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Abstract 
 
In this paper, some information about polygonal numbers are given. Also, a general binary operator that 
includes all polygonal numbers are given and it is investigated whether the algebraic structures defined 
with the general operator specify a semigroup or not. 
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1. Introduction and motivation 
 
Polygonal numbers are positive integer numbers that can be denoted by regular geometric 
patterns. Starting from a point and continue to increase by the same common difference. If the 
common difference is one, then the geometric pattern is called triangular numbers. If it is two, 
then it becomes square numbers; if it is three, then it becomes pentagonal numbers. And so on. 
The theory of polygonal numbers does not belong to the central domains of mathematics, but 
the beauty of these numbers has attracted the attention of many scientists for thousands of years 
[1]. Many special numbers have been created by being inspired from polygonal numbers. 
Pythagoras triples, Perfect numbers, Mersenne numbers, Cullen numbers, Woodall numbers, 
Fermat numbers, Fibonacci numbers, Pell numbers, Lucas numbers, Thabit numbers, etc. are 
examples of such numbers. 
 
Binary operators have played an important role in many algebraic structures. It takes various 
names according to the binary operation defined on algebraic structures. Groupoid, semigroup 
and monoid are some of them. Specifically, Sparavigna has given that it is a groupoid with 
binary operators defined on some polygonal numbers in [2-4]. By using similar methods as in 
these papers, we will give a general binary operator that includes all polygonal numbers. In 
addition, it will be investigated whether the algebraic structures defined with the general 
operator specify a semigroup or not. By the way, maybe other algebraic studies, such as the 
studies in [5-7], can be studied by other mathematicians with the binary operation defined on 
this new algebraic structure. 
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2. Preliminaries 
 

Definition 2.1 A groupoid (𝑆𝑆,∗) is defined as a non-empty set 𝑆𝑆 on which a binary operation ∗ 
(by which we mean a map ∗ : 𝑆𝑆 × 𝑆𝑆 ⟶ 𝑆𝑆) is defined. In other words, groupoid is an algebraic 
structure on a set with a binary operator. The only restriction on the operator is closure. It means 
that applying the binary operator on two elements of given set S returns with a value in which 
itself is a member of S . One can see more information in [8, 9]. We say that (𝑆𝑆,∗) is a semigroup 
if the operation ∗ is associative, that is to say, if, for all 𝑥𝑥, 𝑦𝑦, 𝑧𝑧 ∈ 𝑆𝑆 
 
(𝑥𝑥 ∗ 𝑦𝑦) ∗ 𝑧𝑧 = 𝑥𝑥 ∗ (𝑦𝑦 ∗ 𝑧𝑧).                                                                                                                       (1) 
 
A semigroup is an associative groupoid, a semigroup with an identity is called a monoid.  
 
Definition 2.2 For 𝑚𝑚 = 3, 4, 5, … and 𝑛𝑛 ∈ ℕ,𝑛𝑛𝑛𝑛ℎ m-gonal numbers formulas is as follows [1]; 
 

𝑆𝑆𝑚𝑚(𝑛𝑛): =
(𝑚𝑚 − 2)𝑛𝑛2 − (𝑚𝑚 − 4)𝑛𝑛

2
∙                                                                                                    (2) 

 
Definition 2.3 Algebraically, for 𝑛𝑛 ∈ ℕ and 𝑚𝑚 ≥ 3,𝑛𝑛𝑛𝑛ℎ 𝑚𝑚-gonal number 𝑆𝑆𝑚𝑚(𝑛𝑛) is obtained as 
the sum of the first 𝑛𝑛 elements of the arithmetic progression 1, 1 + (𝑚𝑚− 2), 1 + 2(𝑚𝑚 − 2), 1 +
3(𝑚𝑚− 2), … , 1 + (𝑛𝑛 − 1)(𝑚𝑚− 2). So, it holds [1]; 
 
𝑆𝑆𝑚𝑚(𝑛𝑛) = 1 + � 1 + (𝑚𝑚− 2)� + �1 + 2(𝑚𝑚− 2)� + ⋯+ �1 + (𝑛𝑛 − 1)(𝑚𝑚− 2)�  
 

             =
(𝑚𝑚− 2)(𝑛𝑛2 − 𝑛𝑛) + 2𝑛𝑛

2
 

 

             =
(𝑚𝑚− 2)𝑛𝑛2 − (𝑚𝑚 − 4)𝑛𝑛

2
.                                                                                                      (3) 

 
Example 2.1 In particular, for 𝑚𝑚 = 3, 4, 5, 6, 7, 8 and 𝑛𝑛 ∈ ℕ,𝑛𝑛𝑛𝑛ℎ 𝑚𝑚-gonal numbers formulas 
are as follows; 
 

𝑆𝑆3(𝑛𝑛) =
𝑛𝑛2 + 𝑛𝑛

2
=
𝑛𝑛(𝑛𝑛 + 1)

2
, 

 

