ε, Y (∆wnlk−ζ ,λ )≥ ε
})

= 0

gives the result. Hence, st3
N(∆)− limwnlk = ζ .

The subsequent example indicates that the converse of Theorem 3.7 is not valid.

Example 3.8. Let (F,‖.‖) be a NS. For each a,b ∈ [0,1], select the TN a∗b = ab and the TC a♦b = min{a+b,1}. For every
w = (wnlk) ∈ F and each λ > 0, we contemplate G (w,λ ) = λ

λ+‖w‖ , B (w,λ ) = ‖w‖
λ+‖w‖ and Y (w,λ ) = ‖w‖

λ
. Then V is an NNS.

We identify a sequence (wnlk) by

wnlk =

{
1, n = k2, l = v2,k = t2 (k,v, t ∈ N)
0, otherwise.

Consider

Apqr (ε,λ ) =

{
n≤ p, l ≤ q,k ≤ r : G (wnlk−ξ ,λ )≤ 1− ε or

B (wnlk−ξ ,λ )≥ ε , Y (wnlk−ξ ,λ )≥ ε

}
for every ε ∈ (0,1) and for any λ > 0. Then we acquire

Apqr (ε,λ ) =
{

n≤ p, l ≤ q,k ≤ r : λ

λ+‖wnlk‖
≤ 1− ε or ‖wnlk‖

λ+‖wnlk‖
≥ ε , ‖wnlk‖

λ
≥ ε

}
=
{

n≤ p, l ≤ q,k ≤ r : ‖wnlk‖ ≥ λε

1−ε
, or ‖wnlk‖ ≥ λε

}
= {n≤ p, l ≤ q,k ≤ r : ‖wnlk‖= 1}
=
{

n≤ p, l ≤ q,k ≤ r : n = k2, l = v2,k = t2 (k,v, t ∈ N)
}
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we get

1
pqr

∣∣Apqr (ε,λ )
∣∣= 1

pqr

∣∣{n≤ p, l ≤ q,k ≤ r : n = k2, l = v2,k = t2 (k,v, t ∈ N)
}∣∣≤ √pqr

pqr

which means that limpqr→∞
1

pqr

∣∣Apqr (ε,λ )
∣∣= 0. Hence, we have st3

N(∆)− limwnlk = 0. However, the sequence w = (wnlk) is
not ∆-convergent in the space (F,‖.‖).

Theorem 3.9. Take NNS as V . Then, st3
N(∆)− limwnlk = ζ iff there is a subset

K =
{
(n, l,k) ∈ N3 : n, l,k = 1,2,3, ...

}
⊂ N3

such that δ3 (K) = 1 and (G ,B,Y )− lim(n,l,k)∈K,n,l,k→∞ ∆wnlk = ζ .

Proof. Presume that st3
N(∆)− limwnlk = ζ . Then, for every λ > 0 and j ≥ 1,

K ( j,λ ) =
{
(n, l,k) ∈ N3 : G (∆wnlk−ζ ,λ )> 1− 1

j
and B (∆wnlk−ζ ,λ )<

1
j
, Y (∆wnlk−ζ ,λ )<

1
j

}
and

M ( j,λ ) =
{
(n, l,k) ∈ N3 : G (∆wnlk−ζ ,λ )≤ 1− 1

j
or B (∆wnlk−ζ ,λ )≥ 1

j
, Y (∆wnlk−ζ ,λ )≥ 1

j

}
.

Then δ3 (M ( j,λ )) = 0 since

K ( j,λ )⊃ K ( j+1,λ ) (3.1)

and

δ3 (K ( j,λ )) = 1 (3.2)

for λ > 0 and j ≥ 1. Now we need to show that for (n, l,k) ∈ K ( j,λ ) the triple sequence w = (wnlk) is ∆-convergent to ζ ∈ F
w.r.t NN (G ,B,Y ). Suppose w = (wnlk) be not ∆-convergent to ζ ∈ F w.r.t NN (G ,B,Y ). Therefore, there are β > 0 and
k0 > 0 such that G (∆wnlk−ζ ,λ ) ≤ 1−β or B (∆wnlk−ζ ,λ ) ≥ β , Y (∆wnlk−ζ ,λ ) ≥ β for all n ≥ k0, l ≥ k0,k ≥ k0. Let
β > 1

j and

K (β ,λ ) =
{
(n, l,k) ∈ N3 : G (∆wnlk−ζ ,λ )> 1−β and B (∆wnlk−ζ ,λ )< β , Y (∆wnlk−ζ ,λ )< β

}
.

