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Dynamics and Bifurcation of xn+1 =
α+βxn−1

A+Bxn+Cxn−1
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Abstract
The main goal of this paper is to study the bifurcation of a second order rational difference equation

xn+1 =
α +βxn−1

A+Bxn +Cxn−1
, n = 0,1,2, . . .

with positive parameters α,β ,A,B,C and non-negative initial conditions {x−k,x−k+1, . . . ,x0}. We study the dynamic
behavior and the direction of the bifurcation of the period-two cycle. Numerical discussion with figures are given
to support our results.
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1. Introduction
In this paper we studies the second order rational difference equation

xn+1 =
α +βxn−1

A+Bxn +Cxn−1
, n = 0,1,2, . . . ., (1.1)

with positive parameters α,β ,A,B and C and non-negative initial conditions {x−k,x−k+1, . . . ,x0}. We focus on the dynamic
behavior of the positive fixed points and the type of bifurcation exists where the change of stability occurs.

Equation (1.1) was studied by Lin-Xia Hu, Wan-Tong Li, Hong-Wu Xu in [4]. Boundedness, invariant intervals, semicycles
and global stability of the positive fixed point was investigated. Also it was studied by Ladas in [5] and [1].

Recently, bifurcation and dynamics of higher order nonlinear difference equations have been studied in [8, 7, 6, 3].
Changing of variables convert the second-order rational difference equation with five positive parameters

xn+1 =
α +βxn−1

A+Bxn +Cxn−1
, n = 0,1,2, . . .

into

yn+1 =
p+qyn−1

1+ yn + ryn−1
, n = 0,1,2, . . . ,
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with three positive parameters p , q and r.
In this paper, regarding p as a parameter, we investigate the existence of Period-Doubling bifurcation and use the normal form
theory for discrete dynamical system to determine the direction of bifurcation of period-two cycle. Then, we give numerical
discussion with figures to support our results.

2. Dynamics of yn+1 =
p+qyn−1

1+yn+ryn−1

In this section we study the stability of the positive fixed points of

yn+1 =
p+qyn−1

1+ yn + ryn−1
. (2.1)

Note that the discrete difference equation (2.1) has the unique positive fixed point

ȳ =
q−1+

√
(1−q)2 +4p(1+ r)
2(1+ r)

.

In order to convert equation (2.1) to a second dimensional system with three positive parameters p,q, and r, let un = xn−1 and
wn = xn. We have the following system

un+1 = wn,

wn+1 =
p+qun

1+wn + run
,n = 0,1,2, . . . . (2.2)

System (2.2) has the unique positive fixed point (u∗,w∗)T = (ȳ, ȳ)T .
The Jacobian matrix associated with system (2.2) at the positive fixed point is

JF(u,w) |(ȳ,ȳ)=

(
0 1

q+qȳ−rp
(1+ȳ+rȳ)2 − p+qȳ

(1+ȳ+rȳ)2

)
.

Note that

det(JF(ȳ, ȳ)) =− q+qȳ− rp
(1+ ȳ+ rȳ)2 =− q− rȳ

1+ ȳ+ rȳ

and

tr(JF(ȳ, ȳ)) =− p+qȳ
(1+ ȳ+ rȳ)2 =− ȳ

1+ ȳ+ rȳ

where det and tr denote the determinant and trace of the Jacobian matrix J, respectively.
We will use the following lemmas.

Lemma 2.1. [2] Consider the map f : G ⊂ R2 → R2 ba a C1 map, where G is an open subset of R2, x̄ is a fixed point of
f, A = J f (x̄) and ρ(A) is the spectral norm of A where ρ(A) = maxi{| λi |,λi are the eigenvalues of A}. Then the following
statement hold true:

1. If ρ(A)< 1, then x̄ is asymptotically stable.

2. If ρ(A)> 1, then x̄ is unstable.

3. If ρ(A) = 1, then x̄ may or may not be stable.

Lemma 2.2. [2] Consider the map

x→ f (x), x ∈ R2,

with x̄ as a fixed point of f and A = J f (x̄). Then ρ(A)< 1 if and only if

| trA | −1 < detA < 1

where trA and detA denote trace and determinant of the matrix A respectively.
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Theorem 2.3. [9] The equilibrium point ȳ of (2.1) is locally asymptotically stable if one of the following holds

1. q≤ 1

2. q > 1 and (r−1)(q−1)2 +4pr2 > 0.