𝑆𝑆4(𝑛𝑛) =
2𝑛𝑛2

2
= 𝑛𝑛2, 

 

𝑆𝑆5(𝑛𝑛) =
3𝑛𝑛2 − 𝑛𝑛

2
=
𝑛𝑛(3𝑛𝑛 − 1)

2
, 

 

𝑆𝑆6(𝑛𝑛) =
4𝑛𝑛2 − 2𝑛𝑛

2
=

2𝑛𝑛(𝑛𝑛 − 1)
2

= 𝑛𝑛(𝑛𝑛 − 1), 
 

𝑆𝑆7(𝑛𝑛) =
5𝑛𝑛2 − 3𝑛𝑛

2
=
𝑛𝑛(5𝑛𝑛 − 3)

2
, 
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𝑆𝑆8(𝑛𝑛) =
6𝑛𝑛2 − 4𝑛𝑛

2
=

2𝑛𝑛(3𝑛𝑛 − 2)
2

= 𝑛𝑛(3𝑛𝑛 − 2).                                                                            (4) 
 
Above expression implies the following recurrence formula for 𝑚𝑚-gonal numbers: 
 
𝑆𝑆𝑚𝑚(𝑛𝑛 + 1) = 𝑆𝑆𝑚𝑚(𝑛𝑛) + ( 1 + (𝑚𝑚− 2)𝑛𝑛),  𝑆𝑆𝑚𝑚(1) = 1                                                                    (5) 
 
In particular, we get 
 
𝑆𝑆3(𝑛𝑛 + 1) = 𝑆𝑆3(𝑛𝑛) + ( 𝑛𝑛 + 1), 
𝑆𝑆4(𝑛𝑛 + 1) = 𝑆𝑆4(𝑛𝑛) + ( 2𝑛𝑛 + 1), 
𝑆𝑆5(𝑛𝑛 + 1) = 𝑆𝑆5(𝑛𝑛) + ( 3𝑛𝑛 + 1), 
𝑆𝑆6(𝑛𝑛 + 1) = 𝑆𝑆6(𝑛𝑛) + ( 4𝑛𝑛 + 1), 
𝑆𝑆7(𝑛𝑛 + 1) = 𝑆𝑆7(𝑛𝑛) + ( 5𝑛𝑛 + 1), 
𝑆𝑆8(𝑛𝑛 + 1) = 𝑆𝑆8(𝑛𝑛) + ( 6𝑛𝑛 + 1).                                                                                                         (6) 
 
For many applications it is convenient to add the value  𝑆𝑆𝑚𝑚(0) = 0 to the list. 
 
Example 2.2 For 𝑛𝑛 = 1, 2, 3, 4, 5, and 𝑚𝑚 = 3, 4, 5, 6 some polygonal numbers are as follows 
[10, A000217, A000290, A000326, A000384]; 
 

 

Figure 1. Some polygonal numbers 
  

145 



3. Semigroup construction on polygonal numbers 
 
In this section, we create a set consisting of elements of all polygonal numbers sequence 𝑆𝑆𝑚𝑚(𝑛𝑛). 
After that we obtain an algebraic structure by defining binary operation on the defined set. And 
finally, we give a theorem and a corollary that shows necessary conditions for this algebraic 
structure to be semigroup and monoid. 
 
Before we can construct the theorem that yields the main result of this paper, we need to define 
a set and a binary operation on that set. So, let 𝑀𝑀 denote the sequence of numbers 𝑆𝑆𝑚𝑚(𝑛𝑛). That 
is, let  

𝑀𝑀 = �1,𝑚𝑚, 3𝑚𝑚 − 3, 6𝑚𝑚 − 8, 10𝑚𝑚− 15, . . . ,
(𝑚𝑚− 2)𝑛𝑛2 − (𝑚𝑚− 4)𝑛𝑛

2
 

+ �(2𝑚𝑚− 4)�
(𝑚𝑚− 2)𝑛𝑛2 − (𝑚𝑚− 4)𝑛𝑛

2
� +

(𝑚𝑚 − 4)2

4 �

1
2

+
𝑚𝑚− 2

2
, . . .� .    (7)  

Now we can find a binary operation of given set of 𝑀𝑀 Since 
 

�𝑆𝑆𝑚𝑚(𝑛𝑛) +
1
8

(𝑚𝑚− 4)2

𝑚𝑚 − 2
�

1
2

= �
(𝑚𝑚− 2)𝑛𝑛2 − (𝑚𝑚 − 4)𝑛𝑛

2
+

1
8

(𝑚𝑚− 4)2

𝑚𝑚 − 2
�

1
2
 

                                               = �
(𝑚𝑚− 2)𝑛𝑛2

2
−

(𝑚𝑚− 4)𝑛𝑛
2

+
1
8

(𝑚𝑚 − 4)2

𝑚𝑚 − 2
�

1
2
 

                                               = �
(𝑚𝑚− 2)