Then, we have δ3 (K (β ,λ )) = 0. Since β > 1
j , by (3.1) we get δ3 (K ( j,λ )) = 0, which contradicts by (3.2). Therefore,

w = (wnlk) is ∆-convergent to ζ ∈ F w.r.t NN (G ,B,Y ).
Conversely presume that there is a subset K =

{
(n, l,k) ∈ N3 : n, l,k = 1,2,3, ...

}
⊂N3 such that δ3 (K)= 1 and (G ,B,Y )−

lim(n,l,k)∈K,n,l,k→∞ ∆wnlk = L. Then for every λ > 0 and ε ∈ (0,1), there is k0 ∈ N such that G (∆wnlk−ζ ,λ ) > 1− ε and
B (∆wnlk−ζ ,λ )< ε , Y (∆wnlk−ζ ,λ )< ε for all n≥ k0, l ≥ k0,k ≥ k0. Let

M (ε,λ ) :=
{
(n, l,k) ∈ N3 : G (∆wnlk−ζ ,λ )≤ 1− ε or B (∆wnlk−ζ ,λ )≥ ε, Y (∆wnlk−ζ ,λ )≥ ε

}
⊆ N3−

{(
nk0+1, lk0+1kk0+1

)
,
(
nk0+2, lk0+2kk0+2

)
, ...
}

and as a consequence δ3 (M (ε,λ ))≤ 1−1 = 0. Hence st3
N(∆)− limwnlk = ζ . Then, the desired result has been acquired.

Definition 3.10. Let V be an NNS, then ζ is named a ∆-limit point of the sequence w = (wnlk) w.r.t NN (G ,B,Y ) on condition
that there is a subsequence of the sequence w which ∆-converges to ζ w.r.t NN (G ,B,Y ). Let L3

(G ,B,Y )(∆) (w), indicate

the set of all limit points of the sequence w w.r.t NN (G ,B,Y ). Let
{(

wn( j1)l( j2)k( j3)
)}

be a subsequence of w = (wnlk) and
P =

{
(n( j1) , l ( j2) ,k ( j3)) ∈ N3, j1, j2, j3 ∈ N

}
, then we contract

{(
wn( j1)l( j2)k( j3)

)}
by {w}P, which in case δ3 (P) = 0, {w}P

is named a thin subsequence or subsequence of density zero. At the same time, {w}P is a non-thin subsequence of w if P does
not have density zero.

Definition 3.11. Let V be an NNS. Then, ζ is named a ∆-statistical limit point of the sequence w = (wnlk) w.r.t NN (G ,B,Y )
on condition that there is a non-thin subsequence of w that ∆-converges to ζ ∈V w.r.t NN (G ,B,Y ). In that case, we say ζ is
stN(∆)-limit point of sequence w. Throughout Λ3

N(∆) (w) demonstrates the set of all st3
N(∆)-limit point of sequence w.
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Definition 3.12. Let V be an NNS. Then, ζ is named a ∆-statistical cluster point of the sequence w = (wnlk) w.r.t NN (G ,B,Y )
on condition that for every λ > 0 and ε ∈ (0,1),

δ3

({
(n, l,k) ∈ N3 : G (∆wnlk−ζ ,λ )> 1− ε and
B (∆wnlk−ζ ,λ )< ε, Y (∆wnlk−ζ ,λ )< ε

})
> 0

where δ3 = limsupδ3. In that case, we say that ζ is st3
N(∆)-cluster point of sequence w. Throughout Cl3

N(∆) (w) indicates the set

of all st3
N(∆)-cluster point of sequence w.

Definition 3.13. A NNS V is called to be ∆-complete if every ∆-Cauchy sequence is ∆-convergent in V w.r.t NN (G ,B,Y ).

Theorem 3.14. Let V be an NNS. Then, for any sequence w = (wnlk) ∈V , Λ3
N(∆) (w)⊂Cl3

N(∆) (w) .

Proof. Let ζ ∈ ΛN(∆) (w), then there is a non-thin subsequence
(
wn( j1)l( j2)k( j3)

)
of w that ∆-converges to ζ ∈ V w.r.t NN

(G ,B,Y ), i.e.

δ3

({
(n( j1) , l ( j2) ,k ( j3)) ∈ N3 : G

(
∆wn( j1)l( j2)k( j3)−ζ ,λ

)
> 1− ε

and B
(
∆wn( j1)l( j2)k( j3)−ζ ,λ

)
< ε, Y

(
∆wn( j1)l( j2)k( j3)−ζ ,λ

)
< ε

})
= d > 0.