Proof: We want to show that

| q− rȳ
1+ ȳ+ rȳ

|< 1− ȳ
1+ ȳ+ rȳ

< 2.

That is equivalent to

ȳ
1+ ȳ+ rȳ

+ | q− rȳ
1+ ȳ+ rȳ

|< 1 and
ȳ

1+ ȳ+ rȳ
>−1.

The first inequality is equivalent to

| q− rȳ |< 1+ rȳ. (2.3)

If q− rȳ < 0, then(2.3) becomes rȳ−q < 1+ rȳ and this is obvious .
If q− rȳ≥ 0, then(2.3) becomes q− rȳ < 1+ rȳ,
or

q−1 < 2rȳ. (2.4)

If q≤ 1 , then (2.4) holds. If q > 1, then

rȳ > r

√
(q−1)2 +4p(1+ r)

r+1
> r
√
(q−1)2 +4p(1+ r)

and if (r−1)(q−1)2 +4pr2 > 0, multiply both sides by r+1 we can get

(r2−1)(q−1)2 +4pr2(1+ r)> 0.

Rearrange the terms of the previous inequality, we get

r2((q−1)2 +4p(1+ r))> (q−1)2.

Take the square of both sides, we obtain

r
√

(q−1)2 +4p(1+ r)> (q−1).

Now, add r(q−1) for both sides, we have

r(q−1+
√
(q−1)2 +4p(1+ r)> (r+1)(q−1).

That is equivalent to

2r(r+1)ȳ > (r+1)(q−1),

or

2rȳ > q−1.

This shows in this case inequality (2.4) holds and hence

ȳ
1+ ȳ+ rȳ

+ | q− rȳ
1+ ȳ+ rȳ

|< 1.

Note that the second inequality 1− ȳ
1+ȳ+rȳ < 2 is always true.

So in both cases the equilibrium point ȳ is locally asymptotically stable.
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3. Existence of Period-Doubling Bifurcation
In this section we will study the bifurcation of (2.1). we will use the following theorem.

Lemma 3.1. [2] Consider the map

x→ f (x,α),x ∈ R2,α ∈ R. (3.1)

Let A = J f (x∗,α∗) where (x∗,α∗) is a fixed point of f (x,α). Then the following hold

1. If detA =−trA−1, then the eigenvalues of A are λ1 =−detA and λ2 =−1.

2. If detA = trA−1, then λ1 = 1 and λ2 = detA.

3. If | trA | −1 < detA and detA = 1, then A has complex eigenvalues λ1,2 = e±iθ where θ = cos−1( trA
2 ).

Corollary 3.2. For the one-parameter of two-dimensional map

x→ f (x,α),x ∈ R2,α ∈ R, (3.2)

with the fixed point (x∗,α∗) and A = J f (x∗,α∗), then the following hold

1. If detA =−trA−1, then the system (3.2) undergoes a period-doubling bifurcation.

2. If detA = trA−1, then then the system (3.2) undergoes a saddle-node bifurcation.

3. If | trA | −1 < detA and detA = 1, then the system (3.2) undergoes a Neimark-Sacker bifurcation.

Using the previous corollary, system (2.2) can not undergoes a saddle-node or Neimark-Sacker bifurcation.

Theorem 3.3. The fixed point (ȳ, ȳ)T of the system (2.2) undergoes a period-doubling (flip) bifurcation when p = (1−r)(q−1)2

4r2 if
q > 1 and r < 1.