2 �𝑛𝑛 −
1
2
𝑚𝑚− 4
𝑚𝑚− 2�

2

�

1
2
 

                                               = �(𝑚𝑚− 2)
2 �𝑛𝑛 −

𝑚𝑚 − 4
2(𝑚𝑚− 2)� .                                                             (8) 

 
We define 
 

𝑁𝑁𝑛𝑛 = �𝑆𝑆𝑚𝑚(𝑛𝑛) +
1
8

(𝑚𝑚− 4)2

𝑚𝑚 − 2
�

1
2

= �(𝑚𝑚− 2)
2 �𝑛𝑛 −

𝑚𝑚 − 4
2(𝑚𝑚 − 2)�, 

𝑁𝑁𝑘𝑘 = �𝑆𝑆𝑚𝑚(𝑘𝑘) +
1
8

(𝑚𝑚 − 4)2

𝑚𝑚 − 2
�

1
2

= �(𝑚𝑚 − 2)
2 �𝑘𝑘 −

𝑚𝑚 − 4
2(𝑚𝑚− 2)�, 

𝑁𝑁𝑛𝑛+𝑘𝑘 = �𝑆𝑆𝑚𝑚(𝑛𝑛 + 𝑘𝑘) +
1
8

(𝑚𝑚 − 4)2

𝑚𝑚 − 2
�

1
2

= �(𝑚𝑚 − 2)
2 �𝑛𝑛 + 𝑘𝑘 −

𝑚𝑚 − 4
2(𝑚𝑚 − 2)� .                              (9) 

 
We use 𝑁𝑁𝑛𝑛 for definition of binary operation. 
 

𝑁𝑁𝑛𝑛+𝑘𝑘 = 𝑁𝑁𝑛𝑛 ∗ 𝑁𝑁𝑘𝑘 = 𝑁𝑁𝑛𝑛 + 𝑁𝑁𝑘𝑘 +
𝑚𝑚 − 4

2√2𝑚𝑚− 4
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                                = �(𝑚𝑚 − 2)
2 �𝑛𝑛 −

𝑚𝑚 − 4
2(𝑚𝑚− 2)� + �(𝑚𝑚 − 2)

2 �𝑘𝑘 −
𝑚𝑚 − 4

2(𝑚𝑚− 2)� +
𝑚𝑚 − 4

2√2𝑚𝑚− 4
 

                                = �(𝑚𝑚 − 2)
2 �𝑛𝑛 + 𝑘𝑘 −

𝑚𝑚 − 4
2(𝑚𝑚− 2)� +

𝑚𝑚 − 4
2√2𝑚𝑚− 4

 .                                       (10) 

 
Therefore, we have the binary operation: 
 

�𝑆𝑆𝑚𝑚(𝑛𝑛 + 𝑘𝑘) +
1
8

(𝑚𝑚 − 4)2

𝑚𝑚 − 2
�

1
2

= 𝑁𝑁𝑛𝑛+𝑘𝑘 = 𝑁𝑁𝑛𝑛 ∗ 𝑁𝑁𝑘𝑘 = 𝑁𝑁𝑛𝑛 + 𝑁𝑁𝑘𝑘 +
𝑚𝑚 − 4

2√2𝑚𝑚− 4
 

 

 = �𝑆𝑆𝑚𝑚(𝑛𝑛) +
1
8

(𝑚𝑚− 4)2

𝑚𝑚 − 2
�

1
2

+�𝑆𝑆𝑚𝑚(𝑘𝑘) +
1
8

(𝑚𝑚− 4)2

𝑚𝑚 − 2
�

1
2

+
𝑚𝑚 − 4

2√2𝑚𝑚− 4
  .                                (11) 

 
As a result, from (11), we can rewrite the defined binary operation as follows: 
 
𝑆𝑆𝑚𝑚(𝑛𝑛) ∗ 𝑆𝑆𝑚𝑚(𝑘𝑘) = 𝑆𝑆𝑚𝑚(𝑛𝑛 + 𝑘𝑘) 

                             = 𝑆𝑆𝑚𝑚(𝑛𝑛) + 𝑆𝑆𝑚𝑚(𝑘𝑘) +
1
4

(𝑚𝑚− 4)2

𝑚𝑚 − 2
 

                             +2�𝑆𝑆𝑚𝑚(𝑛𝑛) +
1
8

(𝑚𝑚 − 4)2

𝑚𝑚 − 2
�

1
2
�𝑆𝑆𝑚𝑚(𝑘𝑘) +

1
8

(𝑚𝑚− 4)2

𝑚𝑚 − 2
�

1
2
 

                             + 
𝑚𝑚 − 4

2√2𝑚𝑚− 4
�𝑆𝑆𝑚𝑚(𝑛𝑛) +

1
8

(𝑚𝑚− 4)2

𝑚𝑚 − 2
�

1
2
 

                             +
𝑚𝑚 − 4

2√2𝑚𝑚− 4
�𝑆𝑆𝑚𝑚(𝑘𝑘) +

1
8

(𝑚𝑚− 4)2

𝑚𝑚 − 2
�

1
2

.                                                              (12) 

 
In the following theorem, we give a necessary condition for the algebraic structure (𝑀𝑀,∗) to be 
a semigroup which is the main result of this paper. 
 