Since {
(n, l,k) ∈ N3 : G (∆wnlk−ζ ,λ )> 1− ε and B (∆wnlk−ζ ,λ )< ε, Y (∆wnlk−ζ ,λ )< ε

}
⊇
{

(n( j1) , l ( j2) ,k ( j3)) ∈ N3 : G
(
∆wn( j1)l( j2)k( j3)−ζ ,λ

)
> 1− ε

and B
(
∆wn( j1)l( j2)k( j3)−ζ ,λ

)
< ε, Y

(
∆wn( j1)l( j2)k( j3)−ζ ,λ

)
< ε

}
.

For every λ > 0 and ε ∈ (0,1), we obtain{
(n, l,k) ∈ N3 : G (∆wnlk−ζ ,λ )> 1− ε and B (∆wnlk−ζ ,λ )< ε, Y (∆wnlk−ζ ,λ )< ε

}
⊇
{
(n( j1) , l ( j2) ,k ( j3)) ∈ N3 : j1, j2, j3 ∈ N

}
�
{

(n( j1) , l ( j2) ,k ( j3)) ∈ N3 : G
(
∆wn( j1)l( j2)k( j3)−ζ ,λ

)
≤ 1− ε

or B
(
∆wn( j1)l( j2)k( j3)−ζ ,λ

)
≥ ε, Y

(
∆wn( j1)l( j2)k( j3)−ζ ,λ

)
≥ ε

}
.

Since
{(

wn( ji)l( j2)k( j3)
)}

is ∆-convergent to ζ w.r.t the NN (G ,B,Y ), the set{
(n( j1) , l ( j2) ,k ( j3)) ∈ N3 : G

(
∆wn( j1)l( j2)k( j3)−ζ ,λ

)
≤ 1− ε

or B
(
∆wn( j1)l( j2)k( j3)−ζ ,λ

)
≥ ε, Y

(
∆wn( j1)l( j2)k( j3)−ζ ,λ

)
≥ ε

}
is finite, for any ε ∈ (0,1), so

δ3
({

(n, l,k) ∈ N3 : G (∆wnlk−ζ ,λ )> 1− ε and B (∆wnlk−ζ ,λ )< ε, Y (∆wnlk−ζ ,λ )< ε
})

≥ δ3
({

(n( j1) , l ( j2) ,k ( j3)) ∈ N3 : j1, j2, j3 ∈ N
})

−δ3

({
(n( j1) , l ( j2) ,k ( j3)) ∈ N3 : G

(
∆wn( j1)l( j2)k( j3)−ζ ,λ

)
≤ 1− ε

or B
(
∆wn( j1)l( j2)k( j3)−ζ ,λ

)
≥ ε, Y

(
∆wn( j1)l( j2)k( j3)−ζ ,λ

)
≥ ε

})
.

Hence

δ3

({
(n, l,k) ∈ N3 : G (∆wnlk−ζ ,λ )> 1− ε and
B (∆wnlk−ζ ,λ )< ε, Y (∆wnlk−ζ ,λ )< ε

})
> 0,

which gives ζ ∈Cl3
N(∆) (w) . Therefore, we acquire Λ3

N(∆) (w)⊂Cl3
N(∆) (w).

Theorem 3.15. For any sequence w = (wnlk) ∈V , Cl3
N(∆) (w)⊂ L3

(G ,B,Y )(∆) (w) .

Proof. Let ζ ∈Cl3
N(∆) (w), then

δ3
({

(n, l,k) ∈ N3 : G (∆xnlk−ζ ,λ )> 1− ε and B (∆xnlk−ζ ,λ )< ε, Y (∆xnlk−ζ ,λ )< ε
})

> 0

for every λ > 0 and ε ∈ (0,1). Let {w}P be a non-thin subsequence of w such that

P =

{
(n( j1) , l ( j2) ,k ( j3)) ∈ N3 : G

(
∆xn( j1)l( j2)k( j3)−ζ ,λ

)
> 1− ε and

B
(
∆xn( j1)l( j2)k( j3)−ζ ,λ

)
< ε , Y

(
∆xn( j1)l( j2)k( j3)−ζ ,λ

)
< ε

}
for each ε ∈ (0,1) and δ3 (P) 6= 0. Since there are infinitely many elements in P, ζ ∈ L3

(G ,B,Y )(∆) (w). Therefore, we obtain

Cl3
N(∆) (w)⊂ L3

(G ,B,Y )(∆) (w).
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Theorem 3.16. For any sequence w = (wnlk) ∈V , st3
N(∆)− limwnlk = ζ , gives Λ3

N(∆) (w) =Cl3
N(∆) (w) = {ζ} .