Proof: Assume that q > 1 and r < 1. Corollary (3.2) implies that period-doubling bifurcation occurs if det(JF(ȳ, ȳ)T ) =
−tr(JF(ȳ, ȳ))−1.
That is equivalent to

− q− rȳ
1+ ȳ+ rȳ

=
ȳ

1+ ȳ+ rȳ
−1,

− q− rȳ
1+ ȳ+ rȳ

=
ȳ− (1+ ȳ+ rȳ)

1+ ȳ+ rȳ
−1,

or

−(q− rȳ) = ȳ− (1+ ȳ+ rȳ).

That is equivalent to

2rȳ = q−1,

or

2ȳ =
q−1

r
.

Substitute the value of ȳ, we obtain

q−1+
√

(1−q)2 +4p(1+ r)
1+ r

=
q−1

r
,

or

q−1+
√
(1−q)2 +4p(1+ r) = q−1+

q−1
r

.
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Take the square of both sides, we get

(1−q)2 +4p(1+ r) = (
q−1

r
)2,

multiply both sides by r2

r2[(1−q)2 +4p(1+ r)] = (q−1)2,

or

(r2−1)(q−1)2 +4pr2(1+ r) = 0.

Since r > 0, r+1 6= 0, so we can divide into 1+ r. We obtain

(r−1)(q−1)2 +4pr2 = 0,

p =
(1− r)(q−1)2

4r2 .

4. Direction of The Period-Doubling (Flip) Bifurcation
In this section we will use the normal form theory for discrete dynamical system to find the direction of the period-doubling
bifurcation of system (2.2) which exists at p = (1−r)(q−1)2

4r2 . Firstly, we shift the fixed point (ȳ, ȳ)T to the origin. Let

xn = un− ȳ, zn = wn− ȳ.

System (2.2) corresponds to

xn+1 = zn,

zn+1 =
p+q(xn + ȳ)

1+(zn + ȳ)+ r(xn + ȳ)
− ȳ, (4.1)

or

Yn+1 = AYn +G(Yn), (4.2)

where

A =

(
0 1

q−rȳ
1+ȳ+rȳ − ȳ

1+ȳ+rȳ

)
,Yn =

(
xn
zn

)
,

and

G(Y ) =
1
2

B(Y,Y )+
1
6

C(Y,Y,Y )+O(‖ Y ‖3),

B(Y,Y ) =
(

0
B2(Y,Y )

)
and C(Y,Y,Y ) =

(
0

C2(Y,Y,Y )

)
,

where

B2(φ ,ψ) =− 2r(q− rȳ)
(1+ ȳ+ rȳ)2 φ1ψ1 +

2rȳ−q
(1+ ȳ+ rȳ)2 [φ1ψ2 +φ2ψ1]+2

ȳ
(1+ ȳ+ rȳ)2 φ2ψ2,

and

C2(φ ,ψ,η) =6
r2(q− rȳ)

(1+ ȳ+ rȳ)3 φ1ψ1η1 +
4qr−6r2ȳ
(1+ ȳ+ rȳ)3 [φ1ψ1η2 +φ2ψ0η1 +φ1ψ2η1]

+
2q−6rȳ

(1+ ȳ+ rȳ)3 [φ1ψ2η2 +φ2ψ1η2 +φ1ψ2η2]−6
ȳ

(1+ ȳ+ rȳ)3 φ2ψ2η2.
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Let q and p∗ be the eigenvectors of A and AT corresponding to the eigenvalue λ =−1, respectively. We have Aq =−q and
AT p∗ =−p∗, where

q∼
(

1
−1

)
, and p∗ ∼

(
− q−rȳ

1+ȳ+rȳ
1

)
.

Normalize p∗ and q,

< p∗,q >=
2

∑
i=1

p∗i qi =−
q− rȳ

1+ ȳ+ rȳ
−1.

Take

p = ξ ∗
(
− q−rȳ

1+ȳ+rȳ
1

)
, where ξ =

1
−1− q−rȳ

1+ȳ+rȳ

=−1+ ȳ+ rȳ
q+1+ ȳ

.