Theorem 3.1 Let 𝑀𝑀 be the set of sequence of numbers 𝑆𝑆𝑚𝑚(𝑛𝑛), that is, let  

𝑀𝑀 = �1,𝑚𝑚, 3𝑚𝑚 − 3, 6𝑚𝑚 − 8, 10𝑚𝑚− 15, . . . ,
(𝑚𝑚− 2)𝑛𝑛2 − (𝑚𝑚− 4)𝑛𝑛

2
 

+ �(2𝑚𝑚− 4)�
(𝑚𝑚− 2)𝑛𝑛2 − (𝑚𝑚− 4)𝑛𝑛

2
� +

(𝑚𝑚 − 4)2

4 �

1
2

+
𝑚𝑚− 2

2
, . . .�. 

Also let ∗ a binary operation on 𝑀𝑀 such that 
 
𝑆𝑆𝑚𝑚(𝑛𝑛) ∗ 𝑆𝑆𝑚𝑚(𝑘𝑘) = 𝑆𝑆𝑚𝑚(𝑛𝑛 + 𝑘𝑘) 

                             = 𝑆𝑆𝑚𝑚(𝑛𝑛) + 𝑆𝑆𝑚𝑚(𝑘𝑘) +
1
4

(𝑚𝑚− 4)2

𝑚𝑚 − 2
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                            +2�𝑆𝑆𝑚𝑚(𝑛𝑛) +
1
8

(𝑚𝑚 − 4)2

𝑚𝑚 − 2
�

1
2
�𝑆𝑆𝑚𝑚(𝑘𝑘) +

1
8

(𝑚𝑚− 4)2

𝑚𝑚 − 2
�

1
2
 

                            + 
𝑚𝑚 − 4

2√2𝑚𝑚− 4
�𝑆𝑆𝑚𝑚(𝑛𝑛) +

1
8

(𝑚𝑚 − 4)2

𝑚𝑚 − 2
�

1
2

+
𝑚𝑚− 4

2√2𝑚𝑚− 4
�𝑆𝑆𝑚𝑚(𝑘𝑘) +

1
8

(𝑚𝑚 − 4)2

𝑚𝑚 − 2
�

1
2

. 

 
where 𝑛𝑛,𝑘𝑘 ∈ ℕ and 𝑚𝑚 ≥ 3. Then the algebraic structure (𝑀𝑀,∗) is a semigroup. 
 
Proof. From binary operation ∗, we can have recursive relation for 𝑘𝑘 = 1: 
 
𝑆𝑆𝑚𝑚(𝑛𝑛) ∗ 𝑆𝑆𝑚𝑚(1) = 𝑆𝑆𝑚𝑚(𝑛𝑛 + 1) 

                             = 𝑆𝑆𝑚𝑚(𝑛𝑛) + 𝑆𝑆𝑚𝑚(1) +
1
4

(𝑚𝑚 − 4)2

𝑚𝑚 − 2
 

                            +2�𝑆𝑆𝑚𝑚(𝑛𝑛) +
1
8

(𝑚𝑚 − 4)2

𝑚𝑚 − 2
�

1
2
�𝑆𝑆𝑚𝑚(1) +

1
8

(𝑚𝑚 − 4)2

𝑚𝑚 − 2
�

1
2
 

                            + 
𝑚𝑚 − 4

2√2𝑚𝑚− 4
�𝑆𝑆𝑚𝑚(𝑛𝑛) +

1
8

(𝑚𝑚− 4)2

𝑚𝑚 − 2
�

1
2

+
𝑚𝑚 − 4

2√2𝑚𝑚 − 4
�𝑆𝑆𝑚𝑚(1) +

1
8

(𝑚𝑚− 4)2

𝑚𝑚 − 2
�

1
2

. 

 

𝑆𝑆𝑚𝑚(𝑛𝑛 + 1) = 𝑆𝑆𝑚𝑚(𝑛𝑛) ∗ 𝑆𝑆𝑚𝑚(1) = 𝑆𝑆𝑚𝑚(𝑛𝑛) +
𝑚𝑚 − 2

2
+ √2𝑚𝑚 − 4�𝑆𝑆𝑚𝑚(𝑛𝑛) +

1
8

(𝑚𝑚 − 4)2

𝑚𝑚 − 2
�

1
2
 

and so, we have 

𝑆𝑆𝑚𝑚(𝑛𝑛 + 1) = 𝑆𝑆𝑚𝑚(𝑛𝑛) + �(2𝑚𝑚− 4)𝑆𝑆𝑚𝑚(𝑛𝑛) +
(𝑚𝑚 − 4)2

4 �

1
2

+
𝑚𝑚 − 2

2
 .                                       (13) 