Proof. First we denote that Λ3
N(∆) (w) = {ζ}. Presume that Λ3

N(∆) (w) = {ζ ,η} such that ζ 6= η . In that case, there are two
non-thin subsequences

{(
wn( j1)l( j2)k( j3)

)}
and

{(
wp( j1)q( j2)r( j3)

)}
of w = (wnlk) those ∆-converge to ζ and η respectively w.r.t

the NN (G ,B,Y ). Since
{(

wp( j1)q( j2)r( j3)
)}

is ∆-convergent to η w.r.t the NN (G ,B,Y ), so for every λ > 0 and ε ∈ (0,1),

P =

{
(p( j1) ,q( j2) ,r ( j3)) ∈ N3 : G

(
∆xp( j1)q( j2)r( j3)−η ,λ

)
≤ 1− ε or

B
(
∆xp( j1)q( j2)r( j3)−η ,λ

)
≥ ε, Y

(
∆xp( j1)q( j2)r( j3)−η ,λ

)
≥ ε

}
is a finite set and so δ3 (P) = 0. Then, we observe that{

(p( j1) ,q( j2) ,r ( j3)) ∈ N3 ∈ N3, j1, j2, j3 ∈ N
}

=

{
(p( j1) ,q( j2) ,r ( j3)) ∈ N3 : G

(
∆xp( j1)q( j2)r( j3)−η ,λ

)
> 1− ε and

B
(
∆xp( j1)q( j2)r( j3)−η ,λ

)
< ε, Y

(
∆xp( j1)q( j2)r( j3)−η ,λ

)
< ε

}
∪
{

(p( j1) ,q( j2) ,r ( j3)) ∈ N3 : G
(
∆xp( j1)q( j2)r( j3)−η ,λ

)
≤ 1− ε or

B
(
∆xp( j1)q( j2)r( j3)−η ,λ

)
≥ ε, Y

(
∆xp( j1)q( j2)r( j3)−η ,λ

)
≥ ε

}
which gives that

δ3

({
(p( j1) ,q( j2) ,r ( j3)) ∈ N3 : G

(
∆xp( j1)q( j2)r( j3)−η ,λ

)
> 1− ε and

B
(
∆xp( j1)q( j2)r( j3)−η ,λ

)
< ε, Y

(
∆xp( j1)q( j2)r( j3)−η ,λ

)
< ε

})
6= 0. (3.3)

Since st3
N(∆)− limwnlk = ζ , we get

δ3

({
(n,k, l) ∈ N3 : G (∆xnkl−ζ ,λ )≤ 1− ε or
B (∆xnkl−ζ ,λ )≥ ε, Y (∆xnkl−ζ ,λ )≥ ε

})
= 0, (3.4)

for every λ > 0 and ε ∈ (0,1). Therefore, we can write

δ3

({
(n,k, l) ∈ N3 : G (∆xnkl−ζ ,λ )> 1− ε and
B (∆xnkl−ζ ,λ )< ε, Y (∆xnkl−ζ ,λ )< ε

})
6= 0.

For every ζ 6= η , we get{
(p( j1) ,q( j2) ,r ( j3)) ∈ N3 : G

(
∆xp( j1)q( j2)r( j3)−η ,λ

)
> 1− ε and

B
(
∆xp( j1)q( j2)r( j3)−η ,λ

)
< ε, Y

(
∆xp( j1)q( j2)r( j3)−η ,λ

)
< ε

}
∩
({

(n,k, l) ∈ N3 : G (∆xnkl−ζ ,λ )> 1− ε and
B (∆xnkl−ζ ,λ )< ε, Y (∆xnkl−ζ ,λ )< ε

})
= /0.

Hence {
(p( j1) ,q( j2) ,r ( j3)) ∈ N3 : G

(
∆xp( j1)q( j2)r( j3)−η ,λ

)
> 1− ε and

B
(
∆xp( j1)q( j2)r( j3)−η ,λ

)
< ε, Y

(
∆xp( j1)q( j2)r( j3)−η ,λ

)
< ε

}
⊂
{

(n,k, l) ∈ N3 : G (∆xnkl−ζ ,λ )≤ 1− ε or
B (∆xnkl−ζ ,λ )≥ ε, Y (∆xnkl−ζ ,λ )≥ ε

}
.