The critical eigenspace T c corresponding to the eigenvalue λ is a one-dimensional map, and is spanned by the eigenvector q.
Let T su denote a one-dimensional linear eigenspace of A corresponding to the other eigenvalue than λ . Note that the matrix
A−λ I which is equivalent to the matrix A+T has common invariant spaces with the matrix A, we conclude that y ∈ T su if and
only if < p,y >= 0. Any vector x ∈ R2 can be decomposed as

x = uq+ y,

where uq ∈ T c,y ∈ T su, and

u =< p,x >,

y = x−< p,x > q. (4.3)

In the coordinates (u,y), the map (4.2) can be written as

ũ = λu+< p,F(uq+ y)>,

ỹ = Ay+F(uq+ y)−< p,F(uq+ y)> q. (4.4)

Using Taylor expansions, (4.4) can be written as

ũ = λu+
1
2

σu2 +u < b,y >+
1
6

δu3 + . . . ,

ỹ = Ay+
1
2

au2 + . . . , (4.5)

where u ∈ R1,y ∈ R2,σ ,δ ∈ R1,a,b ∈ R2 and < b,y >= ∑
2
i=1 biyi is the standard scaler product < b,y > can be expressed as

< b,y >=< p,B(q,y)> .

The center manifold of (4.5) has the representation

y =V (u) =
1
2

w2u2 +O(u3),

where w2 ∈ T su ⊂ R2, so that < p,w >= 0. The vector w2 satisfies

(A− I)w2 +a = 0.
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Note that the matrix A− I is invertible in R2 because λ = 1 is not an eigenvalue of A. Thus, we have

w2 =−(A− I)−1a,

and the restriction of (4.5) to the center manifold takes the form

ũ =−u+
1
2

σu2 +
1
6
(δ −3 < p,B(q,(A− I)−1a)>)u3 +O(u4),

where

σ =< p,B(q,q)>,δ =< p,C(q,q,q)>, and a = B(q,q)−< p,B(q,q)> q.

Using the identity (A− I)−1q =− 1
2 q, the restricted map can be written as

ũ =−u+a(0)u2 +b(0)u3 +O(u4), (4.6)

where

a(0) =
1
2
< p,B(q,q)>,

and

b(0) =
1
6
< p,C(q,q,q)>−1

4
(< p,B(q,q)>)2− 1

2
< p,B(q,(A− I)−1B(q,q))> .

B(q,q) =

 0
−2 r(q−rȳ)

(1+ȳ+rȳ)2+2 ȳ
(1+ȳ+rȳ)2

−2 2rȳ−q
(1+ȳ+rȳ)2

 ,

< p,B(q,q)>=−1+ ȳ+ rȳ
q+1+ ȳ

[−2
r(q− rȳ)

(1+ ȳ+ rȳ)2 +2 ȳ
(1+ȳ+rȳ)2

−2
2rȳ−q

(1+ ȳ+ rȳ)2 ],

C(q,q,q) =

(
0

6 r2(q−rȳ)
(1+ȳ+rȳ)3 −3 4qr−6r2 ȳ

(1+ȳ+rȳ)3 +3 2q−6rȳ
(1+ȳ+rȳ)3 +6 ȳ

(1+ȳ+rȳ)3

)
,

< p,C(q,q,q)>=−1+ ȳ+ rȳ
q+1+ ȳ

[6
r2(q− rȳ)