Starting from number  𝑆𝑆𝑚𝑚(1) = 1, we have 𝑚𝑚, 3𝑚𝑚− 3, 6𝑚𝑚− 8, 10𝑚𝑚− 15, 15𝑚𝑚− 24, . . ., 
 

(𝑚𝑚−2)𝑛𝑛2−(𝑚𝑚−4)𝑛𝑛
2

 + �(2𝑚𝑚− 4) �(𝑚𝑚−2)𝑛𝑛2−(𝑚𝑚−4)𝑛𝑛
2

� + (𝑚𝑚−4)2

4
�

1
2

+ 𝑚𝑚−2
2

, … which are the elements 

of the set of 𝑀𝑀. Indeed, for 𝑚𝑚 ≥ 3, 
 

𝑆𝑆𝑚𝑚(2) = 𝑆𝑆𝑚𝑚(1) + �(2𝑚𝑚− 4)𝑆𝑆𝑚𝑚(1) +
(𝑚𝑚 − 4)2

4 �

1
2

+
𝑚𝑚− 2

2
 

             = 1 + �2𝑚𝑚− 4 +
(𝑚𝑚− 4)2

4
�

1
2

+
𝑚𝑚 − 2

2
= 1 +

𝑚𝑚
2

+
𝑚𝑚 − 2

2
= 𝑚𝑚. 

𝑆𝑆𝑚𝑚(3) = 𝑆𝑆𝑚𝑚(2) + �(2𝑚𝑚− 4)𝑆𝑆𝑚𝑚(2) +
(𝑚𝑚 − 4)2

4 �

1
2

+
𝑚𝑚− 2

2
 

             = 𝑚𝑚 + �(2𝑚𝑚− 4)𝑚𝑚 +
(𝑚𝑚 − 4)2

4 �

1
2

+
𝑚𝑚 − 2

2
= 𝑚𝑚 +

3𝑚𝑚− 4
2

+
𝑚𝑚 − 2

2
= 3𝑚𝑚− 3. 

𝑆𝑆𝑚𝑚(4) = 𝑆𝑆𝑚𝑚(3) + �(2𝑚𝑚− 4)𝑆𝑆𝑚𝑚(3) +
(𝑚𝑚 − 4)2

4 �

1
2

+
𝑚𝑚− 2

2
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             = 3𝑚𝑚− 3 + �(2𝑚𝑚− 4)(3𝑚𝑚− 3) +
(𝑚𝑚− 4)2

4 �

1
2

+
𝑚𝑚− 2

2
 

             = 3𝑚𝑚− 3 +
5𝑚𝑚− 8

2
+
𝑚𝑚− 2

2
= 6𝑚𝑚− 8. 

𝑆𝑆𝑚𝑚(5) = 𝑆𝑆𝑚𝑚(4) + �(2𝑚𝑚− 4)𝑆𝑆𝑚𝑚(4) +
(𝑚𝑚 − 4)2

4 �

1
2

+
𝑚𝑚− 2

2
 

             = 6𝑚𝑚− 8 + �(2𝑚𝑚− 4)(6𝑚𝑚− 8) +
(𝑚𝑚− 4)2

4 �

1
2

+
𝑚𝑚− 2

2
 

             = 6𝑚𝑚− 8 +
7𝑚𝑚− 12

2
+
𝑚𝑚− 2

2
= 10𝑚𝑚− 15. 

 
And so on. That means, the algebraic structure (𝑀𝑀,∗) satisfies the properties of closure. Now 
we need to show that (𝑀𝑀,∗) satisfies the properties of associativity. We know from the 
construction of binary operation ∗ that 
 
𝑁𝑁𝑛𝑛+𝑘𝑘 = 𝑁𝑁𝑛𝑛 ∗ 𝑁𝑁𝑘𝑘 = 𝑁𝑁𝑛𝑛 + 𝑁𝑁𝑘𝑘 + 𝑚𝑚−4

2√2𝑚𝑚−4
 , where 𝑛𝑛,𝑘𝑘 ∈ ℕ, 𝑚𝑚 ≥ 3 and  

 

𝑁𝑁𝑛𝑛 = �𝑆𝑆𝑚𝑚(𝑛𝑛) +
1
8

(𝑚𝑚− 4)2

𝑚𝑚 − 2
�

1
2

= �𝑚𝑚 − 2
2 �𝑛𝑛 −

𝑚𝑚 − 4
2(𝑚𝑚 − 2)�, 

𝑁𝑁𝑘𝑘 = �𝑆𝑆𝑚𝑚(𝑘𝑘) +
1
8

(𝑚𝑚 − 4)2

𝑚𝑚 − 2
�

1
2

= �𝑚𝑚 − 2
2 �𝑘𝑘 −

𝑚𝑚 − 4
2(𝑚𝑚− 2)�, 

𝑁𝑁𝑛𝑛+𝑘𝑘 = �𝑆𝑆𝑚𝑚(𝑛𝑛 + 𝑘𝑘) +
1
8

(𝑚𝑚 − 4)2

𝑚𝑚 − 2
�

1
2

= �𝑚𝑚 − 2
2 �𝑛𝑛 + 𝑘𝑘 −

𝑚𝑚 − 4
2(𝑚𝑚 − 2)�. 