Therefore

δ3

({
(p( j1) ,q( j2) ,r ( j3)) ∈ N3 : G

(
∆xp( j1)q( j2)r( j3)−η ,λ

)
> 1− ε and

B
(
∆xp( j1)q( j2)r( j3)−η ,λ

)
< ε, Y

(
∆xp( j1)q( j2)r( j3)−η ,λ

)
< ε

})
≤ δ3

({
(n,k, l) ∈ N3 : G (∆xnkl−ζ ,λ )≤ 1− ε or
B (∆xnkl−ζ ,λ )≥ ε, Y (∆xnkl−ζ ,λ )≥ ε

})
= 0.

This contradicts (3.3). Hence Λ3
N(∆) (w) = {ζ} .

Next we demonstrate that Cl3
N(∆) (w) = {ζ}. Presume that Cl3

N(∆) (w) = {ζ ,γ} such that ζ 6= γ . Then

δ3

({
(n,k, l) ∈ N3 : G (∆xnkl− γ,λ )> 1− ε and
B (∆xnkl− γ,λ )< ε, Y (∆xnkl− γ,λ )< ε

})
6= 0. (3.5)
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Since {
(n,k, l) ∈ N3 : G (∆xnkl−ζ ,λ )> 1− ε and
B (∆xnkl−ζ ,λ )< ε, Y (∆xnkl−ζ ,λ )< ε

}
∩
{

(n,k, l) ∈ N3 : G (∆xnkl− γ,λ )> 1− ε and
B (∆xnkl− γ,λ )< ε, Y (∆xnkl− γ,λ )< ε

}
= /0

for every ζ 6= γ , so{
(n,k, l) ∈ N3 : G (∆xnkl−ζ ,λ )≤ 1− ε or

B (∆xnkl−ζ ,λ )≥ ε, Y (∆xnkl−ζ ,λ )≥ ε

}
⊇
{

(n,k, l) ∈ N3 : G (∆xnkl− γ,λ )> 1− ε and
B (∆xnkl− γ,λ )< ε, Y (∆xnkl− γ,λ )< ε

}
.

Therefore

δ3

({
(n,k, l) ∈ N3 : G (∆xnkl−ζ ,λ )≤ 1− ε or

B (∆xnkl−ζ ,λ )≥ ε, Y (∆xnkl−ζ ,λ )≥ ε

})
≥ δ3

({
(n,k, l) ∈ N3 : G (∆xnkl− γ,λ )> 1− ε and
B (∆xnkl− γ,λ )< ε, Y (∆xnkl− γ,λ )< ε

})
.

(3.6)

From (3.5), the right hand side of (3.6) is greater than zero and from (3.4) the left hand side of (3.6) equals zero. This causes a
contradiction. Hence Cl3

N(∆) (w) = {ζ}.

Theorem 3.17. The set Cl3
N(∆) is closed in V for each w = (wnlk) of elements of V .

Proof. Let q ∈Cl3
N(∆)

(w). Let r ∈ (0,1) and λ > 0, there is σ ∈Cl3
N(∆) (w)∩B(q,r,λ ) such that

B(q,r,λ ) = {s ∈V : G (q− s,λ )> 1− r and B (q− s,λ )< r, Y (q− s,λ )< r}

Select ξ > 0 such that B(ξ ,σ ,λ )⊂ B(q,r,λ ). Then, we get{
(n,k, l) ∈ N3 : G (q−∆wnkl ,λ )> 1− r and
B (q−∆wnkl ,λ )< r, Y (q−∆wnkl ,λ )< r

}
⊃
{

(n,k, l) ∈ N3 : G (σ −∆wnkl ,λ )> 1−ξ and
B (σ −∆wnkl ,λ )< ξ , Y (σ −∆wnkl ,λ )< ξ

}
.

Since σ ∈Cl3
N(∆) (w) so

δ3

({
(n,k, l) ∈ N3 : G (σ −∆wnkl ,λ )> 1−ξ and
B (σ −∆wnkl ,λ )< ξ , Y (σ −∆wnkl ,λ )< ξ

})
> 0.

Hence

δ3

({
(n,k, l) ∈ N3 : G (q−∆xnkl ,λ )> 1− r and
B (q−∆xnkl ,λ )< r, Y (q−∆xnkl ,λ )< r

})
> 0.

Thus q ∈Cl3
N(∆) (w). This ends the proof.
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[4] S. Karakuş, K. Demirci, O. Duman, Statistical convergence on intuitionistic fuzzy normed spaces, Chaos Solitons Fractals,

35 (2008), 763-769.
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