(1+ ȳ+ rȳ)3 −3
4qr−6r2ȳ
(1+ ȳ+ rȳ)3 +3

2q−6rȳ
(1+ ȳ+ rȳ)3 +6

ȳ
(1+ ȳ+ rȳ)3 ],

(A− I)−1 =

(
−1 1
q−rȳ

1+ȳ+rȳ −1− ȳ
1+ȳ+rȳ

)−1

=
1+ ȳ+ rȳ

2ȳ

(
−1− ȳ

1+ȳ+rȳ −1
− q−rȳ

1+ȳ+rȳ −1

)
,

(A− I)−1B(q,q) =
1+ ȳ+ rȳ

2ȳ

 −2 r(q−rȳ)
(1+ȳ+rȳ)2+2 ȳ

(1+ȳ+rȳ)2
−2 2rȳ−q

(1+ȳ+rȳ)2

−2 r(q−rȳ)
(1+ȳ+rȳ)2+2 ȳ

(1+ȳ+rȳ)2
−2 2rȳ−q

(1+ȳ+rȳ)2

 ,

B(q,(A− I)−1B(q,q)) =
1+ ȳ+ rȳ

2ȳ

(
0
S

)
where

S = [
2r(q− rȳ)

(1+ ȳ+ rȳ)2 +
2ȳ

(1+ ȳ+ rȳ)2 ][−2
r(q− rȳ)

(1+ ȳ+ rȳ)2 +2
ȳ

(1+ ȳ+ rȳ)2 −2
2rȳ−q

(1+ ȳ+ rȳ)2 ],

< p,B(q,(A− I)−1B(q,q))>=2
r2(q− rȳ)2

ȳ(q+1+ ȳ)(1+ ȳ+ rȳ)2 −2
ȳ

(q+1+ ȳ)(1+ ȳ+ rȳ)2

+2
r(q− rȳ)(2rȳ−q)

ȳ(q+1+ ȳ)(1+ ȳ+ rȳ)2 +2
2rȳ−q

(q+1+ ȳ)(1+ ȳ+ rȳ)2 .
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The map (4.6) can be transformed to the normal form

ξ̃ =−ξ + c(0)ξ 3 +O(ξ 4),

where

c(0) = a2(0)+b(0).

Thus, the critical normal form coefficient c(0) allows us to predict the direction of bifurcation of period-two cycle. c(0) is given
by the following invariant formula:

c(0) =
1
6
< p,C(q,q,q)>−1

2
< p,B(q,(A− I)−1B(q,q))> .

If c(0)> 0, then a unique and stable period-two cycle bifurcates from the fixed point at the bifurcation point p = (1−r)(1−q)2

4r2 .

5. Numerical Discussion
In this section we give numerical examples which support our results in the previous sections. Figure that we get using Matlab
will be attached with example to illustrate the bifurcation.

Example 5.1. Consider equation (2.1). In this example we fix the parameters q, r and consider p as bifurcation parameter.
Take q = 1.1, r = 0.09 and 0 < p≤ 2. Equation (2.1) becomes

yn+1 =
p+1.1yn−1

1+ yn +0.09yn−1
,n = 0,1,2, . . . (5.1)

The planer form corresponding to equation (5.1) is(
y1(n+1)
y2(n+1)

)
=

(
y2(n)

p+1.1y1(n)
1+y2(n)+0.09y1(n)

.

)
(5.2)

Positive equilibrium point of system (5.2) is (ȳ, ȳ), where ȳ = 0.1+
√

0.01+4.36p
2.18 . Theorem (3.3) determined the bifurcation point at

(r−1)(1−q)2 +4pr2 = 0. So, the fixed point undergoes a period-doubling bifurcation at p = 0.2808642.

q =

(
1
−1

)
and p =

(
0.39539749
−0.60460251

)
,

B(q,q) =
(

0
0.71303782

)
,

< p,B(q,q)>=−0.43110446,

C(q,q,q) =
(

0
−0.4797597

)
,

< p,C(q,q,q)>= 0.2900639,

(A− I)−1 =

(
−1 1

0.65397924 −1.34602076

)
,

B(q,(A− I)−1B(q,q)) =
(

0
0.8212105

)
,

< p,B(q,(A− I)−1B(q,q))>=−0.49947486,

c(0) = 0.20139345 > 0.

So, this verify that a unique and stable period-two cycle bifurcates from the fixed point at the bifurcation point p = 0.2808642.
See figure (5.1).
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Figure 5.1. Period-doubling bifurcation of yn+1 =
p+1.1yn−1

1+yi+0.09yi−1
, p is a parameter.
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