 
For 𝑛𝑛,𝑘𝑘,𝑝𝑝 ∈ ℕ and 𝑚𝑚 ≥ 3 
 

(𝑁𝑁𝑛𝑛 ∗ 𝑁𝑁𝑘𝑘) ∗ 𝑁𝑁𝑝𝑝 = 𝑁𝑁𝑛𝑛+𝑘𝑘 + 𝑁𝑁𝑝𝑝 +
𝑚𝑚 − 4

2√2𝑚𝑚 − 4
 

                           = �𝑚𝑚 − 2
2 �𝑛𝑛 + 𝑘𝑘 −

𝑚𝑚 − 4
2(𝑚𝑚 − 2)� + �𝑚𝑚 − 2

2 �𝑝𝑝 −
𝑚𝑚 − 4

2(𝑚𝑚− 2)� +
𝑚𝑚 − 4

2√2𝑚𝑚− 4
 

                           = �𝑚𝑚 − 2
2 �𝑛𝑛 + 𝑘𝑘 + 𝑝𝑝 −

𝑚𝑚 − 4
𝑚𝑚− 2�

+
𝑚𝑚 − 4

2√2𝑚𝑚− 4
                                                (14) 

and 
 

𝑁𝑁𝑛𝑛 ∗ �𝑁𝑁𝑘𝑘 ∗ 𝑁𝑁𝑝𝑝� = 𝑁𝑁𝑛𝑛 + 𝑁𝑁𝑘𝑘+𝑝𝑝 +
𝑚𝑚 − 4

2√2𝑚𝑚− 4
 

                           = �𝑚𝑚 − 2
2 �𝑛𝑛 −

𝑚𝑚 − 4
2(𝑚𝑚− 2)� + �𝑚𝑚 − 2

2 �𝑘𝑘 + 𝑝𝑝 −
𝑚𝑚 − 4

2(𝑚𝑚− 2)� +
𝑚𝑚 − 4

2√2𝑚𝑚− 4
 

149 



                           = �𝑚𝑚 − 2
2 �𝑛𝑛 + 𝑘𝑘 + 𝑝𝑝 −

𝑚𝑚 − 4
𝑚𝑚− 2�

+
𝑚𝑚 − 4

2√2𝑚𝑚− 4
 .                                              (15) 

 
So, with the results of equations (14) and (15), we obtain, (𝑁𝑁𝑛𝑛 ∗ 𝑁𝑁𝑘𝑘) ∗ 𝑁𝑁𝑝𝑝 = 𝑁𝑁𝑛𝑛 ∗ �𝑁𝑁𝑘𝑘 ∗ 𝑁𝑁𝑝𝑝� 
which gives us that (𝑀𝑀,∗) satisfies the properties of associativity. Hence the result. 
 
As seen in Figure 1, polygonal numbers start from 𝑆𝑆𝑚𝑚(1) = 1. However, in some studies, as 
you can see in [1, 10], polygonal numbers start from the number 𝑆𝑆𝑚𝑚(0) = 0. Now by 
considering the start point as the number 𝑆𝑆𝑚𝑚(0) = 0 and Theorem 3.1, we can give the 
following corollary which gives the conditions for (𝑀𝑀,∗) to be a monoid. 
 
Corollary 3.1 Let 𝑀𝑀 be the set of sequence of numbers 𝑆𝑆𝑚𝑚(𝑛𝑛) and let ∗ a binary operation on 
𝑀𝑀(defined in (7)) such that, 
 
𝑆𝑆𝑚𝑚(𝑛𝑛) ∗ 𝑆𝑆𝑚𝑚(𝑘𝑘) = 𝑆𝑆𝑚𝑚(𝑛𝑛 + 𝑘𝑘) 

                             = 𝑆𝑆𝑚𝑚(𝑛𝑛) + 𝑆𝑆𝑚𝑚(𝑘𝑘) +
1
4

(𝑚𝑚− 4)2

𝑚𝑚 − 2
 

                            +2�𝑆𝑆𝑚𝑚(𝑛𝑛) +
1
8

(𝑚𝑚 − 4)2

𝑚𝑚 − 2
�

1
2
�𝑆𝑆𝑚𝑚(𝑘𝑘) +

1
8

(𝑚𝑚− 4)2

𝑚𝑚 − 2
�

1
2
 

                            + 
𝑚𝑚 − 4

2√2𝑚𝑚− 4
�𝑆𝑆𝑚𝑚(𝑛𝑛) +

1
8

(𝑚𝑚 − 4)2

𝑚𝑚 − 2
�

1
2

+
𝑚𝑚− 4

2√2𝑚𝑚− 4
�𝑆𝑆𝑚𝑚(𝑘𝑘) +

1
8

(𝑚𝑚 − 4)2

𝑚𝑚 − 2
�

1
2

. 

 
where 𝑛𝑛,𝑘𝑘 ∈ ℕ and 𝑚𝑚 ≥ 3. If 𝑆𝑆𝑚𝑚(0) = 0 ∈ 𝑀𝑀 , 𝑛𝑛hen the algebraic structure (𝑀𝑀,∗) is a monoid. 
 
Proof. In Theorem 2.1, we have proved that (𝑀𝑀,∗) is a semigroup. To show that the algebraic 
structure (𝑀𝑀,∗) is a monoid, it must be shown that it has an identity element. Let 𝑆𝑆𝑚𝑚(0) = 0 ∈
𝑀𝑀, then, from the binary operation ∗ we have, 
 
𝑆𝑆𝑚𝑚(𝑛𝑛) ∗ 𝑆𝑆𝑚𝑚(0) = 𝑆𝑆𝑚𝑚(𝑛𝑛 + 0) = 𝑆𝑆𝑚𝑚(𝑛𝑛) and 𝑆𝑆𝑚𝑚(0) ∗ 𝑆𝑆𝑚𝑚(𝑛𝑛) = 𝑆𝑆𝑚𝑚(0 + 𝑛𝑛) = 𝑆𝑆𝑚𝑚(𝑛𝑛). 
 
Thus, we have, 𝑆𝑆𝑚𝑚(𝑛𝑛) ∗ 𝑆𝑆𝑚𝑚(0) = 𝑆𝑆𝑚𝑚(0) ∗ 𝑆𝑆𝑚𝑚(𝑛𝑛) = 𝑆𝑆𝑚𝑚(𝑛𝑛) which gives us that (𝑀𝑀,∗) satisfies 
the properties of identity. Hence the result. 
 
Example 3.1 [10, A000290] known as square numbers. Square numbers are integer having 
following form: 
 
𝑆𝑆4(𝑛𝑛) = 1 + 3 + 5+. . . +2𝑛𝑛 − 1 = 𝑛𝑛2.                                                                                           (16) 
 
Let 𝐴𝐴 denote the sequence of numbers 𝑆𝑆4(𝑛𝑛). That is, let 𝐴𝐴 = {1, 4, 9, 16, 25, 36, 49, 64, 81,  
100, 121, 144, 169, 225, 256, 289, 324, 361, 400, 441, 484, . . . }. Now we can find a binary 
operation of given set of 𝐴𝐴. Since 
 

�𝑆𝑆4(𝑛𝑛)�
1
2 = (𝑛𝑛2)

1
2 = 𝑛𝑛 

 
we define: 
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𝑆𝑆𝑛𝑛 = �𝑆𝑆4(𝑛𝑛)�
1
2 = (𝑛𝑛2)

1
2 = 𝑛𝑛 

𝑆𝑆𝑘𝑘 = �𝑆𝑆4(𝑘𝑘)�
1
2 = (𝑘𝑘2)

1
2 = 𝑘𝑘 

𝑆𝑆𝑛𝑛+𝑘𝑘 = �𝑆𝑆4(𝑛𝑛 + 𝑘𝑘)�
1
2 = ((𝑛𝑛 + 𝑘𝑘)2)

1
2 = 𝑛𝑛 + 𝑘𝑘. 

 
We use 𝑆𝑆𝑛𝑛 for definition of binary operation: 
 

𝑆𝑆𝑛𝑛+𝑘𝑘 = 𝑆𝑆𝑛𝑛 ∗ 𝑆𝑆𝑘𝑘 = 𝑆𝑆4(𝑛𝑛 + 𝑘𝑘) = �𝑆𝑆4(𝑛𝑛)�
1
2 + �𝑆𝑆4(𝑘𝑘)�

1
2 + 2�𝑆𝑆4(𝑛𝑛)�

1
2�𝑆𝑆4(𝑘𝑘)�

1
2 

          = (𝑛𝑛2)
1
2 + (𝑘𝑘2)

1
2 = 𝑛𝑛 + 𝑘𝑘. 

 
As a result, we can rewrite the defined binary operation as follows: 

𝑆𝑆4(𝑛𝑛) ∗ 𝑆𝑆4(𝑘𝑘) = 𝑆𝑆4(𝑛𝑛 + 𝑘𝑘) = 𝑆𝑆4(𝑛𝑛) + 𝑆𝑆4(𝑘𝑘) + 2�𝑆𝑆4(𝑛𝑛)�
1
2�𝑆𝑆4(𝑘𝑘)�

1
2. 

 
From binary operation ∗, we can have recursive relation for 𝑘𝑘 = 1: 

𝑆𝑆4(𝑛𝑛 + 1) = 𝑆𝑆4(𝑛𝑛) ∗ 𝑆𝑆4(1) = 𝑆𝑆4(𝑛𝑛) + 2�𝑆𝑆4(𝑛𝑛)�
1
2 + 1. 

 
And so, we obtain 

𝑆𝑆4(𝑛𝑛 + 1) = 𝑆𝑆4(𝑛𝑛) + 2�𝑆𝑆4(𝑛𝑛)�
1
2 + 1. 

 
Starting from number 𝑆𝑆4(1) = 1, we have 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196, 
225, 256, 289, 324,361, 400, 441, 484, 529, ... which are the elements of the set of 𝐴𝐴. From 
Theorem 3.1, one can say that the algebraic structure (𝐴𝐴,∗) is a semigroup. Also, if the 𝑆𝑆4(0) =
0 ∈ 𝐴𝐴 then the algebraic structure (𝐴𝐴,∗) is a monoid from Corollary 3.1. 
 
Example 3.2 [10, A000384] known as hexagonal numbers. Hexagonal numbers are integer 
having following form: 
 
𝑆𝑆6(𝑛𝑛) = 1 + 5 + 9+. . . +4𝑛𝑛 − 3 = 𝑛𝑛(2𝑛𝑛 − 1).                                                                            (17) 
 
Let 𝐵𝐵 denote the sequence of numbers 𝑆𝑆6(𝑛𝑛). That is, let 𝐵𝐵 = {1, 6, 15, 28, 45, 66, 91, 120,  
153, 190, 231, 276, 325, 378, 435, 496, 561, 630, 703, 780, . . . }. Now we can find a binary 
operation of given set of 𝐵𝐵. Since 
 

�𝑆𝑆6(𝑛𝑛) +
1
8�

1
2

= �
1
2
𝑛𝑛(4𝑛𝑛 − 2) +

1
8�

1
2

= �2 �𝑛𝑛 −
1
4�

2

�

1
2

= √2 �𝑛𝑛 −
1
4�

. 

 
we define: 
 

𝐻𝐻𝑛𝑛 = �𝑆𝑆6(𝑛𝑛) +
1
8�

1
2

= √2 �𝑛𝑛 −
1
4�

, 

𝐻𝐻𝑘𝑘 = �𝑆𝑆6(𝑘𝑘) +
1
8�

1
2

= √2 �𝑘𝑘 −
1
4�

, 
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𝐻𝐻𝑛𝑛+𝑘𝑘 = �𝑆𝑆6(𝑛𝑛 + 𝑘𝑘) +
1
8�

1
2

= √2 �𝑛𝑛 + 𝑘𝑘 −
1
4�

. 
 
We use 𝐻𝐻𝑛𝑛 for definition of binary operation: 
 

𝐻𝐻𝑛𝑛+𝑘𝑘 = 𝐻𝐻𝑛𝑛 ∗ 𝐻𝐻𝑘𝑘 = 𝐻𝐻𝑛𝑛 + 𝐻𝐻𝑘𝑘 +
1

2√2
= √2 �𝑛𝑛 −

1
4�

+ √2 �𝑘𝑘 −
1
4�

+
1

2√2
= √2 �𝑛𝑛 + 𝑘𝑘 −

1
4�

. 

 
As a result, we can rewrite the defined binary operation as follows: 
 
𝑆𝑆6(𝑛𝑛) ∗ 𝑆𝑆6(𝑘𝑘) = 𝑆𝑆6(𝑛𝑛 + 𝑘𝑘) 

                           = 𝑆𝑆6(𝑛𝑛) + 𝑆𝑆6(𝑘𝑘) +
1
4

 

                           +2 �𝑆𝑆6(𝑛𝑛) +
1
8�

1
2
�𝑆𝑆6(𝑘𝑘) +

1
8�

1
2

+
1
√2

�𝑆𝑆6(𝑛𝑛) +
1
8�

1
2

+
1
√2

�𝑆𝑆6(𝑘𝑘) +
1
8�

1
2

. 

 
From binary operation ∗, we can have recursive relation for 𝑘𝑘 = 1: 

𝑆𝑆6(𝑛𝑛 + 1) = 𝑆𝑆6(𝑛𝑛) ∗ 𝑆𝑆6(1) = 𝑆𝑆6(𝑛𝑛) + 2 + 2√2 �𝑆𝑆6(𝑛𝑛) +
1
8�

1
2

. 
And so, we obtain 

𝑆𝑆6(𝑛𝑛 + 1) = 𝑆𝑆6(𝑛𝑛) + (8𝑆𝑆6(𝑛𝑛) + 1)
1
2 + 2. 

 
Starting from number 𝑆𝑆6(1) = 1, we have 6, 15, 28, 45, 66, 91, 120, 153, 190, 231, 276, 325, 
378, 435, 496, 561, 630, 703, ...which are the elements of the set of 𝐵𝐵. From Theorem 3.1, one 
can say that the algebraic structure (𝐵𝐵,∗) is a semigroup. Also, if the 𝑆𝑆6(0) = 0 ∈ 𝐵𝐵, then the 
algebraic structure (𝐵𝐵,∗) is a monoid from Corollary 3.1. 
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